1
|
Mather JA. Ethics and Invertebrates: The Problem Is Us. Animals (Basel) 2023; 13:2827. [PMID: 37760227 PMCID: PMC10525091 DOI: 10.3390/ani13182827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In the last few decades, science has begun to make great strides at understanding how varied, fascinating, and intelligent invertebrate animals are. Because they are poorly known, the invertebrates that make up about 98% of the animals on the planet have been overlooked. Because they are seen as both simple and unattractive, children and their teachers, as well as the general public, do not think they need care. Because until recently we did not know they can be both intelligent and sensitive-bees can learn from each other, butterflies can navigate huge distances, octopuses are smart, and lobsters can feel pain-we have to give them the consideration they deserve. This collection of papers should help us to see how the lives of invertebrates are tightly linked to ours, how they live, and what they need in terms of our consideration and care.
Collapse
Affiliation(s)
- Jennifer A Mather
- Department of Psychology, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
2
|
Guo X, Fu S, Ying J, Zhao Y. Prebiotic chemistry: a review of nucleoside phosphorylation and polymerization. Open Biol 2023; 13:220234. [PMID: 36629018 PMCID: PMC9832566 DOI: 10.1098/rsob.220234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
The phosphorylation of nucleosides and their polymerization are crucial issues concerning the origin of life. The question of how these plausible chemical processes took place in the prebiotic Earth is still perplexing, despite several studies that have attempted to explain these prebiotic processes. The purpose of this article is to review these chemical reactions with respect to chemical evolution in the primeval Earth. Meanwhile, from our perspective, the chiral properties and selection of biomolecules should be considered in the prebiotic chemical origin of life, which may contribute to further research in this field to some extent.
Collapse
Affiliation(s)
- Xiaofan Guo
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
| | - Jianxi Ying
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People's Republic of China
| |
Collapse
|
3
|
Moelling K, Broecker F. Viroids and the Origin of Life. Int J Mol Sci 2021; 22:ijms22073476. [PMID: 33800543 PMCID: PMC8036462 DOI: 10.3390/ijms22073476] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Viroids are non-coding circular RNA molecules with rod-like or branched structures. They are often ribozymes, characterized by catalytic RNA. They can perform many basic functions of life and may have played a role in evolution since the beginning of life on Earth. They can cleave, join, replicate, and undergo Darwinian evolution. Furthermore, ribozymes are the essential elements for protein synthesis of cellular organisms as parts of ribosomes. Thus, they must have preceded DNA and proteins during evolution. Here, we discuss the current evidence for viroids or viroid-like RNAs as a likely origin of life on Earth. As such, they may also be considered as models for life on other planets or moons in the solar system as well as on exoplanets.
Collapse
Affiliation(s)
- Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Gloriastr 30, 8006 Zurich, Switzerland
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
- Correspondence: ; Tel.: +49-(172)-3274306
| | - Felix Broecker
- Vaxxilon Deutschland GmbH, Magnusstr. 11, 12489 Berlin, Germany;
| |
Collapse
|
4
|
Cometary panspermia and origin of life? ADVANCES IN GENETICS 2020. [PMID: 33081926 DOI: 10.1016/bs.adgen.2020.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
A range of astronomical observations are shown to be in accord with the theory of cometary panspermia. This theory posits that comets harbor a viable biological component in the form of bacteria and viruses that led to origin and evolution of life on Earth. The data includes (1) infrared, visual and ultraviolet spectra of interstellar dust, (2) infrared spectra of the dust released from comet Halley in 1986, (3) infrared spectra of comet Hale-Bopp in 1997, (4) near and mid-infrared spectra of comet Tempel I in 2005, (5) the discovery of an amino acid and degradation products attributable to biology in the material recovered from the Stardust Mission in 2009, (6) jets from comet Lovejoy showing both a sugar and Ethyl alcohol and finally, (7) a diverse set of data that has emerged from the Rosetta mission. The conjunction of all the available data points to cometary biology and interstellar panspermia as being inevitable.
Collapse
|
5
|
Steele EJ. Introduction-Panspermia, 2020. ADVANCES IN GENETICS 2020; 106:1-4. [PMID: 33081918 PMCID: PMC7340401 DOI: 10.1016/bs.adgen.2020.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This current volume is, in many ways, a 2020 update to the important 1999–2000 compendium by Sir Fred Hoyle and Professor N. Chandra Wickramasinghe's “Astronomical Origins of life: Steps towards Panspermia.” The emerging new paradigm of biology that connects life on Earth with the wider cosmos is covered in considerable depth showing that terrestrial biological evolution is best understood as a cosmically derived habitat and an interconnected genetic system. The various chapters here discuss all aspects of this interconnectedness, particularly relevant now in this time of the coronavirus pandemic (COVID-19) as the human race reacts to the many microbes and viral pathogens that arrive regularly from space.
Collapse
Affiliation(s)
- Edward J Steele
- C.Y.O'Connor ERADE Village Foundation, Piara Waters, Perth, WA, Australia; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Melville Analytics Pty Ltd, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Verkhratsky A. Early evolutionary history (from bacteria to hemichordata) of the omnipresent purinergic signalling: A tribute to Geoff Burnstock inquisitive mind. Biochem Pharmacol 2020; 187:114261. [PMID: 33011161 DOI: 10.1016/j.bcp.2020.114261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Purines and pyrimidines are indispensable molecules of life; they are fundamental for genetic code and bioenergetics. From the very early evolution of life purines have acquired the meaning of damage-associated extracellular signaller and purinergic receptors emerged in unicellular organisms. Ancestral purinoceptors are P2X-like ionotropic ligand-gated cationic channels showing 20-40% of homology with vertebrate P2X receptors; genes encoding ancestral P2X receptors have been detected in Protozoa, Algae, Fungi and Sponges; they are also present in some invertebrates, but are absent from the genome of insects, nematodes, and higher plants. Plants nevertheless evolved a sophisticated and widespread purinergic signalling system relying on the idiosyncratic purinoceptor P2K1/DORN1 linked to intracellular Ca2+ signalling. The advance of metabotropic purinoceptors starts later in evolution with adenosine receptors preceding the emergence of P2Y nucleotide and P0 adenine receptors. In vertebrates and mammals the purinergic signalling system reaches the summit and operates throughout all tissues and systems without anatomical or functional segregation.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain.
| |
Collapse
|
7
|
Abstract
Cephalopods fascinate us but have been out of the reach of experimental manipulations at the genetic level. A new study describes editing of a gene in a squid using CRISPR.
Collapse
Affiliation(s)
- Robert E Steele
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
8
|
Steele EJ, Gorczynski RM, Lindley RA, Liu Y, Temple R, Tokoro G, Wickramasinghe DT, Wickramasinghe NC. The efficient Lamarckian spread of life in the cosmos. ADVANCES IN GENETICS 2020; 106:21-43. [PMID: 33081924 PMCID: PMC7340397 DOI: 10.1016/bs.adgen.2020.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this Chapter we discuss the various mechanisms that are available for the possible transfer of cosmic microbial living systems from one cosmic habitat to another. With the 100 or so habitable planets that are now known to exist in our galaxy alone transfers of cometary dust carrying life including fragments of icy planetoids/asteroids would be expected to occur on a routine basis. It is thus easy to view the galaxy as a single connected "biosphere" of which our planet Earth is a minor component. The Hoyle-Wickramasinghe Panspermia paradigm provides a cogent biological rationale for the actual widespread existence of Lamarckian modes of inheritance in terrestrial systems (which we review here). Thus the Panspermia paradigm provides the raison d'etre for Lamarckian Inheritance. Under a terrestrially confined neoDarwinian viewpoint such an association may have been thought spurious in the past. Our aim here is to outline the main evidence for rapid terrestrial-based Lamarckian-based evolutionary hypermutation processes dependent on reverse transcription-coupled mechanisms among others. Such rapid adaptation mechanisms would be consistent with the effective cosmic spread of living systems. For example, a viable, or cryo-preserved, living system traveling through space in a protective matrix will of necessity need to adapt rapidly and proliferate on landing in a new cosmic niche. Lamarckian mechanisms thus come to the fore and supersede the slow (blind and random) genetic processes expected under neoDarwinian Earth centred theories.
Collapse
Affiliation(s)
- Edward J Steele
- C.Y.O'Connor ERADE Village Foundation, Piara Waters, Perth, WA, Australia; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Melville Analytics Pty Ltd, Melbourne, VIC, Australia.
| | | | - Robyn A Lindley
- Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, VIC, Australia; GMDx Group Ltd, Melbourne, VIC, Australia
| | - Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Robert Temple
- The History of Chinese Science and Culture Foundation, Conway Hall, London, United Kingdom
| | - Gensuke Tokoro
- Institute for the Study of Panspermia and Astroeconomics, Gifu, Japan
| | - Dayal T Wickramasinghe
- College of Physical and Mathematical Sciences, Australian National University, Canberra, ACT, Australia
| | - N Chandra Wickramasinghe
- Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Institute for the Study of Panspermia and Astroeconomics, Gifu, Japan; University of Buckingham, Buckingham, United Kingdom; National Institute of Fundamental Studies, Kandy, Sri Lanka.
| |
Collapse
|
9
|
Shuffling type of biological evolution based on horizontal gene transfer and the biosphere gene pool hypothesis. Biosystems 2020; 193-194:104131. [DOI: 10.1016/j.biosystems.2020.104131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 02/08/2023]
|
10
|
Steele EJ, Gorczynski RM, Lindley RA, Tokoro G, Temple R, Wickramasinghe NC. Origin of new emergent Coronavirus and Candida fungal diseases-Terrestrial or cosmic? ADVANCES IN GENETICS 2020; 106:75-100. [PMID: 33081928 PMCID: PMC7358766 DOI: 10.1016/bs.adgen.2020.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The origins and global spread of two recent, yet quite different, pandemic diseases is discussed and reviewed in depth: Candida auris, a eukaryotic fungal disease, and COVID-19 (SARS-CoV-2), a positive strand RNA viral respiratory disease. Both these diseases display highly distinctive patterns of sudden emergence and global spread, which are not easy to understand by conventional epidemiological analysis based on simple infection-driven human- to-human spread of an infectious disease (assumed to jump suddenly and thus genetically, from an animal reservoir). Both these enigmatic diseases make sense however under a Panspermia in-fall model and the evidence consistent with such a model is critically reviewed.
Collapse
Affiliation(s)
- Edward J. Steele
- C.Y.O'Connor ERADE Village Foundation, Piara Waters, Perth, WA, Australia,Melville Analytics Pty Ltd, Melbourne, VIC, Australia,Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka,Corresponding authors:
| | - Reginald M. Gorczynski
- University Toronto Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Robyn A. Lindley
- Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, VIC, Australia,GMDx Group Ltd, Melbourne, VIC, Australia
| | - Gensuke Tokoro
- Institute for the Study of Panspermia and Astroeconomics, Gifu, Japan
| | - Robert Temple
- The History of Chinese Science and Culture Foundation, Conway Hall, London, United Kingdom
| | - N. Chandra Wickramasinghe
- Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka,Institute for the Study of Panspermia and Astroeconomics, Gifu, Japan,University of Buckingham, Buckingham, United Kingdom,National Institute of Fundamental Studies, Kandy, Sri Lanka,Corresponding authors:
| |
Collapse
|
11
|
Affiliation(s)
- Karin Moelling
- Inst for Medical MicrobiologyUniversity Zürich Gloriastr 30 8006 Zürich Switzerland
- Max Planck Institute for Molecular Genetics Ihnestr 73 14195 Berlin Germany
| |
Collapse
|
12
|
Mitra S. Percolation clusters of organics in interstellar ice grains as the incubators of life. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:33-38. [PMID: 31647939 DOI: 10.1016/j.pbiomolbio.2019.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/30/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
Biomolecules can be synthesized in interstellar ice grains subject to UV radiation and cosmic rays. I show that on time scales of ≳106 years, these processes lead to the formation of large percolation clusters of organic molecules. Some of these clusters would have ended up on proto-planets where large, loosely bound aggregates of clusters (superclusters) would have formed. The interior regions of such superclusters provided for chemical micro-environments that are filtered versions of the outside environment. I argue that models for abiogenesis are more likely to work when considered inside such micro-environments. As the supercluster breaks up, biochemical systems in such micro-environments gradually become subject to a less filtered environment, allowing them to get adapted to the more complex outside environment. A particular system originating from a particular location on some supercluster would have been the first to get adapted to the raw outside environment and survive there, thereby becoming the first microbe. A collision of a microbe-containing proto-planet with the Moon could have led to fragments veering off back into space, microbes in small fragments would have been able to survive a subsequent impact with the Earth.
Collapse
Affiliation(s)
- Saibal Mitra
- Oostendestraat 14, 4433 AK, Hoedekenskerke, the Netherlands.
| |
Collapse
|
13
|
Cooper PD. The importance of sharing for humanity and its planet. Explore (NY) 2019; 15:376-379. [PMID: 30686719 DOI: 10.1016/j.explore.2018.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/19/2018] [Accepted: 12/25/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Peter D Cooper
- Australian National University, Australian Capital Territory, 2601, Australia.
| |
Collapse
|
14
|
Steele EJ, Gorczynski RM, Lindley RA, Liu Y, Temple R, Tokoro G, Wickramasinghe DT, Wickramasinghe NC. Lamarck and Panspermia - On the Efficient Spread of Living Systems Throughout the Cosmos. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:10-32. [PMID: 31445944 DOI: 10.1016/j.pbiomolbio.2019.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
We review the main lines of evidence (molecular, cellular and whole organism) published since the 1970s demonstrating Lamarckian Inheritance in animals, plants and microorganisms viz. the transgenerational inheritance of environmentally-induced acquired characteristics. The studies in animals demonstrate the genetic permeability of the soma-germline Weismann Barrier. The widespread nature of environmentally-directed inheritance phenomena reviewed here contradicts a key pillar of neo-Darwinism which affirms the rigidity of the Weismann Barrier. These developments suggest that neo-Darwinian evolutionary theory is in need of significant revision. We argue that Lamarckian inheritance strategies involving environmentally-induced rapid directional genetic adaptations make biological sense in the context of cosmic Panspermia allowing the efficient spread of living systems and genetic innovation throughout the Universe. The Hoyle-Wickramasinghe Panspermia paradigm also developed since the 1970s, unlike strictly geocentric neo-Darwinism provides a cogent biological rationale for the actual widespread existence of Lamarckian modes of inheritance - it provides its raison d'être. Under a terrestrially confined neo-Darwinian viewpoint such an association may have been thought spurious in the past. Our aim is to outline the conceptual links between rapid Lamarckian-based evolutionary hypermutation processes dependent on reverse transcription-coupled mechanisms among others and the effective cosmic spread of living systems. For example, a viable, or cryo-preserved, living system travelling through space in a protective matrix will need of necessity to rapidly adapt and proliferate on landing in a new cosmic niche. Lamarckian mechanisms thus come to the fore and supersede the slow (blind and random) genetic processes expected under a traditional neo-Darwinian evolutionary paradigm.
Collapse
Affiliation(s)
- Edward J Steele
- C.Y.O'Connor ERADE Village Foundation, Piara Waters, Perth, 6112, WA, Australia; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Melville Analytics Pty Ltd, Melbourne, Vic, Australia.
| | | | - Robyn A Lindley
- Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of MelbourneVic, Australia; GMDx Group Ltd, Melbourne, Vic, Australia
| | - Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Robert Temple
- The History of Chinese Science and Culture Foundation, Conway Hall, London, UK
| | - Gensuke Tokoro
- Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Institute for the Study of Panspermia and Astrobiology, Gifu, Japan
| | - Dayal T Wickramasinghe
- Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; College of Physical and Mathematical Sciences, Australian National University, Canberra, Australia
| | - N Chandra Wickramasinghe
- Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Institute for the Study of Panspermia and Astrobiology, Gifu, Japan; Buckingham Centre for Astrobiology, University of Buckingham, UK
| |
Collapse
|
15
|
Abstract
The search for extraterrestrial life, recently fueled by the discovery of exoplanets, requires defined biosignatures. Current biomarkers include those of extremophilic organisms, typically archaea. Yet these cellular organisms are highly complex, which makes it unlikely that similar life forms evolved on other planets. Earlier forms of life on Earth may serve as better models for extraterrestrial life. On modern Earth, the simplest and most abundant biological entities are viroids and viruses that exert many properties of life, such as the abilities to replicate and undergo Darwinian evolution. Viroids have virus-like features, and are related to ribozymes, consisting solely of non-coding RNA, and may serve as more universal models for early life than do cellular life forms. Among the various proposed concepts, such as “proteins-first” or “metabolism-first”, we think that “viruses-first” can be specified to “viroids-first” as the most likely scenario for the emergence of life on Earth, and possibly elsewhere. With this article we intend to inspire the integration of virus research and the biosignatures of viroids and viruses into the search for extraterrestrial life.
Collapse
|
16
|
Moelling K, Broecker F. Viruses and Evolution - Viruses First? A Personal Perspective. Front Microbiol 2019; 10:523. [PMID: 30941110 PMCID: PMC6433886 DOI: 10.3389/fmicb.2019.00523] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/28/2019] [Indexed: 01/08/2023] Open
Abstract
The discovery of exoplanets within putative habitable zones revolutionized astrobiology in recent years. It stimulated interest in the question about the origin of life and its evolution. Here, we discuss what the roles of viruses might have been at the beginning of life and during evolution. Viruses are the most abundant biological entities on Earth. They are present everywhere, in our surrounding, the oceans, the soil and in every living being. Retroviruses contributed to about half of our genomic sequences and to the evolution of the mammalian placenta. Contemporary viruses reflect evolution ranging from the RNA world to the DNA-protein world. How far back can we trace their contribution? Earliest replicating and evolving entities are the ribozymes or viroids fulfilling several criteria of life. RNA can perform many aspects of life and influences our gene expression until today. The simplest structures with non-protein-coding information may represent models of life built on structural, not genetic information. Viruses today are obligatory parasites depending on host cells. Examples of how an independent lifestyle might have been lost include mitochondria, chloroplasts, Rickettsia and others, which used to be autonomous bacteria and became intracellular parasites or endosymbionts, thereby losing most of their genes. Even in vitro the loss of genes can be recapitulated all the way from coding to non-coding RNA. Furthermore, the giant viruses may indicate that there is no sharp border between living and non-living entities but an evolutionary continuum. Here, it is discussed how viruses can lose and gain genes, and that they are essential drivers of evolution. This discussion may stimulate the thinking about viruses as early possible forms of life. Apart from our view “viruses first”, there are others such as “proteins first” and “metabolism first.”
Collapse
Affiliation(s)
- Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
17
|
Noble D, Blundell TL, Kohl P. Editorial. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 141:1-2. [PMID: 30902321 DOI: 10.1016/j.pbiomolbio.2019.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Denis Noble
- Department of Physiology, Anatomy & Genetics, Parks Road, Oxford, OX1 3PT, UK.
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University of Freiburg, Elsasser Str 2Q, 90110, Freiburg, Germany.
| |
Collapse
|
18
|
Duggleby RG. Commentary: Numerical analysis of Steele et al.: Cause of cambrian explosion - terrestrial or cosmic? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 141:72-73. [PMID: 30244089 DOI: 10.1016/j.pbiomolbio.2018.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Ronald G Duggleby
- 22Parklands Boulevard, Little Mountain, Queensland, 4551, Australia.
| |
Collapse
|
19
|
Steele EJ, Al-Mufti S, Augustyn KA, Chandrajith R, Coghlan JP, Coulson SG, Ghosh S, Gillman M, Gorczynski RM, Klyce B, Louis G, Mahanama K, Oliver KR, Padron J, Qu J, Schuster JA, Smith WE, Snyder DP, Steele JA, Stewart BJ, Temple R, Tokoro G, Tout CA, Unzicker A, Wainwright M, Wallis J, Wallis DH, Wallis MK, Wetherall J, Wickramasinghe DT, Wickramasinghe JT, Wickramasinghe NC, Liu Y. Reply to commentary by R Duggleby (2019). PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 141:74-78. [PMID: 30419256 DOI: 10.1016/j.pbiomolbio.2018.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Edward J Steele
- CY O'Connor ERADE Village Foundation, Piara Waters, WA, Australia; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka.
| | - Shirwan Al-Mufti
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Kenneth A Augustyn
- Center for the Physics of Living Organisms, Department of Physics, Michigan Technological University, Michigan, United States
| | | | - John P Coghlan
- University of Melbourne, Office of the Dean, Faculty Medicine, Dentistry and Health Sciences, 3rd Level, Alan Gilbert Building, Australia
| | - S G Coulson
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Sudipto Ghosh
- Metallurgical & Materials Engineering IIT, Kanpur, India
| | - Mark Gillman
- South African Brain Research Institute, 6 Campbell Street, Waverly, Johannesburg, South Africa
| | - Reginald M Gorczynski
- University Toronto Health Network, Toronto General Hospital, University of Toronto, Canada
| | - Brig Klyce
- Astrobiology Research Trust, Memphis, TN, USA
| | - Godfrey Louis
- Department of Physics, Cochin University of Science and Technology Cochin, India
| | | | - Keith R Oliver
- School of Veterinary and Life Sciences Murdoch University, Perth, WA, Australia
| | - Julio Padron
- Studio Eutropi, Clinical Pathology and Nutrition, Via Pompei 46, Ardea, 00040, Rome, Italy
| | - Jiangwen Qu
- Department of Infectious Disease Control, Tianjin Center for Disease Control and Prevention, China
| | - John A Schuster
- Unit for History & Philosophy of Science and Sydney Centre for the Foundations of Science, University of Sydney, Sydney, Australia
| | - W E Smith
- Institute for the Study of Panspermia and Astrobiology, Gifu, Japan
| | - Duane P Snyder
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Julian A Steele
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Brent J Stewart
- CY O'Connor ERADE Village Foundation, Piara Waters, WA, Australia
| | - Robert Temple
- The History of Chinese Science and Culture Foundation, Conway Hall, London, UK
| | - Gensuke Tokoro
- Institute for the Study of Panspermia and Astrobiology, Gifu, Japan
| | - Christopher A Tout
- Institute of Astronomy, The Observatories, Madingley Road, Cambridge, CB3 0HA, UK
| | | | - Milton Wainwright
- Buckingham Centre for Astrobiology, University of Buckingham, UK Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka
| | - Jamie Wallis
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Daryl H Wallis
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Max K Wallis
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - John Wetherall
- School of Biomedical Sciences, Perth, Curtin University, WA, Australia
| | - D T Wickramasinghe
- College of Physical and Mathematical Sciences, Australian National University, Canberra, Australia
| | | | - N Chandra Wickramasinghe
- Buckingham Centre for Astrobiology, University of Buckingham, UK Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka Institute for the Study of Panspermia and Astrobiology, Gifu, Japan
| | - Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, China Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
20
|
Denis N. Editorial. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 136:1-2. [PMID: 29544819 DOI: 10.1016/j.pbiomolbio.2018.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Noble Denis
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, OX1 3PT, United Kingdom.
| |
Collapse
|
21
|
O’Brien CE, Roumbedakis K, Winkelmann IE. The Current State of Cephalopod Science and Perspectives on the Most Critical Challenges Ahead From Three Early-Career Researchers. Front Physiol 2018; 9:700. [PMID: 29962956 PMCID: PMC6014164 DOI: 10.3389/fphys.2018.00700] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022] Open
Abstract
Here, three researchers who have recently embarked on careers in cephalopod biology discuss the current state of the field and offer their hopes for the future. Seven major topics are explored: genetics, aquaculture, climate change, welfare, behavior, cognition, and neurobiology. Recent developments in each of these fields are reviewed and the potential of emerging technologies to address specific gaps in knowledge about cephalopods are discussed. Throughout, the authors highlight specific challenges that merit particular focus in the near-term. This review and prospectus is also intended to suggest some concrete near-term goals to cephalopod researchers and inspire those working outside the field to consider the revelatory potential of these remarkable creatures.
Collapse
Affiliation(s)
- Caitlin E. O’Brien
- Normandie Univ., UNICAEN, Rennes 1 Univ., UR1, CNRS, UMR 6552 ETHOS, Caen, France
- Association for Cephalopod Research – CephRes, Naples, Italy
| | - Katina Roumbedakis
- Association for Cephalopod Research – CephRes, Naples, Italy
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Inger E. Winkelmann
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|