1
|
Varvuolytė G, Řezníčková E, Krikštolė S, Tamulienė R, Bieliauskas A, Malina L, Vojáčková V, Duben Z, Kolářová H, Kleizienė N, Arbačiauskienė E, Žukauskaitė A, Kryštof V, Šačkus A. Synthesis and photo-induced anticancer activity of new 2-phenylethenyl-1H-benzo[e]indole dyes. Eur J Med Chem 2024; 277:116777. [PMID: 39173284 DOI: 10.1016/j.ejmech.2024.116777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Herein, a series of new 1,1,2-trimethyl-1H-benzo[e]indole dyes was prepared via Knoevenagel condensation reaction between 1,1,2-trimethyl-1H-benzo[e]indole and benzaldehydes, and characterized using various spectroscopic methods. The obtained compounds showed cytotoxic properties in G361 melanoma cell line upon irradiation with 414 nm blue light at submicromolar doses. The mechanism of action of the most potent compound 15 was further investigated. The treatment induced substantial generation of reactive oxygen species, leading to DNA damage followed by cell death depending on the concentration of the photosensitizer compound and the irradiation intensity.
Collapse
Affiliation(s)
- Gabrielė Varvuolytė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254, Kaunas, Lithuania; Institute of Synthetic Chemistry, Kaunas University of Technology, LT-51423, Kaunas, Lithuania
| | - Eva Řezníčková
- Department of Experimental Biology, Faculty of Science, Palacký University, CZ-77900, Olomouc, Czech Republic.
| | - Sonata Krikštolė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254, Kaunas, Lithuania
| | - Rasa Tamulienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, LT-51423, Kaunas, Lithuania
| | - Aurimas Bieliauskas
- Institute of Synthetic Chemistry, Kaunas University of Technology, LT-51423, Kaunas, Lithuania
| | - Lukáš Malina
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacký University, CZ-77515, Olomouc, Czech Republic
| | - Veronika Vojáčková
- Department of Experimental Biology, Faculty of Science, Palacký University, CZ-77900, Olomouc, Czech Republic
| | - Zdenko Duben
- Department of Experimental Biology, Faculty of Science, Palacký University, CZ-77900, Olomouc, Czech Republic
| | - Hana Kolářová
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacký University, CZ-77515, Olomouc, Czech Republic
| | - Neringa Kleizienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, LT-51423, Kaunas, Lithuania
| | - Eglė Arbačiauskienė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254, Kaunas, Lithuania
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University, CZ-77900, Olomouc, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Faculty of Science, Palacký University, CZ-77900, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, CZ-77900, Olomouc, Czech Republic
| | - Algirdas Šačkus
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254, Kaunas, Lithuania; Institute of Synthetic Chemistry, Kaunas University of Technology, LT-51423, Kaunas, Lithuania.
| |
Collapse
|
2
|
Yumnam G, Devi RS, Singh CI. Mapping the landscape of oral cancer research trends: a systematic scientometric review of global efforts. Oral Maxillofac Surg 2024; 28:1077-1093. [PMID: 38664290 DOI: 10.1007/s10006-024-01253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/20/2024] [Indexed: 08/18/2024]
Abstract
PURPOSE The primary goal of this study was to assess the growth, most influential articles, countries, journals, authors, and papers published in the field of global oral cancer. Research articles on oral cancer, published between 1989 and 2022, were identified through the Web of Science database to achieve this. METHODS A comprehensive dataset comprising 7,178 documents was meticulously extracted from the Web of Science, forming the basis for scientometric analysis. A refined subset of 4,901 documents was judiciously selected following a rigorous screening process for meticulous, in-depth analysis. RESULTS The field has witnessed a remarkable publication surge, with the United States taking the lead in productivity. The journal Oral Oncology has become the foremost publication, renowned for its prolific output and widespread citation. This trend highlights the growing importance and interest in this domain, with researchers and experts worldwide contributing to the expanding body of knowledge. The United States' dominance in productivity suggests its strong commitment to advancing research in the field, while Oral Oncology's recognition underscores its influential role in disseminating cutting-edge findings and fostering scientific progress. CONCLUSION This scientometric analysis is a valuable resource for researchers, funding agencies, industry, and institutions, offering guidance and insights. CLINICAL TRIAL NUMBER Not Applicable.
Collapse
Affiliation(s)
- Gyanajeet Yumnam
- Department of Library and Information Science, Manipur University, Imphal, India
| | - Rajkumari Sofia Devi
- Department of Library and Information Science, Manipur University, Imphal, India
| | | |
Collapse
|
3
|
Sun L, Zhao Y, Peng H, Zhou J, Zhang Q, Yan J, Liu Y, Guo S, Wu X, Li B. Carbon dots as a novel photosensitizer for photodynamic therapy of cancer and bacterial infectious diseases: recent advances. J Nanobiotechnology 2024; 22:210. [PMID: 38671474 PMCID: PMC11055261 DOI: 10.1186/s12951-024-02479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Carbon dots (CDs) are novel carbon-based nanomaterials that have been used as photosensitizer-mediated photodynamic therapy (PDT) in recent years due to their good photosensitizing activity. Photosensitizers (PSs) are main components of PDT that can produce large amounts of reactive oxygen species (ROS) when stimulated by light source, which have the advantages of low drug resistance and high therapeutic efficiency. CDs can generate ROS efficiently under irradiation and therefore have been extensively studied in disease local phototherapy. In tumor therapy, CDs can be used as PSs or PS carriers to participate in PDT and play an extremely important role. In bacterial infectious diseases, CDs exhibit high bactericidal activity as CDs are effective in disrupting bacterial cell membranes leading to bacterial death upon photoactivation. We focus on recent advances in the therapy of cancer and bacteria with CDs, and also briefly summarize the mechanisms and requirements for PSs in PDT of cancer, bacteria and other diseases. We also discuss the role CDs play in combination therapy and the potential for future applications against other pathogens.
Collapse
Affiliation(s)
- Lingxiang Sun
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yifan Zhao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Hongyi Peng
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Jian Zhou
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100069, China
| | - Qingmei Zhang
- Taiyuan University of Science and Technology, Taiyuan, China
| | - Jingyu Yan
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yingyu Liu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Susu Guo
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiuping Wu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China.
| | - Bing Li
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China.
| |
Collapse
|
4
|
Vig S, Gaitan B, Frankle L, Chen Y, Elespuru R, Pfefer TJ, Huang HC. Test method for evaluating the photocytotoxic potential of fluorescence imaging products. Photochem Photobiol 2023. [PMID: 37496175 DOI: 10.1111/php.13836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Various fluorescence imaging agents are currently under clinical studies. Despite significant benefits, phototoxicity is a barrier to the clinical translation of fluorophores. Current regulatory guidelines on medication-based phototoxicity focus on skin effects during sun exposure. However, with systemic and local administration of fluorophores and targeted illumination, there is now possibility of photochemical damage to deeper tissues during intraoperative imaging procedures. Hence, independent knowledge regarding phototoxicity is required to facilitate the development of fluorescence imaging products. Previously, we studied a cell-free assay for initial screening of reactive molecular species generation from fluorophores. The current work addresses a safety test method based on cell viability as an adjunct and a comparator with the cell-free assay. Our goal is to modify and implement an approach based on the in vitro 3T3 neutral red uptake assay of the Organization for Economic Co-Operation and Development Test Guideline 432 (OECD TG432) to evaluate the photocytotoxicity of clinically relevant fluorophores. These included indocyanine green (ICG), proflavine, methylene blue (MB), and IRDye800, as well as control photosensitizers, benzoporphyrin derivative (BPD) and rose bengal (RB). We performed measurements at agent concentrations and illumination parameters used for clinic imaging. Our results aligned with prior studies, indicating photocytotoxicity in RB and BPD and an absence of reactivity for ICG and IRDye800. DNA interactive agents, proflavine and MB, exhibited drug/light dose-response curves like photosensitizers. This study provides evidence and insights into practices useful for testing the photochemical safety of fluorescence imaging products.
Collapse
Affiliation(s)
- Shruti Vig
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Brandon Gaitan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lucas Frankle
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Yu Chen
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, USA
| | - Rosalie Elespuru
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - T Joshua Pfefer
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
5
|
Manimaran R, Dinesh Patel K, Maurice Lobo V, Suresh Kumbhar S, Vamsi Krishna Venuganti V. Buccal mucosal application of dissolvable microneedle patch containing photosensitizer provides effective localized delivery and phototherapy against oral carcinoma. Int J Pharm 2023; 640:122991. [PMID: 37120122 DOI: 10.1016/j.ijpharm.2023.122991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
The effectiveness of phototherapy using photosensitizers is limited by the challenges in their delivery at the site of irradiation. Here, we demonstrate the localized application of a photosensitizer-loaded microneedle patch for effective photodynamic and photothermal therapy in oral carcinoma. Indocyanine green (ICG) was studied as a photosensitizer for its effect on oral carcinoma, FaDu cells. Different parameters including concentration, near-infrared (NIR) laser irradiation intensity and irradiation time were optimized while measuring temperature increase and reactive oxygen species (ROS) generation in FaDu cells. A dissolvable microneedle (DMN) patch made of sodium carboxymethyl cellulose and sodium alginate was fabricated by the micromolding technique. DMN showed sufficient mechanical strength for insertion in the excised porcine buccal mucosa. DMN dissolved within 30 s in phosphate buffer and 30 min in the excised buccal mucosa. Confocal microscopy studies revealed DMN penetration up to a depth of 300 µm within the buccal mucosa. ICG-DMN applied on the back of the rat was found to be localized at the application site before and after irradiation using an 808 nm NIR laser. ICG-DMN was applied on the FaDu xenografted tumor model in athymic nude mice. The localized temperature increase and ROS generation significantly (P<0.05) decreased the tumor volume after ICG-DMN application compared with the control group. In conclusion, DMN can be developed for the localized administration of photosensitizers for phototherapy in oral carcinoma.
Collapse
Affiliation(s)
- Raghuraman Manimaran
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana, India
| | - Kinnari Dinesh Patel
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana, India
| | - Venessa Maurice Lobo
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana, India
| | - Shubham Suresh Kumbhar
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana, India
| | - Venkata Vamsi Krishna Venuganti
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana, India.
| |
Collapse
|
6
|
Folic acid conjugated PAMAM-modified mesoporous silica-coated superparamagnetic iron oxide nanoparticles for potential cancer therapy. J Colloid Interface Sci 2022; 625:711-721. [PMID: 35772201 DOI: 10.1016/j.jcis.2022.06.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 01/10/2023]
Abstract
In this study, novel folate-receptor-targeted polyamidoamine (PAMAM) dendrimer functional mesoporous silica-coated magnetic nanoparticles were prepared for drug delivery agents for photodynamic therapy applications. The surface of the magnetic nanoparticles was coated with mesoporous silica (M-MSN). The M-MSN nanoparticles were functionalized with siloxane-cored PAMAM dendrons (generation 1 to 3). The surface of the M-MSN-PAMAM nanocarriers was targeted with folic acid. Indocyanine green (ICG) a near-infrared dye was loaded in the M-MSN-PAMAM nanocarriers and the photodynamic therapy efficiency of the drug-loaded nanocarriers was evaluated on MCF-7 cells. MCF-7 cells were subjected to tissue culture E-Plate that was used to generate dynamic real-time data by measuring electrical impedance across interdigitated microelectrodes on the bottom of the plate. Light source (LEDs) was designed as a system that fit 96 well-plate and cells were irradiated at 785 nm for 20 min. Also, these results were confirmed by WST-1 assay in dark and light conditions for MCF-7 cells. The results showed that in vitro application of ICG loaded M-MSN-PAMAM-FA causes apoptosis in the MCF-7 cell line.
Collapse
|
7
|
Microfluidic system with light intensity filters facilitating the application of photodynamic therapy for high-throughput drug screening. Photodiagnosis Photodyn Ther 2022; 38:102812. [PMID: 35304312 DOI: 10.1016/j.pdpdt.2022.102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/26/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Photodynamic therapy utilizes light energy with a photosensitizer (a light-sensitive drug) to kill cancer cells through light activation. When a photosensitizer is injected into the bloodstream and exposed to a specific wavelength of light, it generates oxygen to destroy or damage nearby cancer cells, while minimizing side effects on normal cells. Although photodynamic therapy is effective for treating cancer, various parameters, such as the optimum light intensity and photosensitizer dose, are currently poorly understood due to the complexity of conventional experimental schemes. METHODS To effectively perform a simultaneous single parallel test for several different light irradiation conditions on each cell, a microfluidic device was developed to generate eight different intensities from a single light-emitting diode source, through eight different color dye concentrations functioning as light intensity filters. To show that this novel high-throughput microfluidic system can analyze the effects of various light intensities during photodynamic therapy, the optimum light intensities and photosensitizer doses were determined for two different cancer cell lines. RESULTS Optimum light intensities and photosensitizer were determined for all cell lines. The photodynamic therapy effects in response to different irradiated light intensities were characterized by analyzing cell viability after photosensitizer treatment CONCLUSIONS: : The developed platform is capable of being used as a photodynamic therapy screening tool. The proposed platform provides a simple and robust way to optimize the combined parameters of light intensity and dosage for diverse types of cancer cells.
Collapse
|
8
|
An Insight into the Role of Non-Porphyrinoid Photosensitizers for Skin Wound Healing. Int J Mol Sci 2020; 22:ijms22010234. [PMID: 33379392 PMCID: PMC7795024 DOI: 10.3390/ijms22010234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
The concept behind photodynamic therapy (PDT) is being successfully applied in different biomedical contexts such as cancer diseases, inactivation of microorganisms and, more recently, to improve wound healing and tissue regeneration. The effectiveness of PDT in skin treatments is associated with the role of reactive oxygen species (ROS) produced by a photosensitizer (PS), which acts as a "double agent". The release of ROS must be high enough to prevent microbial growth and, simultaneously, to accelerate the immune system response by recruiting important regenerative agents to the wound site. The growing interest in this subject is reflected by the increasing number of studies concerning the optimization of relevant experimental parameters for wound healing via PDT, namely, light features, the structure and concentration of the PS, and the wound type and location. Considering the importance of developing PSs with suitable features for this emergent topic concerning skin wound healing, in this review, a special focus on the achievements attained for each PS class, namely, of the non-porphyrinoid type, is given.
Collapse
|
9
|
Chen H, Huang H, Wu F, Wang F, Shen D. High-peak-power 786 nm and 452 nm lasers based on 1064 nm intracavity-driven cascaded nonlinear optical frequency conversion. OPTICS EXPRESS 2020; 28:30726-30735. [PMID: 33115067 DOI: 10.1364/oe.409098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
We demonstrated high-peak-power 786 nm and 452 nm lasers based on 1064 nm intracavity-driven cascaded nonlinear optical frequency conversion (CNOFC). The 1064 nm fundamental wave generated from the LD-side-pumped Nd:YAG was first intracavity converted to 1572 nm by a noncritically phase-matched KTP OPO. Then a LBO-based second harmonic generation of 1572 nm was served as cascaded process to produce 786 nm laser radiation. The maximum average output power at 786 nm was 1.34 W, corresponding to a pulse peak power of 14.2 kW with 11.2 ns pulse width and 8 kHz pulse repetition rate. Furthermore, a third stage of sum frequency mixing between 786 nm and 1064 nm was designed to achieve the blue emission at 452 nm. The 452 nm blue laser delivers 263 mW, 6.2 ns pulses with a peak power of 5.3 kW, paving the way for achieving high-peak-power blue lasers.
Collapse
|
10
|
Qiu H, Zhu S, Pang L, Ma J, Liu Y, Du L, Wu Y, Jin Y. ICG-loaded photodynamic chitosan/polyvinyl alcohol composite nanofibers: Anti-resistant bacterial effect and improved healing of infected wounds. Int J Pharm 2020; 588:119797. [DOI: 10.1016/j.ijpharm.2020.119797] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 01/09/2023]
|
11
|
Light stimulus responsive nanomedicine in the treatment of oral squamous cell carcinoma. Eur J Med Chem 2020; 199:112394. [DOI: 10.1016/j.ejmech.2020.112394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/13/2022]
|
12
|
Kamanlı AF, Yıldız MZ, Özyol E, Deveci Ozkan A, Sozen Kucukkara E, Guney Eskiler G. Investigation of LED-based photodynamic therapy efficiency on breast cancer cells. Lasers Med Sci 2020; 36:563-569. [PMID: 32577931 DOI: 10.1007/s10103-020-03061-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/01/2020] [Indexed: 01/13/2023]
Abstract
Photodynamic therapy (PDT) is based on special light source, photosensitizer (PS), and in the presence of oxygen. Different light sources have been used for PDT applications. Recent studies have focused on LED light sources for PDT applications due to reducing the cost of laser-based PDT and providing easy access for research laboratory or clinic facilities. LED-mediated PDT applications have shown promising results for the treatment of different types of disease. However, few studies have determined the effects of LED-based PDT on cancer cells. For the first time, the aim of this study was to explore the therapeutic effects of 5-aminolevulinic acid (5-ALA)-mediated PDT after LED irradiation on two sub-types (a poorly aggressive MCF-7 and a highly aggressive MDA-MB-231) of breast cancer cell lines. The effectiveness of 5-ALA PDT treatment was evaluated by WST-1, annexin V, and acridine orange staining with different energy levels. The LED system was specially developed with optical power and wavelength stability techniques. The system consists of user interface and embedded LED controller with real-time optic power output calibration by photodiode feedback. Our results demonstrated that the cell viability of breast cancer cells was considerably decreased a LED dose-dependent manner (P < 0.05). Additionally, a significant increase in the percentage of apoptotic cells was detected in breast cancer cells after irradiation with LED at a density of 18 and 30 J/cm2 energy. Consequently, the LED system could be effectively used for irradiation of 5-ALA in the treatment of breast cancer cells.
Collapse
Affiliation(s)
- Ali Furkan Kamanlı
- Department of Electric and Electronics Engineering, Faculty of Technology, Sakarya University of Applied Sciences, Sakarya, Turkey
| | - Mustafa Zahid Yıldız
- Department of Electric and Electronics Engineering, Faculty of Technology, Sakarya University of Applied Sciences, Sakarya, Turkey
| | - Ebru Özyol
- Department of Biomedical Engineering, Institute of Natural Sciences, Sakarya University, Sakarya, Turkey
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Elif Sozen Kucukkara
- Department of Medical Biochemistry, Institute of Health Sciences, Sakarya University, Sakarya, Turkey
| | - Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey.
| |
Collapse
|
13
|
New planar light source for the induction and monitoring of photodynamic processes in vitro. J Biol Phys 2020; 46:121-131. [PMID: 32170534 DOI: 10.1007/s10867-020-09544-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 01/22/2023] Open
Abstract
We recently developed a new light source that allows for the continuous monitoring of light-induced changes using common spectrophotometric devices adapted for microplate analyses. This source was designed primarily to induce photodynamic processes in cell models. Modern light components, such as LED chips, were used to improve the irradiance homogeneity. In addition, this source forms a small hermetic chamber and thus allows for the regulation of the surrounding atmosphere, which plays a significant role in these light-dependent reactions. The efficacy of the new light source was proven via kinetic measurements of reactive oxygen species generated during the photodynamic reaction of chloroaluminium phthalocyanine disulfonate (ClAlPcS2) in three cell lines: human melanoma cells (G361), human breast adenocarcinoma cells (MCF7), and human fibroblasts (BJ).
Collapse
|
14
|
Liu K, Liu K, Liu J, Ren Q, Zhao Z, Wu X, Li D, Yuan F, Ye K, Li B. Copper chalcogenide materials as photothermal agents for cancer treatment. NANOSCALE 2020; 12:2902-2913. [PMID: 31967164 DOI: 10.1039/c9nr08737k] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Copper-based chalcogenide nanomaterials have made tremendous progress for cancer theranostics due to their simple preparation, low cost, stable performance, and easy functionalization. But a systematic review and analysis about them does not exist. Therefore, we offer an account, mainly focusing on the design and functionalization of the copper-based chalcogenide nanomaterials for cancer theranostics, aiming to briefly demonstrate the design and concepts, summarize some of the past studies and analyze the development trends in the copper-based chalcogenide nanomaterials for clinical application.
Collapse
Affiliation(s)
- Kun Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Kai Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China. and Department of vascular surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qindao 266000, Shandong, China
| | - Junchao Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Qilong Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Xiaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Dalin Li
- Department of vascular surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qindao 266000, Shandong, China
| | - Fukang Yuan
- Department of General Surgery of XuZhou Central Hospital, XuZhou 221009, Jiangsu, China. and XuZhou Clinical School of Xuzhou Medical University, XuZhou 221009, Jiangsu, China
| | - Kaichuang Ye
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
15
|
Olek M, Kasperski J, Skaba D, Wiench R, Cieślar G, Kawczyk-Krupka A. Photodynamic therapy for the treatment of oral squamous carcinoma—Clinical implications resulting from in vitro research. Photodiagnosis Photodyn Ther 2019; 27:255-267. [DOI: 10.1016/j.pdpdt.2019.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022]
|
16
|
Kaundal B, Srivastava AK, Sardoiwala MN, Karmakar S, Choudhury SR. A NIR-responsive indocyanine green-genistein nanoformulation to control the polycomb epigenetic machinery for the efficient combinatorial photo/chemotherapy of glioblastoma. NANOSCALE ADVANCES 2019; 1:2188-2207. [PMID: 36131972 PMCID: PMC9419092 DOI: 10.1039/c9na00212j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/13/2019] [Indexed: 06/15/2023]
Abstract
Combinatorial photodynamics and chemotherapy have drawn enormous attention as therapeutic modalities via precise stimuli-responsive drug delivery for glioblastoma, which can overcome the limitations associated with conventional therapies. Herein, we have prepared an indocyanine green tagged, genistein encapsulated casein nanoformulation (ICG-Gen@CasNPs) that exhibits the near infra-red region responsive controlled release of genistein and enhanced cellular uptake in the human glioblastoma monolayer and a three-dimensional raft culture model via the enhanced retention effect. ICG-Gen@CasNPs, with the integrated photosensitizer indocyanine green within the nanoformulation, triggered oxidative stress, activating the apoptosis cascade, promoting cell cycle arrest and damaging the mitochondrial membrane potential, collectively directing glioblastoma cell death. The suppression of the polycomb group of proteins in the glioblastoma upon ICG-Gen@CasNPs/NIR exposure revealed the involvement of the epigenetic repression complex machinery in the regulation. Furthermore, ICG-Gen@CasNPs/PDT/PTT directed ubiquitination and proteasomal degradation of EZH2 and BMI1 indicates the implication of the polycomb in conferring glioblastoma survival. The increased activation of the apoptotic pathways and the generation of cellular reactive oxygen species upon inhibiting the expression of EZH2 and BMI1 strengthen our observations. It is worth noting that ICG-Gen@CasNPs robustly accumulated in the brain after crossing the blood-brain barrier, which represents the eminent biocompatibility and means that the system is devoid of any nonspecific toxicity in vivo. Moreover, a superior anti-tumor effect was demonstrated on a three-dimensional glioma spheroid model. Thus, this combinatorial chemo/photodynamic therapy revealed that ICG-Gen@CasNPs mediated epigenetic regulation, which is a crucial molecular mechanism of GBM suppression.
Collapse
Affiliation(s)
- Babita Kaundal
- Institute of Nano Science and Technology, Habitat Centre Phase-10, Sector 64 Mohali Punjab India
| | - Anup K Srivastava
- Institute of Nano Science and Technology, Habitat Centre Phase-10, Sector 64 Mohali Punjab India
| | | | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre Phase-10, Sector 64 Mohali Punjab India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre Phase-10, Sector 64 Mohali Punjab India
| |
Collapse
|
17
|
Deumer J, Frentzen M, Meinke M. Investigation of active matrix- metaloproteinase-8 (aMMP-8) as a reference parameter for path control in antimicrobial photothermal therapy (aPTT) using a split-mouth design. Heliyon 2019; 5:e01661. [PMID: 31193352 PMCID: PMC6526226 DOI: 10.1016/j.heliyon.2019.e01661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 01/25/2019] [Accepted: 05/01/2019] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES This retrospective data-collection study aims to explain how the active matrix-metalloproteinase-8-titer (aMMP-titer) influences the immune response of the subject. This is done through monotherapy scaling and root planing (SRP) which is then compared to SRP combined with antimicrobial photothermal therapy (aPTT, Emundo®). METHODS Data collection was monocentric, randomized and split-mouth based. A study group of twenty patients with chronic periodontal disease with a periodontal pocket depth (PPD) 4 mm ≤ PPD ≤8 mm, a periodontal screening index (PSI: > 3), and a gingival recession ≤2 mm were selected.A diode laser, manufactured by A.R.C. Laser GmbH, with 810 nm wavelength was used. This device implemented three different light transmission systems for transgingival and intra-gingival irradiation. Power settings between 200 and 300 mW were deployed for 10 s during all treatment steps. The photothermic dye of EmunDo® system (A.R.C. Laser GmbH) was infracyaningreen.The adjuvant effect of the antimicrobial photothermal therapy (aPTT) with EmunDo® in combination with conventional SRP on the teeth 15 and 35 was compared with the results of monotherapy SRP on teeth 25 and 45. RESULTS A reduction of the aMMP-8-titer in gingival crevicular fluid (GCF) was observed in both groups (follow up group and control group) after one month. However; the decrease in the follow up group under SRP in combination with aPTT was significantly more pronounced. The periodontal pocket depths was reduced in both treatment groups. The periodontal probing depth (in mm) shows a larger decrease of the periodontal pocket depth within the follow up group (SPR with aPTT) compared with the control group (SRP). CONCLUSION The aMMP-8-titer showed differences in both groups prior to and after treatment. Active matrix-metalloproteinase-8 (aMMP-8) as a reference parameter for path control in antimicrobial photothermal therapy (aPTT) seems acceptable.
Collapse
Affiliation(s)
- J. Deumer
- MVZ Erstes Zahnärztliches Lasercentrum Berlin, Gatower Straße 296, 14089 Berlin, Germany
| | - M. Frentzen
- Department of Operative and Preventive Dentistry, Bonn University, Dental Faculty, Germany
| | - M.C. Meinke
- Department of Dermatology, Venereology and Allergology, Charité University Medicine Berlin Campus Charité Mitte, Germany
| |
Collapse
|
18
|
Vankayala R, Mac JT, Burns JM, Dunn E, Carroll S, Bahena EM, Patel DK, Griffey S, Anvari B. Biodistribution and toxicological evaluation of micron- and nano-sized erythrocyte-derived optical particles in healthy Swiss Webster mice. Biomater Sci 2019; 7:2123-2133. [PMID: 30869663 PMCID: PMC9844153 DOI: 10.1039/c8bm01448e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Particle-based systems provide a capability for the delivery of imaging and/or therapeutic payloads. We have engineered constructs derived from erythrocytes, and doped with the FDA-approved near infrared dye, indocyanine green (ICG). We refer to these optical particles as NIR erythrocyte-mimicking transducers (NETs). A particular feature of NETs is that their diameters can be tuned from micron- to nano-scale. Herein, we investigated the effects of micron- (≈2.6 μm diameter), and nano- (≈145 nm diameter) sized NETs on their biodistribution, and evaluated their acute toxicity in healthy Swiss Webster mice. Following tail vein injection of free ICG and NETs, animals were euthanized at various time points up to 48 hours. Fluorescence analysis of blood showed that nearly 11% of the injected amount of nano-sized NETs (nNETs) remained in blood at 48 hours post-injection as compared to ≈5% for micron-sized NETs (μNETs). Similarly, at this time point, higher levels of nNETs were present in various organs including the lungs, liver, and spleen. Histological analyses of various organs, extracted at 24 hours post-injection of NETs, did not show pathological alterations. Serum biochemistry profiles, in general, did not show elevated levels of the various analyzed biomarkers associated with liver and kidney functions. Values of various hematological profiles remained within the normal ranges following the administration of μNETs and nNETs. Results of this study suggest that erythrocyte-derived particles can potentially provide a non-toxic platform for delivery of ICG.
Collapse
Affiliation(s)
- Raviraj Vankayala
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Jenny T. Mac
- Department of Biochemistry, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Joshua M. Burns
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Eugene Dunn
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California, Davis, Sacramento, CA 95616, USA
| | - Stefanie Carroll
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California, Davis, Sacramento, CA 95616, USA
| | - Edver M. Bahena
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Dipti K. Patel
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Stephen Griffey
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California, Davis, Sacramento, CA 95616, USA
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA,Department of Biochemistry, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
19
|
Wong TW, Wu EC, Ko WC, Lee CC, Hor LI, Huang IH. Photodynamic inactivation of methicillin-resistant Staphylococcus aureus by indocyanine green and near infrared light. DERMATOL SIN 2018. [DOI: 10.1016/j.dsi.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
20
|
Ruhi MK, Ak A, Gülsoy M. Dose-dependent photochemical/photothermal toxicity of indocyanine green-based therapy on three different cancer cell lines. Photodiagnosis Photodyn Ther 2018; 21:334-343. [PMID: 29339061 DOI: 10.1016/j.pdpdt.2018.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/01/2017] [Accepted: 01/08/2018] [Indexed: 11/26/2022]
Abstract
The Food and Drug Administration-approved Indocyanine Green can be used as a photosensitizer to kill cancer cells selectively. Although indocyanine green is advantageous as a photosensitizer in terms of strong absorption in the near-infrared region, indocyanine green-based cancer treatment is still not approved as a clinical method. Some reasons for this are aggregation at high concentrations, rapid clearance of the photosensitizer from the body, low singlet oxygen quantum yield, and the uncertainty concerning its action mechanism. This in vitro study focuses on two of these points: "what is the cell inhibition mechanism of indocyanine green-based therapy?" and "how the dose-dependent aggregation problem of indocyanine green alters its cell inhibition efficiency?" The following experiments were conducted to provide insight into these points. Nontoxic doses of indocyanine green and near-infrared laser were determined. The aggregation behavior of indocyanine green was verified through experiments. The singlet oxygen quantum yield of indocyanine green at different concentrations were calculated. Various indocyanine green and energy densities of near-infrared light were applied to prostate cancer, neuroblastoma, and colon cancer cells. An MTT assay was performed at the end of the first, second, and third days following the treatments to determine the cell viability. Temperature changes in the medium during laser exposure were recorded. ROS generation following the treatment was verified by using a Total Reactive Oxygen Species detection kit. An apoptosis detection test was performed to establish the cell death mechanism and, finally, the cellular uptakes of the three different cells were measured. According to the results, indocyanine green-based therapy causes cell viability decrease for three cancer cell lines by means of excessive reactive oxygen species production. Different cells have different sensitivities to the therapy possibly because of the differentiation level and structural differences. The singlet oxygen generation of indocyanine green decreases at high concentrations because of aggregation. Nevertheless, better cancer cell killing effect was observed at higher photosensitizer concentrations. This result reveals that the cellular uptake of indocyanine green was determinant for better cancer cell inhibition.
Collapse
Affiliation(s)
- Mustafa Kemal Ruhi
- Bogazici University, Institute of Biomedical Engineering, Uskudar, Istanbul, 34684, Turkey.
| | - Ayşe Ak
- Erzincan University, Engineering Faculty, Biomedical Engineering, Erzincan, 24100, Turkey
| | - Murat Gülsoy
- Bogazici University, Institute of Biomedical Engineering, Uskudar, Istanbul, 34684, Turkey.
| |
Collapse
|
21
|
Geralde MC, Leite IS, Inada NM, Salina ACG, Medeiros AI, Kuebler WM, Kurachi C, Bagnato VS. Pneumonia treatment by photodynamic therapy with extracorporeal illumination - an experimental model. Physiol Rep 2017; 5:5/5/e13190. [PMID: 28292878 PMCID: PMC5350187 DOI: 10.14814/phy2.13190] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 11/24/2022] Open
Abstract
Infectious pneumonia is a major cause of morbidity/mortality, mainly because of the increasing rate of microorganisms resistant to antibiotics. Photodynamic Therapy (PDT) is emerging as a promising approach, as effects are based on oxidative stress, preventing microorganism resistance. In two previous studies, the in vitro inactivation of Streptococcus pneumoniae using indocyanine green (ICG) and infrared light source was a success killing 5 log10 colony-forming units (CFU/mL) with only 10 μmol/L ICG. In this work, a proof-of-principle protocol was designed to treat lung infections by PDT using extracorporeal illumination with a 780 nm laser device and also ICG as photosensitizer. Hairless mice were infected with S. pneumoniae and PDT was performed two days after infection. For control groups, CFU recovery ranged between 103-104/mouse. For PDT group, however, no bacteria were recovered in 80% of the animals. Based on this result, animal survival was evaluated separately over 50 days. No deaths occurred in PDT group, whereas 60% of the control group died. Our results indicate that extracorporeal PDT has the potential for pneumonia treatment, and pulmonary decontamination with PDT may be used as a single therapy or as an antibiotics adjuvant.
Collapse
Affiliation(s)
- Mariana C Geralde
- University of São Paulo, São Carlos, Brazil .,Federal University of São Carlos, São Carlos, Brazil
| | | | | | | | | | - Wolfgang M Kuebler
- Keenan Research Centre of St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
22
|
Fan W, Yung B, Huang P, Chen X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev 2017; 117:13566-13638. [DOI: 10.1021/acs.chemrev.7b00258] [Citation(s) in RCA: 1059] [Impact Index Per Article: 151.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenpei Fan
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peng Huang
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
23
|
Effect of photodynamic therapy based on indocyanine green on expression of apoptosis-related genes in human gingival fibroblast cells. Photodiagnosis Photodyn Ther 2017; 19:33-36. [DOI: 10.1016/j.pdpdt.2017.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/04/2017] [Accepted: 04/09/2017] [Indexed: 11/21/2022]
|
24
|
Chen MM, Liu YY, Su GH, Song FF, Liu Y, Zhang QQ. NIR responsive liposomal system for rapid release of drugs in cancer therapy. Int J Nanomedicine 2017; 12:4225-4239. [PMID: 28652729 PMCID: PMC5473596 DOI: 10.2147/ijn.s130861] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To design a rapid release liposomal system for cancer therapy, a NIR responsive bubble-generating thermosensitive liposome (BTSL) system combined with photothermal agent (Cypate), doxorubicin (DOX), and NH4HCO3 was developed. Cypate/DOX-BTSL exhibited a good aqueous stability, photostability, and photothermal effect. In vitro release suggested that the amounts of DOX released from BTSL were obviously higher than that of (NH4)2SO4 liposomes at 42°C. After NIR irradiation, the hyperthermic temperature induced by Cypate led to the decomposition of NH4HCO3 and the generation of a large number of CO2 bubbles, triggering a rapid release of drugs. Confocal laser scanning microscope and acridine orange staining indicated that Cypate/DOX-BTSL upon irradiation could facilitate to disrupt the lysosomal membranes and realize endolysosomal escape into cytosol, improving the intracellular uptake of DOX clearly. MTT and trypan blue staining implied that the cell damage of Cypate/DOX-BTSL with NIR irradiation was more severe than that in the groups without irradiation. In vivo results indicated that Cypate/DOX-BTSL with irradiation could dramatically increase the accumulation of DOX in tumor, inhibit tumor growth, and reduce systemic side effects of DOX. These data demonstrated that Cypate/DOX-BTSL has the potential to be used as a NIR responsive liposomal system for a rapid release of drugs in thermochemotherapy.
Collapse
Affiliation(s)
- Ming-Mao Chen
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou
| | - Yuan-Yuan Liu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou
| | - Guang-Hao Su
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou
| | - Fei-Fei Song
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou
| | - Yan Liu
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou
| | - Qi-Qing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou
- Key Laboratory of Biomedical Material of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People’s Republic of China
| |
Collapse
|
25
|
Wang S, Hüttmann G, Rudnitzki F, Diddens-Tschoeke H, Zhang Z, Rahmanzadeh R. Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:78001. [PMID: 27424607 DOI: 10.1117/1.jbo.21.7.078001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/29/2016] [Indexed: 05/20/2023]
Abstract
The fluorescent dye indocyanine green (ICG) is clinically approved and has been applied for ophthalmic and intraoperative angiography, measurement of cardiac output and liver function, or as contrast agent in cancer surgery. Though ICG is known for its photochemical effects, it has played a minor role so far in photodynamic therapy or techniques for targeted protein-inactivation. Here, we investigated ICG as an antibody-conjugate for the selective inactivation of the protein Ki-67 in the nucleus of cells. Conjugates of the Ki-67 antibody TuBB-9 with different amounts of ICG were synthesized and delivered into HeLa and OVCAR-5 cells through conjugation to the nuclear localization sequence. Endosomal escape of the macromolecular antibodies into the cytoplasm was optically triggered by photochemical internalization with the photosensitizer BPD. The second light irradiation at 690 nm inactivated Ki-67 and subsequently caused cell death. Here, we show that ICG as an antibody-conjugate can be an effective photosensitizing agent. Best effects were achieved with 1.8 ICG molecules per antibody. Conjugated to antibodies, the ICG absorption peaks vary proportionally with concentration. The absorption of ICG above 650 nm within the optical window of tissue opens the possibility of selective Ki-67 inactivation deep inside of tissues.
Collapse
Affiliation(s)
- Sijia Wang
- Xi'an Jiaotong University, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an 710049, ChinabUniversity of Lübeck, I
| | - Gereon Hüttmann
- University of Lübeck, Institute of Biomedical Optics, Peter-Monnik-Weg 4, Lübeck 23562, Germany
| | - Florian Rudnitzki
- University of Lübeck, Institute of Biomedical Optics, Peter-Monnik-Weg 4, Lübeck 23562, Germany
| | - Heyke Diddens-Tschoeke
- University of Lübeck, Institute of Biomedical Optics, Peter-Monnik-Weg 4, Lübeck 23562, Germany
| | - Zhenxi Zhang
- Xi'an Jiaotong University, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an 710049, China
| | - Ramtin Rahmanzadeh
- University of Lübeck, Institute of Biomedical Optics, Peter-Monnik-Weg 4, Lübeck 23562, Germany
| |
Collapse
|
26
|
Abstract
This review summarizes the latest progress in deep photodynamic therapy (PDT), which overcomes the Achilles' heel of PDT.
Collapse
Affiliation(s)
- Wenpei Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging
- Department of Biomedical Engineering
- School of Medicine
- Shenzhen University
- Shenzhen 518060
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging
- Department of Biomedical Engineering
- School of Medicine
- Shenzhen University
- Shenzhen 518060
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine
- National Institute of Biomedical Imaging and Bioengineering
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|
27
|
Li Z, Grant KB. DNA photo-cleaving agents in the far-red to near-infrared range – a review. RSC Adv 2016. [DOI: 10.1039/c5ra28102d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ideal photonucleases for clinical applications cleave DNA upon activation with deeply penetrating far-red to near-infrared light.
Collapse
Affiliation(s)
- Ziyi Li
- Department of Chemistry
- Georgia State University
- Atlanta
- USA
| | | |
Collapse
|
28
|
Yuan G, Alqasemi U, Chen A, Yang Y, Zhu Q. Light-emitting diode-based multiwavelength diffuse optical tomography system guided by ultrasound. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:126003. [PMID: 25473884 PMCID: PMC4255433 DOI: 10.1117/1.jbo.19.12.126003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
Laser diodes are widely used in diffuse optical tomography (DOT) systems but are typically expensive and fragile, while light-emitting diodes (LEDs) are cheaper and are also available in the near-infrared (NIR) range with adequate output power for imaging deeply seated targets. In this study, we introduce a new low-cost DOT system using LEDs of four wavelengths in the NIR spectrum as light sources. The LEDs were modulated at 20 kHz to avoid ambient light. The LEDs were distributed on a hand-held probe and a printed circuit board was mounted at the back of the probe to separately provide switching and driving current to each LED. Ten optical fibers were used to couple the reflected light to 10 parallel photomultiplier tube detectors. A commercial ultrasound system provided simultaneous images of target location and size to guide the image reconstruction. A frequency-domain (FD) laser-diode-based system with ultrasound guidance was also used to compare the results obtained from those of the LED-based system. Results of absorbers embedded in intralipid and inhomogeneous tissue phantoms have demonstrated that the LED-based system provides a comparable quantification accuracy of targets to the FD system and has the potential to image deep targets such as breast lesions.
Collapse
Affiliation(s)
- Guangqian Yuan
- University of Connecticut, Biomedical Engineering Department, 260 Glenbrook Road; U-3247, Storrs, Connecticut 06269-3247, United States
| | - Umar Alqasemi
- University of Connecticut, Biomedical Engineering Department, 260 Glenbrook Road; U-3247, Storrs, Connecticut 06269-3247, United States
| | - Aaron Chen
- University of Pennsylvania, College of Art and Sciences, 249 South 36th Street, Philadelphia 19104-6304, United States
| | - Yi Yang
- University of Connecticut, Departments of Electrical and Computer Engineering, 371 Fairfield Way; U-4157, Storrs, Connecticut 06269-4157, United States
| | - Quing Zhu
- University of Connecticut, Biomedical Engineering Department, 260 Glenbrook Road; U-3247, Storrs, Connecticut 06269-3247, United States
- University of Pennsylvania, College of Art and Sciences, 249 South 36th Street, Philadelphia 19104-6304, United States
| |
Collapse
|
29
|
Shemesh CS, Moshkelani D, Zhang H. Thermosensitive liposome formulated indocyanine green for near-infrared triggered photodynamic therapy: in vivo evaluation for triple-negative breast cancer. Pharm Res 2014; 32:1604-14. [PMID: 25407543 DOI: 10.1007/s11095-014-1560-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/27/2014] [Indexed: 01/22/2023]
Abstract
PURPOSE The focus of this research was to formulate and evaluate a theranostic liposomal delivery system using indocyanine green (ICG) as a photosensitizer, triggered by near infrared (NIR) irradiation, for in vivo photodynamic therapy (PDT) of breast cancer. METHODS Cytotoxicity of PDT using liposomal ICG (LPICG) as well as free ICG (FRICG) was evaluated in the human MDA-MB-468 triple-negative breast cancer (TNBC) cell line. NIR irradiation-induced increase in temperature was also monitored both in vitro and in vivo. Quantitative pharmacokinetic profile and fluorescence imaging-based biodistribution patterns of both formulations were obtained using the human TNBC xenograft model in nude mice. Overall safety, tolerability, and long-term anti-tumor efficacy of LPICG versus FRICG-mediated PDT was evaluated. RESULTS Significant loss of cell viability was achieved following photoactivation of LPICG via NIR irradiation. Temperatures of irradiated LPICG increased with increasing concentrations of loaded ICG, which correlated with significant rise of temperature compared to PBS in vivo (p < 0.01). Pharmacokinetic assessment revealed a significant increase in systemic distribution and circulation half-life of LPICG, and NIR fluorescence imaging demonstrated enhanced accumulation of liposomes within the tumor region. Tumor growth in mice treated with LPICG followed by NIR irradiation was significantly reduced compared to those treated with FRICG, saline, and irradiation alone. CONCLUSIONS In vivo photodynamic therapy using LPICG demonstrated targeted biodistribution and superior anti-tumor efficacy in a human TNBC xenograft model compared to FRICG. In addition, this unique delivery system exhibited a promising role in NIR image-guided delivery and real-time biodistribution monitoring of formulation with ICG serving as the fluorescent probe.
Collapse
Affiliation(s)
- Colby S Shemesh
- Drug Delivery Laboratory, Department of Pharmaceutical Sciences College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia, 30341, USA
| | | | | |
Collapse
|
30
|
Yu C, Wo F, Shao Y, Dai X, Chu M. Bovine Serum Albumin Nanospheres Synchronously Encapsulating “Gold Selenium/Gold” Nanoparticles and Photosensitizer for High-Efficiency Cancer Phototherapy. Appl Biochem Biotechnol 2013; 169:1566-78. [DOI: 10.1007/s12010-012-0078-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/27/2012] [Indexed: 12/01/2022]
|