1
|
Repetowski P, Warszyńska M, Dąbrowski JM. NIR-activated multifunctional agents for the combined application in cancer imaging and therapy. Adv Colloid Interface Sci 2025; 336:103356. [PMID: 39612723 DOI: 10.1016/j.cis.2024.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Anticancer therapies that combine both diagnostic and therapeutic capabilities hold significant promise for enhancing treatment efficacy and patient outcomes. Among these, agents responsive to near-infrared (NIR) photons are of particular interest due to their negligible toxicity and multifunctionality. These compounds are not only effective in photodynamic therapy (PDT), but also serve as contrast agents in various imaging modalities, including fluorescence and photoacoustic imaging. In this review, we explore the photophysical and photochemical properties of NIR-activated porphyrin, cyanine, and phthalocyanines derivatives as well as aggregation-induced emission compounds, highlighting their application in synergistic detection, diagnosis, and therapy. Special attention is given to the design and optimization of these agents to achieve high photostability, efficient NIR absorption, and significant yields of fluorescence, heat, or reactive oxygen species (ROS) generation depending on the application. Additionally, we discuss the incorporation of these compounds into nanocarriers to enhance their solubility, stability, and target specificity. Such nanoparticle-based systems exhibit improved pharmacokinetics and pharmacodynamics, facilitating more effective tumor targeting and broadening the application range to photoacoustic imaging and photothermal therapy. Furthermore, we summarize the application of these NIR-responsive agents in multimodal imaging techniques, which combine the advantages of fluorescence and photoacoustic imaging to provide comprehensive diagnostic information. Finally, we address the current challenges and limitations of photodiagnosis and phototherapy and highlight some critical barriers to their clinical implementation. These include issues related to their phototoxicity, limited tissue penetration, and potential off-target effects. The review concludes by highlighting future research directions aimed at overcoming these obstacles, with a focus on the development of next-generation agents and platforms that offer enhanced therapeutic efficacy and imaging capabilities in the field of cancer treatment.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | | |
Collapse
|
2
|
Brandão MGSA, Rabeh SAN. Antimicrobial Photodynamic Therapy in the Treatment of Diabetic Foot Ulcer: A Scoping Review. Photobiomodul Photomed Laser Surg 2024; 42:725-736. [PMID: 39585755 DOI: 10.1089/photob.2024.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
Objective: To map the literature about photodynamic therapy in treating diabetic foot ulcers. Background: Diabetic foot ulcers get constantly infected, thus culminating in hospitalizations and amputations. Photodynamic therapy is an antimicrobial treatment that may assist in the healing process. Materials and Methods: A search of nine electronic information sources was made as determined by the Joanna Briggs Institute. Two independent researchers accomplished a screening of studies with the support of Rayyan. The data were analyzed through Iramutec®. Results: The sample consisted of 27 studies. Photodynamic therapy was identified as safe and effective, with the ability to reduce pain, edema, exudate, extent of the injury region, microbial load, and the risks of infection, osteomyelitis, and amputations. Conclusions: The capacity of photodynamic therapy to relieve symptoms, decrease risks of complications, and accelerate the healing process highlights its potential positive impact on clinical practice.
Collapse
|
3
|
Repetowski P, Warszyńska M, Kostecka A, Pucelik B, Barzowska A, Emami A, İşci Ü, Dumoulin F, Dąbrowski JM. Synthesis, Photo-Characterizations, and Pre-Clinical Studies on Advanced Cellular and Animal Models of Zinc(II) and Platinum(II) Sulfonyl-Substituted Phthalocyanines for Enhanced Vascular-Targeted Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48937-48954. [PMID: 39241197 PMCID: PMC11420872 DOI: 10.1021/acsami.4c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/08/2024]
Abstract
Two phthalocyanine derivatives tetra-peripherally substituted with tert-butylsulfonyl groups and coordinating either zinc(II) or platinum(II) ions have been synthesized and subsequently investigated in terms of their optical and photochemical properties, as well as biological activity in cellular, tissue-engineered, and animal models. Our research has revealed that both synthesized phthalocyanines are effective generators of reactive oxygen species (ROS). PtSO2tBu demonstrated an outstanding ability to generate singlet oxygen (ΦΔ = 0.87-0.99), while ZnSO2tBu in addition to 1O2 (ΦΔ = 0.45-0.48) generated efficiently other ROS, in particular ·OH. Considering future biomedical applications, the affinity of the tested phthalocyanines for biological membranes (partition coefficient; log Pow) and their primary interaction with serum albumin were also determined. To facilitate their biological administration, a water-dispersible formulation of these phthalocyanines was developed using Pluronic triblock copolymers to prevent self-aggregation and improve their delivery to cancer cells and tissues. The results showed a significant increase in cellular uptake and phototoxicity when phthalocyanines were incorporated into the customizable polymeric micelles. Moreover, the improved distribution in the body and photodynamic efficacy of the encapsulated phthalocyanines were investigated in hiPSC-delivered organoids and BALB/c mice bearing CT26 tumors. Both photosensitizers exhibit strong antitumor activity. Notably, vascular-targeted photodynamic therapy (V-PDT) led to complete tumor eradication in 84% of ZnSO2tBu and 100% of PtSO2tBu-treated mice, and no recurrence has so far been observed for up to five months after treatment. In the case of PtSO2tBu, the effect was significantly stronger, offering a wider range of light doses suitable for achieving effective PDT.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty
of Chemistry, Jagiellonian University, Kraków 30-387, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Kraków 30-348, Poland
| | - Marta Warszyńska
- Faculty
of Chemistry, Jagiellonian University, Kraków 30-387, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Kraków 30-348, Poland
| | - Anna Kostecka
- Faculty
of Chemistry, Jagiellonian University, Kraków 30-387, Poland
| | - Barbara Pucelik
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Łukasiewicz
Research Network—Kraków Institute of Technology, Kraków 30-418, Poland
| | - Agata Barzowska
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Łukasiewicz
Research Network—Kraków Institute of Technology, Kraków 30-418, Poland
| | - Atefeh Emami
- Faculty of
Engineering and Natural Sciences, Department of Biomedical Engineering, Acıbadem Mehmet Ali Aydınlar University, Ataşehir, Istanbul 34752, Türkiye
| | - Ümit İşci
- Faculty
of Technology, Department of Metallurgical & Materials Engineering, Marmara University, Istanbul 34722, Türkiye
| | - Fabienne Dumoulin
- Faculty of
Engineering and Natural Sciences, Department of Biomedical Engineering, Acıbadem Mehmet Ali Aydınlar University, Ataşehir, Istanbul 34752, Türkiye
| | | |
Collapse
|
4
|
Pucelik B, Barzowska A, Sułek A, Werłos M, Dąbrowski JM. Refining antimicrobial photodynamic therapy: effect of charge distribution and central metal ion in fluorinated porphyrins on effective control of planktonic and biofilm bacterial forms. Photochem Photobiol Sci 2024; 23:539-560. [PMID: 38457119 DOI: 10.1007/s43630-024-00538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/13/2024] [Indexed: 03/09/2024]
Abstract
Antibiotic resistance represents a pressing global health challenge, now acknowledged as a critical concern within the framework of One Health. Photodynamic inactivation of microorganisms (PDI) offers an attractive, non-invasive approach known for its flexibility, independence from microbial resistance patterns, broad-spectrum efficacy, and minimal risk of inducing resistance. Various photosensitizers, including porphyrin derivatives have been explored for pathogen eradication. In this context, we present the synthesis, spectroscopic and photophysical characteristics as well as antimicrobial properties of a palladium(II)-porphyrin derivative (PdF2POH), along with its zinc(II)- and free-base counterparts (ZnF2POH and F2POH, respectively). Our findings reveal that the palladium(II)-porphyrin complex can be classified as an excellent generator of reactive oxygen species (ROS), encompassing both singlet oxygen (Φ△ = 0.93) and oxygen-centered radicals. The ability of photosensitizers to generate ROS was assessed using a variety of direct (luminescence measurements) and indirect techniques, including specific fluorescent probes both in solution and in microorganisms during the PDI procedure. We investigated the PDI efficacy of F2POH, ZnF2POH, and PdF2POH against both Gram-negative and Gram-positive bacteria. All tested compounds proved high activity against Gram-positive species, with PdF2POH exhibiting superior efficacy, leading to up to a 6-log reduction in S. aureus viability. Notably, PdF2POH-mediated PDI displayed remarkable effectiveness against S. aureus biofilm, a challenging target due to its complex structure and increased resistance to conventional treatments. Furthermore, our results show that PDI with PdF2POH is more selective for bacterial than for mammalian cells, particularly at lower light doses (up to 5 J/cm2 of blue light illumination). This enhanced efficacy of PdF2POH-mediated PDI as compared to ZnF2POH and F2POH can be attributed to more pronounced ROS generation by palladium derivative via both types of photochemical mechanisms (high yields of singlet oxygen generation as well as oxygen-centered radicals). Additionally, PDI proved effective in eliminating bacteria within S. aureus-infected human keratinocytes, inhibiting infection progression while preserving the viability and integrity of infected HaCaT cells. These findings underscore the potential of metalloporphyrins, particularly the Pd(II)-porphyrin complex, as promising photosensitizers for PDI in various bacterial infections, warranting further investigation in advanced infection models.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
- Sano Centre for Computational Medicine, Kraków, Poland.
| | - Agata Barzowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Adam Sułek
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Sano Centre for Computational Medicine, Kraków, Poland
| | - Mateusz Werłos
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
5
|
Islam MT, Sain M, Stark C, Fefer M, Liu J, Hoare T, Ckurshumova W, Rosa C. Overview of methods and considerations for the photodynamic inactivation of microorganisms for agricultural applications. Photochem Photobiol Sci 2023; 22:2675-2686. [PMID: 37530937 DOI: 10.1007/s43630-023-00466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
Antimicrobial resistance in agriculture is a global concern and carries huge financial consequences. Despite that, practical solutions for growers that are sustainable, low cost and environmentally friendly have been sparse. This has created opportunities for the agrochemical industry to develop pesticides with novel modes of action. Recently the use of photodynamic inactivation (PDI), classically used in cancer treatments, has been explored in agriculture as an alternative to traditional chemistries, mainly as a promising new approach for the eradication of pesticide resistant strains. However, applications in the field pose unique challenges and call for new methods of evaluation to adequately address issues specific to PDI applications in plants and challenges faced in the field. The aim of this review is to summarize in vitro, ex vivo, and in vivo/in planta experimental strategies and methods used to test and evaluate photodynamic agents as photo-responsive pesticides for applications in agriculture. The review highlights some of the strategies that have been explored to overcome challenges in the field.
Collapse
Affiliation(s)
- Md Tariqul Islam
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Madeline Sain
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON, Canada
| | - Colin Stark
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON, Canada
| | - Michael Fefer
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, ON, L5K 1A8, Canada
| | - Jun Liu
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, ON, L5K 1A8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON, Canada
| | | | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
6
|
Brandão MGSA, Ximenes MAM, de Sousa DF, Veras VS, Barros LM, Rabeh SAN, Costa IG, de Araújo TM. Photodynamic therapy for infected foot ulcers in people with diabetes mellitus: a systematic review. SAO PAULO MED J 2023; 141:e2022476. [PMID: 37194764 PMCID: PMC10181837 DOI: 10.1590/1516-3180.2022.0476.27022023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 08/28/2022] [Accepted: 02/27/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Ulceration of the feet in patients with diabetes is a frequent complication that increases morbidity, mortality, hospitalization, treatment costs, and non-traumatic amputations. OBJECTIVE To present a systematic review of the treatment of patients with diabetes mellitus and infected foot ulcers using photodynamic therapy. DESIGN AND SETTING A systematic review was performed in the postgraduate program in nursing at the Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Ceará, Brazil. METHODS PubMed, CINAHL, Web of Science, EMBASE, Cochrane Library, Scopus, and LILACS databases were screened. The methodological quality, risk of bias, and quality of evidence of each study were assessed. Review Manager was used for the meta-analysis. RESULTS Four studies were included. They highlighted significantly better outcomes in patient groups treated with photodynamic therapy than those in the control groups that were treated with topical collagenase and chloramphenicol (P = 0.036), absorbent (P < 0.001), or dry covers (P = 0.002). Significant improvements were noted in terms of the microbial load in the ulcers and tissue repair, with a reported reduction in the need for amputation by up to 35 times. Photodynamic therapy resulted in significantly better outcomes between the experimental and control groups (P = 0.04). CONCLUSION Photodynamic therapy is significantly more effective in treating infected foot ulcers than standard therapies. SYSTEMATIC REVIEW REGISTRATION International Prospective Register of Systematic Reviews (PROSPERO) - CRD42020214187, https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=214187.
Collapse
Affiliation(s)
| | | | - Danilo Ferreira de Sousa
- Doctoral Student, Department of Nursing, Universidade Federal do Ceará (UFC), Fortaleza (CE), Brazil
| | - Vivian Saraiva Veras
- PhD. Professor, Department of Nursing, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção (CE), Brazil
| | - Lívia Moreira Barros
- PhD. Professor, Department of Nursing, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção (CE), Brazil
| | | | | | - Thiago Moura de Araújo
- PhD. Professor, Department of Nursing, Health Sciences Institute, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção (CE), Brazil
| |
Collapse
|
7
|
Trochowski M, Kobielusz M, Pucelik B, Dąbrowski JM, Macyk W. Dihydroxyanthraquinones as stable and cost-effective TiO2 photosensitizers for environmental and biomedical applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Wierzchowski M, Ziental D, Łażewski D, Korzanski A, Gielara-Korzanska A, Tykarska E, Dlugaszewska J, Sobotta L. New Metallophthalocyanines Bearing 2-Methylimidazole Moieties-Potential Photosensitizers against Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms23115910. [PMID: 35682587 PMCID: PMC9180345 DOI: 10.3390/ijms23115910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 02/04/2023] Open
Abstract
Newly developed tetra- and octasubstituted methimazole-phthalocyanine conjugates as potential photosensitizers have been obtained. Synthesized intermediates and final products were characterized by the MALD-TOF technique and various NMR techniques, including 2D methods. Single-crystal X-ray diffraction was used to determine the crystal structures of dinitriles. The studied phthalocyanines revealed two typical absorption bands—the Soret band and the Q band. The most intense fluorescence was observed for octasubstituted magnesium(II) phthalocyanine in DMF (ΦFL = 0.022). The best singlet oxygen generators were octasubstituted magnesium(II) and zinc(II) phthalocyanines (Φ∆ 0.56 and 0.81, respectively). The studied compounds presented quantum yields of photodegradation at the level between 10−5 and 10−6. Due to their low solubility in a water environment, the liposomal formulations were prepared. Within the studied group, octasubstituted zinc(II) phthalocyanine at the concentration of 100 µM activated with red light showed the highest antibacterial activity against S. aureus equal to a 5.68 log reduction of bacterial growth.
Collapse
Affiliation(s)
- Marcin Wierzchowski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (M.W.); (D.Ł.); (A.G.-K.); (E.T.)
| | - Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Dawid Łażewski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (M.W.); (D.Ł.); (A.G.-K.); (E.T.)
| | - Artur Korzanski
- Department of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Agnieszka Gielara-Korzanska
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (M.W.); (D.Ł.); (A.G.-K.); (E.T.)
| | - Ewa Tykarska
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (M.W.); (D.Ł.); (A.G.-K.); (E.T.)
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Correspondence:
| |
Collapse
|
9
|
Pucelik B, Sułek A, Borkowski M, Barzowska A, Kobielusz M, Dąbrowski JM. Synthesis and Characterization of Size- and Charge-Tunable Silver Nanoparticles for Selective Anticancer and Antibacterial Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14981-14996. [PMID: 35344328 PMCID: PMC8990520 DOI: 10.1021/acsami.2c01100] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Advances in the research of nanoparticles (NPs) with controlled charge and size are driven by their potential application in the development of novel technologies and innovative therapeutics. This work reports the synthesis, characterization, and comprehensive biological evaluation of AgNPs functionalized by N,N,N-trimethyl-(11-mercaptoundecyl) ammonium chloride (TMA) and trisodium citrate (TSC). The prepared AgNPs were well characterized in terms of their morphological, spectroscopic and functional properties and biological activities. The implementation of several complementary techniques allowed not only the estimation of the average particle size (from 3 to 40 nm depending on the synthesis procedure used) but also the confirmation of the crystalline nature of the NPs and their round shape. To prove the usefulness of these materials in biological systems, cellular uptake and cytotoxicity in microbial and mammalian cells were determined. Positively charged 10 nm Ag@TMA2 revealed antimicrobial activity against Gram-negative bacteria with a minimum inhibitory concentration (MIC) value of 0.17 μg/mL and complete eradication of Escherichia coli (7 logs) for Ag@TMA2 at a concentration of 0.50 μg/mL, whereas negatively charged 10 nm Ag@TSC1 was effective against Gram-positive bacteria (MIC = 0.05 μg/mL), leading to inactivation of Staphylococcus aureus at relatively low concentrations. In addition, the largest 40 nm Ag@TSC2 was shown to exhibit pronounced anticancer activity against murine colon carcinoma (CT26) and murine mammary gland carcinoma (4T1) cells cultured as 2D and 3D tumor models and reduced toxicity against human HaCaT keratinocytes. Among the possible mechanisms of AgNPs are their ability to generate reactive oxygen species, which was further evaluated in vitro and correlates well with cellular accumulation and overall activity of AgNPs. Furthermore, we confirmed the anticancer efficacy of the most potent Ag@TSC2 in hiPSC-derived colonic organoids and demonstrated that the NPs are biocompatible and applicable in vivo. A pilot study in BALB/c mice evidenced that the treatment with Ag@TSC2 resulted in temporary (>60 days) remission of CT26 tumors.
Collapse
Affiliation(s)
- Barbara Pucelik
- Małopolska
Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Adam Sułek
- Faculty
of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
| | - Mariusz Borkowski
- Jerzy
Haber Institute of Catalysis and Surface Chemistry Polish Academy
of Sciences, 30-239 Kraków, Poland
| | - Agata Barzowska
- Małopolska
Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Marcin Kobielusz
- Faculty
of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
| | | |
Collapse
|
10
|
Influence of structural and solvation factors on the photodestruction and efficiency of singlet oxygen generation by luminophores based on iodo- and bromosubstituted zinc(II), cadmium(II) and boron(III) dipyrromethenates. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Sannikova NE, Zhdanova KA, Spitsyna AS, Bragina NA, Fedin MV, Krumkacheva OA. Study of Cationic Porphyrins and Their Metal Complexes by ESR Techniques. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Current Knowledge on the Oxidative-Stress-Mediated Antimicrobial Properties of Metal-Based Nanoparticles. Microorganisms 2022; 10:microorganisms10020437. [PMID: 35208891 PMCID: PMC8877623 DOI: 10.3390/microorganisms10020437] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/30/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) bacteria in recent years has been alarming and represents a major public health problem. The development of effective antimicrobial agents remains a key challenge. Nanotechnologies have provided opportunities for the use of nanomaterials as components in the development of antibacterial agents. Indeed, metal-based nanoparticles (NPs) show an effective role in targeting and killing bacteria via different mechanisms, such as attraction to the bacterial surface, destabilization of the bacterial cell wall and membrane, and the induction of a toxic mechanism mediated by a burst of oxidative stress (e.g., the production of reactive oxygen species (ROS)). Considering the lack of new antimicrobial drugs with novel mechanisms of action, the induction of oxidative stress represents a valuable and powerful antimicrobial strategy to fight MDR bacteria. Consequently, it is of particular interest to determine and precisely characterize whether NPs are able to induce oxidative stress in such bacteria. This highlights the particular interest that NPs represent for the development of future antibacterial drugs. Therefore, this review aims to provide an update on the latest advances in research focusing on the study and characterization of the induction of oxidative-stress-mediated antimicrobial mechanisms by metal-based NPs.
Collapse
|
13
|
Díaz Tovar JS, Kassab G, Buzzá HH, Bagnato VS, Kurachi C. Photodynamic inactivation of Streptococcus pneumoniae with external illumination at 808 nm through the ex vivo porcine thoracic cage. JOURNAL OF BIOPHOTONICS 2022; 15:e202100189. [PMID: 34766735 DOI: 10.1002/jbio.202100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Pneumonia is responsible for high mortality rates around the world, and its major treatment is based on antibiotic treatment. Antimicrobial resistance has been increasing in the last years, resulting in relevant public health concern. A promising alternative for pneumonia is antimicrobial photodynamic therapy. The purpose of this study was to investigate whether 808 nm wavelength is able to be transmitted through the biological tissues of the thoracic wall and be delivered in enough energy inside the cage to activate indocyanine green and promote photodynamic response. A light source panel was developed composed of 200 lasers centered at 808 nm with an irradiance of 77.8 ± 10.0 mW/cm2 and tested in an ex vivo thoracic cage model. Monte Carlo simulations were used to understand the photon migration through all the tissues at the thoracic wall. It was observed that tissues responsible for the major absorption of photons are the skin and subcutaneous fat. Experimental measurement of the irradiance was obtained after the light pass-through ex vivo pig thoracic cage, obtaining 3% to 5% of the emitted irradiance. Finally, it was observed that even with 3% of the initial irradiance, a 99.9% reduction of the Streptococcus pneumoniae was successfully achieved after 42.6 minutes of irradiation.
Collapse
Affiliation(s)
- Johan Sebastián Díaz Tovar
- Physics and Materials Science Department, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Giulia Kassab
- Physics and Materials Science Department, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Hilde Harb Buzzá
- Physics and Materials Science Department, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Vanderlei Salvador Bagnato
- Physics and Materials Science Department, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
- Hagler Fellow, Texas A&M University, College Station, Texas, USA
| | - Cristina Kurachi
- Physics and Materials Science Department, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
14
|
Nadar S, Khan T, Patching SG, Omri A. Development of Antibiofilm Therapeutics Strategies to Overcome Antimicrobial Drug Resistance. Microorganisms 2022; 10:microorganisms10020303. [PMID: 35208758 PMCID: PMC8879831 DOI: 10.3390/microorganisms10020303] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
A biofilm is a community of stable microorganisms encapsulated in an extracellular matrix produced by themselves. Many types of microorganisms that are found on living hosts or in the environment can form biofilms. These include pathogenic bacteria that can serve as a reservoir for persistent infections, and are culpable for leading to a broad spectrum of chronic illnesses and emergence of antibiotic resistance making them difficult to be treated. The absence of biofilm-targeting antibiotics in the drug discovery pipeline indicates an unmet opportunity for designing new biofilm inhibitors as antimicrobial agents using various strategies and targeting distinct stages of biofilm formation. The strategies available to control biofilm formation include targeting the enzymes and proteins specific to the microorganism and those involved in the adhesion pathways leading to formation of resistant biofilms. This review primarily focuses on the recent strategies and advances responsible for identifying a myriad of antibiofilm agents and their mechanism of biofilm inhibition, including extracellular polymeric substance synthesis inhibitors, adhesion inhibitors, quorum sensing inhibitors, efflux pump inhibitors, and cyclic diguanylate inhibitors. Furthermore, we present the structure–activity relationships (SAR) of these agents, including recently discovered biofilm inhibitors, nature-derived bioactive scaffolds, synthetic small molecules, antimicrobial peptides, bioactive compounds isolated from fungi, non-proteinogenic amino acids and antibiotics. We hope to fuel interest and focus research efforts on the development of agents targeting the uniquely complex, physical and chemical heterogeneous biofilms through a multipronged approach and combinatorial therapeutics for a more effective control and management of biofilms across diseases.
Collapse
Affiliation(s)
- Sahaya Nadar
- Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research, Mumbai 400056, India;
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India;
| | - Simon G. Patching
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: or (S.G.P.); (A.O.)
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: or (S.G.P.); (A.O.)
| |
Collapse
|
15
|
Pucelik B, Dąbrowski JM. Photodynamic inactivation (PDI) as a promising alternative to current pharmaceuticals for the treatment of resistant microorganisms. ADVANCES IN INORGANIC CHEMISTRY 2022; 79:65-103. [PMID: 35095189 PMCID: PMC8787646 DOI: 10.1016/bs.adioch.2021.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the whole world is currently observing the global battle against COVID-19, it should not be underestimated that in the next 30 years, approximately 10 million people per year could be exposed to infections caused by multi-drug resistant bacteria. As new antibiotics come under pressure from unpredictable resistance patterns and relegation to last-line therapy, immediate action is needed to establish a radically different approach to countering resistant microorganisms. Among the most widely explored alternative methods for combating bacterial infections are metal complexes and nanoparticles, often in combination with light, but strategies using monoclonal antibodies and bacteriophages are increasingly gaining acceptance. Photodynamic inactivation (PDI) uses light and a dye termed a photosensitizer (PS) in the presence of oxygen to generate reactive oxygen species (ROS) in the field of illumination that eventually kill microorganisms. Over the past few years, hundreds of photomaterials have been investigated, seeking ideal strategies based either on single molecules (e.g., tetrapyrroles, metal complexes) or in combination with various delivery systems. The present work describes some of the most recent advances of PDI, focusing on the design of suitable photosensitizers, their formulations, and their potential to inactivate bacteria, viruses, and fungi. Particular attention is focused on the compounds and materials developed in our laboratories that are capable of killing in the exponential growth phase (up to seven logarithmic units) of bacteria without loss of efficacy or resistance, while being completely safe for human cells. Prospectively, PDI using these photomaterials could potentially cure infected wounds and oral infections caused by various multidrug-resistant bacteria. It is also possible to treat the surfaces of medical equipment with the materials described, in order to disinfect them with light, and reduce the risk of nosocomial infections.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Janusz M Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
16
|
Songsantiphap C, Vanichanan J, Chatsuwan T, Asawanonda P, Boontaveeyuwat E. Methylene Blue-Mediated Antimicrobial Photodynamic Therapy Against Clinical Isolates of Extensively Drug Resistant Gram-Negative Bacteria Causing Nosocomial Infections in Thailand, An In Vitro Study. Front Cell Infect Microbiol 2022; 12:929242. [PMID: 35846758 PMCID: PMC9283779 DOI: 10.3389/fcimb.2022.929242] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND/PURPOSE Some multidrug-resistant gram-negative bacteria as a global threat have been recently prioritized for research and development of new treatments. We studied the efficacy of methylene blue-mediated antimicrobial photodynamic therapy (MB-aPDT) for the reduction of extensively drug-resistant Acinetobacter baumannii (XDR-AB) and Pseudomonas aeruginosa (XDR-PS) and multidrug-resistant Klebsiella pneumoniae (MDR-KP) isolated in a university hospital setting in Thailand. METHOD Two isolates of each selected bacterium were collected, XDR-AB1 and AB2, XDR- PS1 and PS2, and MDR-KP1 and KP2. Three triplicate experiments using various MB concentrations alone, various red light fluences alone, as well as the selected non-toxic doses of MB and fluences of red light combined as MB-aPDT were applied on each selected isolate. The colonies were counted [colony forming units (CFU)/ml]. Estimation of the lethal treatment dose defined as reduction of > 2 log10 in CFU/ml compared with untreated bacteria. RESULT There were generally negligible changes in the viable counts of the bacterial suspensions treated with all the MB concentrations (p > 0.05). In the second experiment with the only red light treatments, at fluences higher than 2 J/cm, reduction trend in viable counts across all the isolates was observed. Only for MDR-KP1, however, the lethal dose was achieved with the highest fluence of red light (80 J/cm). With the concentration of MB, 50 and 150 mg/L in the third experiment (MB-aPDT), the greater bacterial reduction was observed in all clinical isolates leading to their lethal viable cell reduction when escalating the light fluence to 80 J/cm. CONCLUSIONS MB-aPDT evidently killed the selected XDR and MDR-gram negative bacteria. In highly drug-resistant crisis era, MB-aPDT could be a promising option, particularly for local infections and infection complicating chronic wounds.
Collapse
Affiliation(s)
- Chankiat Songsantiphap
- Photodermatology Unit, Division of Dermatology, Department of Medicine, King Chulalongkorn Memorial Hospital and Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jakapat Vanichanan
- Division of Infectious Diseases, Department of Medicine, King Chulalongkorn Memorial Hospital and Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pravit Asawanonda
- Photodermatology Unit, Division of Dermatology, Department of Medicine, King Chulalongkorn Memorial Hospital and Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Einapak Boontaveeyuwat
- Photodermatology Unit, Division of Dermatology, Department of Medicine, King Chulalongkorn Memorial Hospital and Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Einapak Boontaveeyuwat,
| |
Collapse
|
17
|
Aroso RT, Schaberle FA, Arnaut LG, Pereira MM. Photodynamic disinfection and its role in controlling infectious diseases. Photochem Photobiol Sci 2021; 20:1497-1545. [PMID: 34705261 PMCID: PMC8548867 DOI: 10.1007/s43630-021-00102-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Photodynamic therapy is witnessing a revival of its origins as a response to the rise of multi-drug resistant infections and the shortage of new classes of antibiotics. Photodynamic disinfection (PDDI) of microorganisms is making progresses in preclinical models and in clinical cases, and the perception of its role in the clinical armamentarium for the management of infectious diseases is changing. We review the positioning of PDDI from the perspective of its ability to respond to clinical needs. Emphasis is placed on the pipeline of photosensitizers that proved effective to inactivate biofilms, showed efficacy in animal models of infectious diseases or reached clinical trials. Novel opportunities resulting from the COVID-19 pandemic are briefly discussed. The molecular features of promising photosensitizers are emphasized and contrasted with those of photosensitizers used in the treatment of solid tumors. The development of photosensitizers has been accompanied by the fabrication of a variety of affordable and customizable light sources. We critically discuss the combination between photosensitizer and light source properties that may leverage PDDI and expand its applications to wider markets. The success of PDDI in the management of infectious diseases will ultimately depend on the efficacy of photosensitizers, affordability of the light sources, simplicity of the procedures, and availability of fast and efficient treatments.
Collapse
Affiliation(s)
- Rafael T Aroso
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Fábio A Schaberle
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Luís G Arnaut
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal.
| | - Mariette M Pereira
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
18
|
Pérez ME, Durantini JE, Reynoso E, Alvarez MG, Milanesio ME, Durantini EN. Porphyrin-Schiff Base Conjugates Bearing Basic Amino Groups as Antimicrobial Phototherapeutic Agents. Molecules 2021; 26:molecules26195877. [PMID: 34641420 PMCID: PMC8510454 DOI: 10.3390/molecules26195877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
New porphyrin–Schiff base conjugates bearing one (6) and two (7) basic amino groups were synthesized by condensation between tetrapyrrolic macrocycle-containing amine functions and 4-(3-(N,N-dimethylamino)propoxy)benzaldehyde. This approach allowed us to easily obtain porphyrins substituted by positive charge precursor groups in aqueous media. These compounds showed the typical Soret and four Q absorption bands with red fluorescence emission (ΦF ~ 0.12) in N,N-dimethylformamide. Porphyrins 6 and 7 photosensitized the generation of O2(1Δg) (ΦΔ ~ 0.44) and the photo-oxidation of L-tryptophan. The decomposition of this amino acid was mainly mediated by a type II photoprocess. Moreover, the addition of KI strongly quenched the photodynamic action through a reaction with O2(1Δg) to produce iodine. The photodynamic inactivation capacity induced by porphyrins 6 and 7 was evaluated in Staphylococcus aureus, Escherichia coli, and Candida albicans. Furthermore, the photoinactivation of these microorganisms was improved using potentiation with iodide anions. These porphyrins containing basic aliphatic amino groups can be protonated in biological systems, which provides an amphiphilic character to the tetrapyrrolic macrocycle. This effect allows one to increase the interaction with the cell wall, thus improving photocytotoxic activity against microorganisms.
Collapse
Affiliation(s)
- María E. Pérez
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto X5804BYA, Córdoba, Argentina; (M.E.P.); (E.R.); (M.G.A.)
| | - Javier E. Durantini
- IITEMA, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto X5804BYA, Córdoba, Argentina;
| | - Eugenia Reynoso
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto X5804BYA, Córdoba, Argentina; (M.E.P.); (E.R.); (M.G.A.)
| | - María G. Alvarez
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto X5804BYA, Córdoba, Argentina; (M.E.P.); (E.R.); (M.G.A.)
| | - María E. Milanesio
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto X5804BYA, Córdoba, Argentina; (M.E.P.); (E.R.); (M.G.A.)
- Correspondence: (M.E.M.); (E.N.D.)
| | - Edgardo N. Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto X5804BYA, Córdoba, Argentina; (M.E.P.); (E.R.); (M.G.A.)
- Correspondence: (M.E.M.); (E.N.D.)
| |
Collapse
|
19
|
Photodynamic Therapy for the Treatment of Infected Leg Ulcers-A Pilot Study. Antibiotics (Basel) 2021; 10:antibiotics10050506. [PMID: 33946775 PMCID: PMC8145697 DOI: 10.3390/antibiotics10050506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic and infected leg ulcers (LUs) are painful, debilitating, resistant to antibiotics, and immensely reduce a patient’s quality of life. The purpose of our study was to demonstrate the efficacy of photodynamic therapy (PDT) for the treatment of infected chronic LUs. Patients were randomized into two experimental groups: the first group received 5-aminolevulinic acid photodynamic therapy (ALA-PDT) (10 patients), and the second group of 10 patients received local octenidine dihydrochloride (Octenilin gel) exposed to a placebo light source with an inserted filter that mimiced red light. In the PDT group, we used 20% ALA topically applied for 4 hrs and irradiation from a Diomed laser source with a wavelength of 630 nm at a fluency of 80 J/cm2. ALA-PDT was performed 10 times during a 14-day hospitalization in 10 patients of both sexes aged 40–85 years with chronic leg ulcers. Treatments were carried out at 3-week intervals for 3–5 cycles. At 8-month follow-up with the PDT group, complete remission (CR) was obtained in four patients (40%), partial response (>50% reduction in ulcer diameter) in four patients (40%), and no response in two patients (20%) who additionally developed deterioration of the local condition with swelling, erythema, and inflammation. To assess the degree of pain during the trials, we used a numeric rating scale (NRS). From the preliminary results obtained, we concluded that PDT can be used to treat leg ulcers as a minimally invasive and effective method with no serious side effects, although further studies on a larger group of patients with LUs are warranted.
Collapse
|
20
|
Vallejo MCS, Moura NMM, Gomes ATPC, Joaquinito ASM, Faustino MAF, Almeida A, Gonçalves I, Serra VV, Neves MGPMS. The Role of Porphyrinoid Photosensitizers for Skin Wound Healing. Int J Mol Sci 2021; 22:4121. [PMID: 33923523 PMCID: PMC8072979 DOI: 10.3390/ijms22084121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/04/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022] Open
Abstract
Microorganisms, usually bacteria and fungi, grow and spread in skin wounds, causing infections. These infections trigger the immune system and cause inflammation and tissue damage within the skin or wound, slowing down the healing process. The use of photodynamic therapy (PDT) to eradicate microorganisms has been regarded as a promising alternative to anti-infective therapies, such as those based on antibiotics, and more recently, is being considered for skin wound-healing, namely for infected wounds. Among the several molecules exploited as photosensitizers (PS), porphyrinoids exhibit suitable features for achieving those goals efficiently. The capability that these macrocycles display to generate reactive oxygen species (ROS) gives a significant contribution to the regenerative process. ROS are responsible for avoiding the development of infections by inactivating microorganisms such as bacteria but also by promoting cell proliferation through the activation of stem cells which regulates inflammatory factors and collagen remodeling. The PS can act solo or combined with several materials, such as polymers, hydrogels, nanotubes, or metal-organic frameworks (MOF), keeping both the microbial photoinactivation and healing/regenerative processes' effectiveness. This review highlights the developments on the combination of PDT approach and skin wound healing using natural and synthetic porphyrinoids, such as porphyrins, chlorins and phthalocyanines, as PS, as well as the prodrug 5-aminolevulinic acid (5-ALA), the natural precursor of protoporphyrin-IX (PP-IX).
Collapse
Affiliation(s)
- Mariana C. S. Vallejo
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| | - Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| | - Ana T. P. C. Gomes
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.T.P.C.G.); (A.A.)
| | - Ana S. M. Joaquinito
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.T.P.C.G.); (A.A.)
| | - Maria Amparo F. Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.T.P.C.G.); (A.A.)
| | - Idalina Gonçalves
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Vanda Vaz Serra
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal;
| | - Maria Graça P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| |
Collapse
|
21
|
Sułek A, Pucelik B, Kobielusz M, Barzowska A, Dąbrowski JM. Photodynamic Inactivation of Bacteria with Porphyrin Derivatives: Effect of Charge, Lipophilicity, ROS Generation, and Cellular Uptake on Their Biological Activity In Vitro. Int J Mol Sci 2020; 21:ijms21228716. [PMID: 33218103 PMCID: PMC7698881 DOI: 10.3390/ijms21228716] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
Resistance of microorganisms to antibiotics has led to research on various therapeutic strategies with different mechanisms of action, including photodynamic inactivation (PDI). In this work, we evaluated a cationic, neutral, and anionic meso-tetraphenylporphyrin derivative’s ability to inactivate the Gram-negative and Gram-positive bacteria in a planktonic suspension under blue light irradiation. The spectroscopic, physicochemical, redox properties, as well as reactive oxygen species (ROS) generation capacity by a set of photosensitizers varying in lipophilicity were investigated. The theoretical calculations were performed to explain the distribution of the molecular charges in the evaluated compounds. Moreover, logP partition coefficients, cellular uptake, and phototoxicity of the photosensitizers towards bacteria were determined. The role of a specific microbial efflux pump inhibitor, verapamil hydrochloride, in PDI was also studied. The results showed that E. coli exhibited higher resistance to PDI than S. aureus (3–5 logs) with low light doses (1–10 J/cm2). In turn, the prolongation of irradiation (up to 100 J/cm2) remarkably improved the inactivation of pathogens (up to 7 logs) and revealed the importance of photosensitizer photostability. The PDI potentiation occurs after the addition of KI (more than 3 logs extra killing). Verapamil increased the uptake of photosensitizers (especially in E. coli) due to efflux pump inhibition. This effect suggests that PDI is mediated by ROS, the electrostatic charge interaction, and the efflux of photosensitizers (PSs) regulated by multidrug-resistance (MDR) systems. Thus, MDR inhibition combined with PDI gives opportunities to treat more resistant bacteria.
Collapse
Affiliation(s)
- Adam Sułek
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (A.S.); (M.K.)
| | - Barbara Pucelik
- Małopolska Center of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Marcin Kobielusz
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (A.S.); (M.K.)
| | - Agata Barzowska
- Małopolska Center of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (A.S.); (M.K.)
- Correspondence: ; Tel.: +48-12-686-2488; Fax: +48-12-686-2750
| |
Collapse
|
22
|
Pucelik B, Sułek A, Dąbrowski JM. Bacteriochlorins and their metal complexes as NIR-absorbing photosensitizers: properties, mechanisms, and applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213340] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Pucelik B, Sułek A, Barzowska A, Dąbrowski JM. Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer. Cancer Lett 2020; 492:116-135. [PMID: 32693200 DOI: 10.1016/j.canlet.2020.07.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022]
Abstract
The selectivity of photodynamic therapy (PDT) derived from the tailored accumulation of photosensitizing drug (photosensitizer; PS) in the tumor microenvironment (TME), and from local irradiation, turns it into a "magic bullet" for the treatment of resistant tumors without sparing the healthy tissue and possible adverse effects. However, locally-induced hypoxia is one of the undesirable consequences of PDT, which may contribute to the emergence of resistance and significantly reduce therapeutic outcomes. Therefore, the development of strategies using new approaches in nanotechnology and molecular biology can offer an increased opportunity to eliminate the disadvantages of hypoxia. Emerging evidence indicates that wisely designed phototherapeutic procedures, including: (i) ROS-tunable photosensitizers, (ii) organelle targeting, (iii) nano-based photoactive drugs and/or PS delivery nanosystems, as well as (iv) combining them with other strategies (i.e. PTT, chemotherapy, theranostics or the design of dual anticancer drug and photosensitizers) can significantly improve the PDT efficacy and overcome the resistance. This mini-review addresses the role of hypoxia and hypoxia-related molecular mechanisms of the HIF-1α pathway in the regulation of PDT efficacy. It also discusses the most recent achievements as well as future perspectives and potential challenges of PDT application against hypoxic tumors.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Adam Sułek
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | - Agata Barzowska
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | | |
Collapse
|
24
|
Zhang LC, Hao LM, Huang YB, Huang HF, Hu J, Bi MY. Satisfactory response of a back carbuncle to 5-aminolevulinic acid (ALA) photodynamic therapy: A case report. Photodiagnosis Photodyn Ther 2020; 30:101618. [DOI: 10.1016/j.pdpdt.2019.101618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
|
25
|
Evidence of hypericin photoinactivation of E. faecalis: From planktonic culture to mammalian cells selectivity up to biofilm disruption. Photodiagnosis Photodyn Ther 2020; 31:101759. [PMID: 32380254 DOI: 10.1016/j.pdpdt.2020.101759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022]
Abstract
Antimicrobial Photodynamic Therapy (aPDT) is an alternative for microbiological inactivation. The aPDT is a method that uses a photosensitizer (PS) excited by visible light at the appropriate wavelength and the molecular oxygen present in the tissues resulting in the production of reactive oxygen species, which causes oxidative damage to biological molecules. This study aimed to perform an in vitro experimental sequence for photoinactivation of E. faecalis using Hypericin (HY) from planktonic culture to selectivity assays using mammalian cells up to biofilm. The results show that E. faecalis rapidly absorb HY. The levels of inactivation of E. faecalis reached up to 99% in planktonic culture. Transmission and Scanning Electron Microscopy demonstrate the remarkable morphological alterations resulting from photooxidation being the loss of membrane integrity assessed by fluorescence microscopy combined with a LIVE/DEAD™ kit. HY did not present cytotoxicity to the fibroblasts cell at the used conditions proving to be a selective molecule. Finally, 60% of photoinactivation was observed in the biofilm of E. faecalis when subject to HY-aPDT. These outcomes show the advantages of sequential in vitro experiments besides showing that HY is a potential PS for clinical trials due to its selectivity and photodynamic effect. This study also draws attention to the benefits of using methodologies that can evidence the antimicrobial effect beyond the typical constellation of cell death.
Collapse
|
26
|
Kawczyk-Krupka A, Bartusik-Aebisher D, Latos W, Cieślar G, Sieroń K, Kwiatek S, Oleś P, Kwiatek B, Aebisher D, Krupka M, Wiench R, Skaba D, Olek M, Kasperski J, Czuba Z, Sieroń A. Clinical Trials and Basic Research in Photodynamic Diagnostics and Therapies from the Center for Laser Diagnostics and Therapy in Poland. Photochem Photobiol 2020; 96:539-549. [PMID: 32112419 DOI: 10.1111/php.13243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
The purpose of this review is to present an overview of the development of photodiagnostic and photodynamic therapy (PDD and PDT) techniques in Poland. The paper discusses the principles of PDD, including fluorescent techniques in determining precancerous conditions and cancers of the skin, digestive tract, bladder and respiratory tract. Methods of PDT of cancer will be discussed and the current state of knowledge as well as future trends in the development of photodynamic techniques will be presented, including the possibility of using photodynamic antimicrobial therapy. Research pioneers in photodynamic medicine such as Thomas Dougherty are an inspiration for the development of methods of PDD and PDT in our Clinic. The Center for Laser Diagnostics and Therapy in Bytom, Poland, promotes the propagation of PDD and PDT through the training of clinicians and raising awareness among students in training and the general public. Physicians at the Center are engaged in photomedical research aimed at clinical implementation and exploration of new avenues in photomedicine while optimizing existing modalities. The Center promotes dissemination of clinical results from a wide range of topics in PDD and PDT and serving as representative authorities of photodynamic medicine in Poland and Europe.
Collapse
Affiliation(s)
- Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | | | - Wojciech Latos
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Karolina Sieroń
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland.,Department of Physical Medicine, Chair of Physiotherapy, Medical University of Silesia, Katowice, Poland
| | - Sebastian Kwiatek
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Piotr Oleś
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Beata Kwiatek
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - David Aebisher
- Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Magdalena Krupka
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Dariusz Skaba
- Department of Periodontal Diseases and Oral Mucosa Diseases, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Marcin Olek
- Department of Prosthetic Dentistry, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Jacek Kasperski
- Department of Prosthetic Dentistry, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Aleksander Sieroń
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland.,Department of Physiotherapy, Jan Dlugosz University in Częstochowa, Częstochowa, Poland
| |
Collapse
|
27
|
Maya R, Ladeira LLC, Maya JEP, Mail LMG, Bussadori SK, Paschoal MAB. The Combination of Antimicrobial Photodynamic Therapy and Photobiomodulation Therapy for the Treatment of Palatal Ulcers: A Case Report. J Lasers Med Sci 2020; 11:228-233. [PMID: 32273968 DOI: 10.34172/jlms.2020.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: One of the unexpected side effects of the Haas type palatal expander is ulcers progressing to necrotic lesions in the palatal area due to poor hygiene. The use of antibiotic therapy is mandatory. However, long periods of healing/pain and the need for a systemic host response with the aid of metabolization, especially in children, are issues that should be taken into account in the management of this type of injury. Since phototherapy modalities (antimicrobial photodynamic therapy [aPDT] and photobiomodulation therapy [PBMT]) are able to enhance and accelerate the healing process and reduce the bacterial load, this case report aimed to describe the use of the above-mentioned therapies to treat palatal ulcers occurring during orthodontic expansion. Case Report: The patient, a 10-year-old boy, with a chief complaint of bleeding and continuous pain in the region of his expander was verified on a follow-up visit. After a dental examination, the expander was removed and two necrotic lesions which were in contact with the acrylic part of the tooth-tissue expander were found in the palatal region. The proposal was to use one aPDT session with methylene blue followed by 4 sessions of PBMT with a red laser diode. On the 5th day, reorganized tissue was verified, with the absence of bleeding, swelling, and pain. On the 20th day of follow-up, the area showed no signs of inflammation, healthy tissue without any pathological clinical symptoms, and complete wound healing. Conclusion: The concomitant use of PBMT and aPDT therapies may be considered feasible as an adjunct treatment to manage palatal ulcers resulting from the incorrect use of tooth-tissue types of expanders.
Collapse
Affiliation(s)
- Rafael Maya
- Florence Institute of Superior Teaching, São Luís - MA, Brazil
| | | | | | | | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho - UNINOVE, São Paulo - SP, Brazil
| | - Marco Aurélio Benini Paschoal
- Department of Pediatric Dentistry and Orthodontics, Federal University of Minas Gerais - UFMG, Belo Horizonte - MG, Brazil
| |
Collapse
|
28
|
Laser-induced fluorescence diagnosis of stomach tumor. Lasers Med Sci 2020; 35:1721-1728. [PMID: 31953738 DOI: 10.1007/s10103-020-02963-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022]
Abstract
The purpose of this study is to demonstrate the capabilities of laser spectral and video fluorescence diagnosis used for stomach tumors using 5-ALA photosensitizer. The spectroscopic method is presented with an example of a characteristic fluorescence spectrum from stomach with 5-ALA and quantitative statistics. The laser excitation wavelength was 632.8 nm. The analysis of the video system is presented with clinical statistics. The penetration depth of 3-4 mm of the He-Ne laser during the spectroscopic study allowed for scanning the mucous and submucous layers of the stomach and for detecting tumorous growths in these layers. Registration of fluorescence using the spectral system enabled surgeons to conduct express estimation of dubious stomach tissues, to make biopsy from doubtful areas to reveal precancer and early cancer states. The video fluorescence analysis with the application of 5-ALA-induced PPIX may be recommended for the use as an express method of diagnosis including early diagnosis of malignant stomach diseases as well as for intraoperative assessment of tumor extension and detection of canceromatous foci during laparoscopy. The optimal time interval for the diagnosis (regardless of the nature of the study - endoscopic, laparoscopic, or intraoperative) is 2-4 h from the administration of photosensitizer. The optimal dose of the photosensitizer is 20 mg per 1 kg of the body weight.
Collapse
|
29
|
Huang J, Guo M, Jin S, Wu M, Yang C, Zhang G, Wang P, Ji J, Zeng Q, Wang X, Wang H. Antibacterial photodynamic therapy mediated by 5-aminolevulinic acid on methicillin-resistant Staphylococcus aureus. Photodiagnosis Photodyn Ther 2019; 28:330-337. [DOI: 10.1016/j.pdpdt.2019.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/10/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
|
30
|
Aroso RT, Calvete MJ, Pucelik B, Dubin G, Arnaut LG, Pereira MM, Dąbrowski JM. Photoinactivation of microorganisms with sub-micromolar concentrations of imidazolium metallophthalocyanine salts. Eur J Med Chem 2019; 184:111740. [DOI: 10.1016/j.ejmech.2019.111740] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022]
|
31
|
Kuncewicz J, Dąbrowski JM, Kyzioł A, Brindell M, Łabuz P, Mazuryk O, Macyk W, Stochel G. Perspectives of molecular and nanostructured systems with d- and f-block metals in photogeneration of reactive oxygen species for medical strategies. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Surface Modification of Nanocrystalline TiO2 Materials with Sulfonated Porphyrins for Visible Light Antimicrobial Therapy. Catalysts 2019. [DOI: 10.3390/catal9100821] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Highly-active, surface-modified anatase TiO2 nanoparticles were successfully synthesized and characterized. The morphological and optical properties of the obtained (metallo)porphyrin@qTiO2 materials were evaluated using absorption and fluorescence spectroscopy, scanning electron microscopy (SEM) imaging, and dynamic light scattering (DLS). These hybrid nanoparticles efficiently generated reactive oxygen species (ROS) under blue-light irradiation (420 ± 20 nm) and possessed a unimodal size distribution of 20–70 nm in diameter. The antimicrobial performance of the synthetized agents was examined against Gram-negative and Gram-positive bacteria. After a short-term incubation of microorganisms with nanomaterials (at 1 g/L) and irradiation with blue-light at a dose of 10 J/cm2, 2–3 logs of Escherichia coli, and 3–4 logs of Staphylococcus aureus were inactivated. A further decrease in bacteria viability was observed after potentiation photodynamic inactivation (PDI), either by H2O2 or KI, resulting in complete microorganism eradication even when using low material concentration (from 0.1 g/L). SEM analysis of bacteria morphology after each mode of PDI suggested different mechanisms of cellular disruption depending on the type of generated oxygen and/or iodide species. These data suggest that TiO2-based materials modified with sulfonated porphyrins are efficient photocatalysts that could be successfully used in biomedical strategies, most notably, photodynamic inactivation of microorganisms.
Collapse
|
33
|
Sułek A, Pucelik B, Kuncewicz J, Dubin G, Dąbrowski JM. Sensitization of TiO2 by halogenated porphyrin derivatives for visible light biomedical and environmental photocatalysis. Catal Today 2019. [DOI: 10.1016/j.cattod.2019.02.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Trevisan E, Menegazzi R, Zabucchi G, Troian B, Prato S, Vita F, Rapozzi V, Grandolfo M, Borelli V. Effect of methylene blue photodynamic therapy on human neutrophil functional responses. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111605. [PMID: 31473428 DOI: 10.1016/j.jphotobiol.2019.111605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 12/23/2022]
Abstract
Photodynamic therapy (PDT) has become an emerging novel therapeutic approach for treating localized microbial infections, particularly those sustained by multidrug-resistant strains. Given the irreplaceable role played by professional phagocytes in limiting infections, such as polymorphonuclear neutrophils, any newly designed antimicrobial therapeutic approach must not interfere with their function. The present investigation presents a detailed analysis of the effect of PDT on the viability and several functional responses of human polymorphonuclear neutrophils loaded with methylene blue (MB), one of the more commonly used photosensitizers in antimicrobial PDT. Taking advantage of the use of a specifically-designed optical LED array for illuminating MB-loaded human polymorphonuclear neutrophils, a number of cell functions have been assayed under miniaturized, strictly controlled and reproducible experimental conditions. The major findings of this study are the following: (1) MB-PDT increases human neutrophils adhesion and does not modify myeloperoxidase release; (2) MB-PDT markedly enhances reactive oxygen species generation that is independent of superoxide-forming phagocytic oxidase and very likely ascribable to LED-dependent excitation of accumulated methylene blue; (3) MB-PDT almost abolishes human neutrophils candidacidal activity by hindering the engulfing machinery. This in vitro study may represent a valuable reference point for future research on PDT applications for treating localized microbial infections.
Collapse
Affiliation(s)
- Elisa Trevisan
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Renzo Menegazzi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy.
| | - Giuliano Zabucchi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Barbara Troian
- A.P.E. Research Srl, Area Science Park, Basovizza, Trieste 34012, Italy.
| | - Stefano Prato
- A.P.E. Research Srl, Area Science Park, Basovizza, Trieste 34012, Italy.
| | - Francesca Vita
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Valentina Rapozzi
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Micaela Grandolfo
- International School for Advenced Studies, Neurobiology sector, Via Bonomea, 265, 34136 Trieste, Italy.
| | - Violetta Borelli
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy.
| |
Collapse
|