1
|
Bueno-Silva B, Parma-Garcia J, Frigo L, Suárez LJ, Macedo TT, Uyeda FH, Melo MARDC, Sacco R, Mourão CF, Feres M, Shibli JA, Figueiredo LC. Antimicrobial Activity of Methylene Blue Associated with Photodynamic Therapy: In Vitro Study in Multi-Species Oral Biofilm. Pathogens 2024; 13:342. [PMID: 38668297 PMCID: PMC11054395 DOI: 10.3390/pathogens13040342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
The control of infectious diseases caused by biofilms is a continuing challenge for researchers due to the complexity of their microbial structures and therapeutic implications. Photodynamic therapy as an adjunctive anti-infective treatment has been described as a possible valid approach but has not been tested in polymicrobial biofilm models. This study evaluated the effect of photodynamic therapy in vitro with methylene blue (MB) 0.01% and red LEDs (λ = 660 nm, power density ≈ 330 mW/cm2, 2 mm distance from culture) on the metabolic activity and composition of a multispecies subgingival biofilm. Test Groups LED and MB + LED showed a more significant reduction in metabolic activity than the non-LED application group (~50 and 55%, respectively). Groups LED and MB equally affected (more than 80%) the total bacterial count in biofilms. No differences were noted in the bacterial biofilm composition between the groups. In vitro LED alone or the MB + LED combination reduced the metabolic activity of bacteria in polymicrobial biofilms and the total subgingival biofilm count.
Collapse
Affiliation(s)
- Bruno Bueno-Silva
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba 13414-903, Brazil
| | - Javier Parma-Garcia
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
| | - Lucio Frigo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
- Faculdade de Odontologia da Associação Paulista de Cirurgiões Dentistas (FAOA), São Paulo 02011-000, Brazil
| | - Lina J. Suárez
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
- Departamento de Ciencias Básicas y Medicina Oral, Facultad de Odontología, Universidad Nacional de Colombia, Cra 45 # 26-85, Bogotá 11001, Colombia
| | - Tatiane Tiemi Macedo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
| | - Fábio Hideaki Uyeda
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
| | - Marcelo Augusto Ruiz da Cunha Melo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
| | - Roberto Sacco
- Department of Oral Surgery, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9SP, UK
| | - Carlos Fernando Mourão
- Department of Periodontology, Dental Research Division, Tuft University School of Dental Medicine, Boston, MA 02111, USA;
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
- Department of Oral Medicine, Infection, and Immunity, Division of Periodontology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Jamil Awad Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
| | - Luciene Cristina Figueiredo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil; (B.B.-S.); (J.P.-G.); (L.F.); (L.J.S.); (M.F.); (J.A.S.); (L.C.F.)
| |
Collapse
|
2
|
Rodrigues ABF, Passos JCDS, Costa MS. Effect of Antimicrobial Photodynamic Therapy, using Toluidine blue on dual-species biofilms of Candida albicans and Candida krusei. Photodiagnosis Photodyn Ther 2023; 42:103600. [PMID: 37150491 DOI: 10.1016/j.pdpdt.2023.103600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Although Candida albicans is the most frequent etiological agent of candidiasis, it has been reported a sizable number of infections related to the non-albicans Candida (NAC) species, Candida krusei. In addition, dual biofilms (biofilms composed by two species) may easily occur in vivo, becoming even more challenging the treatment of an infection. The fungicide effect of Photodynamic Therapy (PDT), using toluidine blue O (TBO) on both C. albicans and C. krusei development has been demonstrated. Thus, the objective of this study was to investigate the effects of PDT on dual-species biofilms of Candida albicans and Candida krusei. METHODS The effect of PDT was observed on the metabolic activity of mature dual-species biofilms of Candida albicans and Candida krusei by a metabolic assay based on the reduction of XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide sodium salt) assay and the identification of Candida albicans and Candida krusei was performed on CHROMagar Candida medium. RESULTS it was observed a reduction of ∼30% in the metabolic activity of a mature biofilm treated with PDT, using 0.05mg·mL-1 TBO and during biofilm formation a predominance of C. albicans on C. krusei was observed. The inhibition observed was related to reduction in the number of Colony Forming Units (CFU) of Candida albicans from 31.33 ± 3.7 to 17.0 ± 1.5. The number of CFU of C. krusei was not significantly modified. CONCLUSIONS These results demonstrated the efficiency of PDT in inhibiting the dual-species biofilms of Candida albicans and Candida krusei by reducing C. albicans development.
Collapse
Affiliation(s)
- Ana Beatriz Furtado Rodrigues
- Instituto de Pesquisa & Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP. Av. Shishima Hifumi 2911, CEP: 12, 244-000, São José dos Campos, Brazil
| | - Juliene Cristina da Silva Passos
- Instituto de Pesquisa & Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP. Av. Shishima Hifumi 2911, CEP: 12, 244-000, São José dos Campos, Brazil
| | - Maricilia Silva Costa
- Instituto de Pesquisa & Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP. Av. Shishima Hifumi 2911, CEP: 12, 244-000, São José dos Campos, Brazil.
| |
Collapse
|
3
|
Aroso RT, Schaberle FA, Arnaut LG, Pereira MM. Photodynamic disinfection and its role in controlling infectious diseases. Photochem Photobiol Sci 2021; 20:1497-1545. [PMID: 34705261 PMCID: PMC8548867 DOI: 10.1007/s43630-021-00102-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Photodynamic therapy is witnessing a revival of its origins as a response to the rise of multi-drug resistant infections and the shortage of new classes of antibiotics. Photodynamic disinfection (PDDI) of microorganisms is making progresses in preclinical models and in clinical cases, and the perception of its role in the clinical armamentarium for the management of infectious diseases is changing. We review the positioning of PDDI from the perspective of its ability to respond to clinical needs. Emphasis is placed on the pipeline of photosensitizers that proved effective to inactivate biofilms, showed efficacy in animal models of infectious diseases or reached clinical trials. Novel opportunities resulting from the COVID-19 pandemic are briefly discussed. The molecular features of promising photosensitizers are emphasized and contrasted with those of photosensitizers used in the treatment of solid tumors. The development of photosensitizers has been accompanied by the fabrication of a variety of affordable and customizable light sources. We critically discuss the combination between photosensitizer and light source properties that may leverage PDDI and expand its applications to wider markets. The success of PDDI in the management of infectious diseases will ultimately depend on the efficacy of photosensitizers, affordability of the light sources, simplicity of the procedures, and availability of fast and efficient treatments.
Collapse
Affiliation(s)
- Rafael T Aroso
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Fábio A Schaberle
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Luís G Arnaut
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal.
| | - Mariette M Pereira
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
4
|
Ziental D, Mlynarczyk DT, Czarczynska-Goslinska B, Lewandowski K, Sobotta L. Photosensitizers Mediated Photodynamic Inactivation against Fungi. NANOMATERIALS 2021; 11:nano11112883. [PMID: 34835655 PMCID: PMC8621466 DOI: 10.3390/nano11112883] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/12/2023]
Abstract
Superficial and systemic fungal infections are essential problems for the modern health care system. One of the challenges is the growing resistance of fungi to classic antifungals and the constantly increasing cost of therapy. These factors force the scientific world to intensify the search for alternative and more effective methods of treatment. This paper presents an overview of new fungal inactivation methods using Photodynamic Antimicrobial Chemotherapy (PACT). The results of research on compounds from the groups of phenothiazines, xanthanes, porphyrins, chlorins, porphyrazines, and phthalocyanines are presented. An intensive search for a photosensitizer with excellent properties is currently underway. The formulation based on the existing ones is also developed by combining them with nanoparticles and common antifungal therapy. Numerous studies indicate that fungi do not form any specific defense mechanism against PACT, which deems it a promising therapeutic alternative.
Collapse
Affiliation(s)
- Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.Z.); (K.L.)
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Konrad Lewandowski
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.Z.); (K.L.)
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.Z.); (K.L.)
- Correspondence:
| |
Collapse
|
5
|
Kamran MA, Qasim M, Udeabor SE, Hameed MS, Mannakandath ML, Alshahrani I. Impact of riboflavin mediated photodynamic disinfection around fixed orthodontic system infected with oral bacteria. Photodiagnosis Photodyn Ther 2021; 34:102232. [PMID: 33631380 DOI: 10.1016/j.pdpdt.2021.102232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE The aim of this laboratory study was to investigate the amount of bacterial destruction through riboflavin mediated photodynamic therapy (PDT) around fixed orthodontic devices by using the two strains of bacteria Streptococcus mutans and Streptococcus sanguinis. MATERIALS AND METHODS A total of 80 metallic brackets were divided into four groups consisting of 20 brackets each. Group-I: riboflavin + LED irradiation; Group-II: riboflavin alone; Group-III: immersion in 0.2 % chlorhexidine gluconate solution and Group-IV: not submitted to any treatment. All metallic brackets were immersed in the standard bacterial solutions and incubated at 48 h. All samples were subjected to MTT assay for microbial cell viability testing after treatment. After 24 h of incubation, biofilms adhered on the mesh of metallic brackets after treatment were assessed by confocal laser microscopy. The total CFU/mL was estimated, and the results were log-transformed (log10) and analyzed using one-way analysis of variance and Tukey-Kramer test. P-value was set to <0.05 that indicated statistical significance. RESULTS The samples from group-IV showed the highest amount of relative biofilm viability compared to any other group while group-I (PDT) showed the least viability of the two bacterial strains studied (p < 0.05). Group-I showed no significant difference when compared with group-III (chlorhexidine) (p > 0.05). The biofilms on the samples from group-II and group-IV were largely viable indicating thick green staining across the mesh of the brackets. Among the group-III samples, there were predominantly dead cells as compared to the live cell staining. A considerable amount of red staining was observed with noticeable less green staining in group-I samples. CONCLUSION This laboratory investigation revealed that riboflavin mediated PDT significantly reduced the amounts of S. mutans and S. sanguinis around the orthodontic brackets.
Collapse
Affiliation(s)
- Muhammad Abdullah Kamran
- Department of Pediatric and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia.
| | - Muhammad Qasim
- Department of Restorative Dental Sciences (Operative Dentistry), College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Samuel Ebele Udeabor
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Shahul Hameed
- Department of Diagnostic Sciences and Oral Biology, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Master Luqman Mannakandath
- Department of Oral Diagnosis and Oral Biology, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Ibrahim Alshahrani
- Department of Pediatric and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
6
|
Van Dyck K, Pinto RM, Pully D, Van Dijck P. Microbial Interkingdom Biofilms and the Quest for Novel Therapeutic Strategies. Microorganisms 2021; 9:412. [PMID: 33671126 PMCID: PMC7921918 DOI: 10.3390/microorganisms9020412] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Fungal and bacterial species interact with each other within polymicrobial biofilm communities in various niches of the human body. Interactions between these species can greatly affect human health and disease. Diseases caused by polymicrobial biofilms pose a major challenge in clinical settings because of their enhanced virulence and increased drug tolerance. Therefore, different approaches are being explored to treat fungal-bacterial biofilm infections. This review focuses on the main mechanisms involved in polymicrobial drug tolerance and the implications of the polymicrobial nature for the therapeutic treatment by highlighting clinically relevant fungal-bacterial interactions. Furthermore, innovative treatment strategies which specifically target polymicrobial biofilms are discussed.
Collapse
Affiliation(s)
- Katrien Van Dyck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Rita M. Pinto
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, 4050-313 Porto, Portugal
| | - Durgasruthi Pully
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| |
Collapse
|
7
|
Alves da Collina G, Freire F, da Silva Barbosa V, Bento Correa C, Reis Nascimento H, Ratto Tempestini Horliana AC, Teixeira da Silva DDF, Araujo Prates R, Pavani C. Photodynamic antimicrobial chemotherapy action of phenothiazinium dyes in planktonic Candida albicans is increased in sodium dodecyl sulfate. Photodiagnosis Photodyn Ther 2020; 29:101612. [DOI: 10.1016/j.pdpdt.2019.101612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/19/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
|
8
|
Rodrigues ME, Gomes F, Rodrigues CF. Candida spp./Bacteria Mixed Biofilms. J Fungi (Basel) 2019; 6:jof6010005. [PMID: 31861858 PMCID: PMC7151131 DOI: 10.3390/jof6010005] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/21/2022] Open
Abstract
The ability to form biofilms is a common feature of microorganisms, such as bacteria or fungi. These consortiums can colonize a variety of surfaces, such as host tissues, dentures, and catheters, resulting in infections highly resistant to drugs, when compared with their planktonic counterparts. This refractory effect is particularly critical in polymicrobial biofilms involving both fungi and bacteria. This review emphasizes Candida spp.-bacteria biofilms, the epidemiology of this community, the challenges in the eradication of such biofilms, and the most relevant treatments.
Collapse
Affiliation(s)
- Maria Elisa Rodrigues
- CEB, Centre of Biological Engineering, LIBRO–Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (M.E.R.); (F.G.)
| | - Fernanda Gomes
- CEB, Centre of Biological Engineering, LIBRO–Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (M.E.R.); (F.G.)
| | - Célia F. Rodrigues
- LEPABE–Dep. of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Correspondence:
| |
Collapse
|
9
|
Exposure of Streptococcus mutans and Streptococcus sanguinis to blue light in an oral biofilm model. Lasers Med Sci 2019; 35:709-718. [PMID: 31713778 DOI: 10.1007/s10103-019-02903-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
Abstract
The potential anti-cariogenic effect of blue light was evaluated using an oral biofilm model. Two species, Streptococcus mutans and Streptococcus sanguinis, were cultivated ex vivo on bovine enamel blocks for 24 h, either separately or mixed together, then exposed to blue light (wavelengths 400-500 nm) using 112 J/cm2. Twenty four or 48 h after exposure to light the biofilm structure and biomass were characterized and quantified using SEM and qPCR, respectively. Bacterial viability was analyzed by CLSM using live/dead bacterial staining. Gene expression was examined by RT-qPCR. After exposure to light, S. mutans biomass in mono-species biofilm was increased mainly by dead bacteria, relative to control. However, the bacterial biomass of S. mutans when grown in mixed biofilm and of S. sanguinis in mono-species biofilm was reduced after light exposure, with no significant change in viability when compared to control. Furthermore, when grown separately, an upregulation of gene expression related to biofilm formation of S. mutans, and downregulation of similar genes of S. sanguinis, were measured 24 h after exposure to blue light. However, in mixed biofilm, a downregulation of those genes in both species was observed, although not significant in S. mutans. In conclusion, blue light seems to effectively alter the bacterial biomass by reducing the viability and virulence characteristics in both bacterial species and may promote the anti-cariogenic balance between them, when grown in a mixed biofilm. Therefore, exposure of oral biofilm to blue light has the potential to serve as a complementary approach in preventive dentistry.
Collapse
|
10
|
Reis ACM, Regis WFM, Rodrigues LKA. Scientific evidence in antimicrobial photodynamic therapy: An alternative approach for reducing cariogenic bacteria. Photodiagnosis Photodyn Ther 2019; 26:179-189. [DOI: 10.1016/j.pdpdt.2019.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023]
|
11
|
Negrini TDC, Koo H, Arthur RA. Candida–Bacterial Biofilms and Host–Microbe Interactions in Oral Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:119-141. [DOI: 10.1007/978-3-030-28524-1_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Montelongo-Jauregui D, Lopez-Ribot JL. Candida Interactions with the Oral Bacterial Microbiota. J Fungi (Basel) 2018; 4:jof4040122. [PMID: 30400279 PMCID: PMC6308928 DOI: 10.3390/jof4040122] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
The human oral cavity is normally colonized by a wide range of microorganisms, including bacteria, fungi, Archaea, viruses, and protozoa. Within the different oral microenvironments these organisms are often found as part of highly organized microbial communities termed biofilms, which display consortial behavior. Formation and maintenance of these biofilms are highly dependent on the direct interactions between the different members of the microbiota, as well as on the released factors that influence the surrounding microbial populations. These complex biofilm dynamics influence oral health and disease. In the latest years there has been an increased recognition of the important role that interkingdom interactions, in particular those between fungi and bacteria, play within the oral cavity. Candida spp., and in particular C. albicans, are among the most important fungi colonizing the oral cavity of humans and have been found to participate in these complex microbial oral biofilms. C. albicans has been reported to interact with individual members of the oral bacterial microbiota, leading to either synergistic or antagonistic relationships. In this review we describe some of the better characterized interactions between Candida spp. and oral bacteria.
Collapse
Affiliation(s)
- Daniel Montelongo-Jauregui
- Department of Biology, South Texas Center for Emerging Infections Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Jose L Lopez-Ribot
- Department of Biology, South Texas Center for Emerging Infections Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|