1
|
Jervøe-Storm PM, Bunke J, Worthington HV, Needleman I, Cosgarea R, MacDonald L, Walsh T, Lewis SR, Jepsen S. Adjunctive antimicrobial photodynamic therapy for treating periodontal and peri-implant diseases. Cochrane Database Syst Rev 2024; 7:CD011778. [PMID: 38994711 PMCID: PMC11240860 DOI: 10.1002/14651858.cd011778.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
BACKGROUND Periodontitis and peri-implant diseases are chronic inflammatory conditions occurring in the mouth. Left untreated, periodontitis progressively destroys the tooth-supporting apparatus. Peri-implant diseases occur in tissues around dental implants and are characterised by inflammation in the peri-implant mucosa and subsequent progressive loss of supporting bone. Treatment aims to clean the pockets around teeth or dental implants and prevent damage to surrounding soft tissue and bone, including improvement of oral hygiene, risk factor control (e.g. encouraging cessation of smoking) and surgical interventions. The key aspect of standard non-surgical treatment is the removal of the subgingival biofilm using subgingival instrumentation (SI) (also called scaling and root planing). Antimicrobial photodynamic therapy (aPDT) can be used an adjunctive treatment to SI. It uses light energy to kill micro-organisms that have been treated with a light-absorbing photosensitising agent immediately prior to aPDT. OBJECTIVES To assess the effects of SI with adjunctive aPDT versus SI alone or with placebo aPDT for periodontitis and peri-implant diseases in adults. SEARCH METHODS We searched the Cochrane Oral Health Trials Register, CENTRAL, MEDLINE, Embase, two other databases and two trials registers up to 14 February 2024. SELECTION CRITERIA We included randomised controlled trials (RCTs) (both parallel-group and split-mouth design) in participants with a clinical diagnosis of periodontitis, peri-implantitis or peri-implant disease. We compared the adjunctive use of antimicrobial photodynamic therapy (aPDT), in which aPDT was given after subgingival or submucosal instrumentation (SI), versus SI alone or a combination of SI and a placebo aPDT given during the active or supportive phase of therapy. DATA COLLECTION AND ANALYSIS We used standard Cochrane methodological procedures, and we used GRADE to assess the certainty of the evidence. We prioritised six outcomes and the measure of change from baseline to six months after treatment: probing pocket depth (PPD), bleeding on probing (BOP), clinical attachment level (CAL), gingival recession (REC), pocket closure and adverse effects related to aPDT. We were also interested in change in bone level (for participants with peri-implantitis), and participant satisfaction and quality of life. MAIN RESULTS We included 50 RCTs with 1407 participants. Most studies used a split-mouth study design; only 18 studies used a parallel-group design. Studies were small, ranging from 10 participants to 88. Adjunctive aPDT was given in a single session in 39 studies, in multiple sessions (between two and four sessions) in 11 studies, and one study included both single and multiple sessions. SI was given using hand or power-driven instrumentation (or both), and was carried out prior to adjunctive aPDT. Five studies used placebo aPDT in the control group and we combined these in meta-analyses with studies in which SI alone was used. All studies included high or unclear risks of bias, such as selection bias or performance bias of personnel (when SI was carried out by an operator aware of group allocation). We downgraded the certainty of all the evidence owing to these risks of bias, as well as for unexplained statistical inconsistency in the pooled effect estimates or for imprecision when evidence was derived from very few participants and confidence intervals (CI) indicated possible benefit to both intervention and control groups. Adjunctive aPDT versus SI alone during active treatment of periodontitis (44 studies) We are very uncertain whether adjunctive aPDT during active treatment of periodontitis leads to improvement in any clinical outcomes at six months when compared to SI alone: PPD (mean difference (MD) 0.52 mm, 95% CI 0.31 to 0.74; 15 studies, 452 participants), BOP (MD 5.72%, 95% CI 1.62 to 9.81; 5 studies, 171 studies), CAL (MD 0.44 mm, 95% CI 0.24 to 0.64; 13 studies, 414 participants) and REC (MD 0.00, 95% CI -0.16 to 0.16; 4 studies, 95 participants); very low-certainty evidence. Any apparent differences between adjunctive aPDT and SI alone were not judged to be clinically important. Twenty-four studies (639 participants) observed no adverse effects related to aPDT (moderate-certainty evidence). No studies reported pocket closure at six months, participant satisfaction or quality of life. Adjunctive aPDT versus SI alone during supportive treatment of periodontitis (six studies) We were very uncertain whether adjunctive aPDT during supportive treatment of periodontitis leads to improvement in any clinical outcomes at six months when compared to SI alone: PPD (MD -0.04 mm, 95% CI -0.19 to 0.10; 3 studies, 125 participants), BOP (MD 4.98%, 95% CI -2.51 to 12.46; 3 studies, 127 participants), CAL (MD 0.07 mm, 95% CI -0.26 to 0.40; 2 studies, 85 participants) and REC (MD -0.20 mm, 95% CI -0.48 to 0.08; 1 study, 24 participants); very low-certainty evidence. These findings were all imprecise and included no clinically important benefits for aPDT. Three studies (134 participants) reported adverse effects: a single participant developed an abscess, though it is not evident whether this was related to aPDT, and two studies observed no adverse effects related to aPDT (moderate-certainty evidence). No studies reported pocket closure at six months, participant satisfaction or quality of life. AUTHORS' CONCLUSIONS Because the certainty of the evidence is very low, we cannot be sure if adjunctive aPDT leads to improved clinical outcomes during the active or supportive treatment of periodontitis; moreover, results suggest that any improvements may be too small to be clinically important. The certainty of this evidence can only be increased by the inclusion of large, well-conducted RCTs that are appropriately analysed to account for change in outcome over time or within-participant split-mouth study designs (or both). We found no studies including people with peri-implantitis, and only one study including people with peri-implant mucositis, but this very small study reported no data at six months, warranting more evidence for adjunctive aPDT in this population group.
Collapse
Affiliation(s)
- Pia-Merete Jervøe-Storm
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Bonn, Germany
| | - Jennifer Bunke
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Bonn, Germany
| | - Helen V Worthington
- Cochrane Oral Health, Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ian Needleman
- Unit of Periodontology and International Centre for Evidence-Based Oral Health, UCL Eastman Dental Institute, London, UK
| | - Raluca Cosgarea
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Bonn, Germany
- Department of Periodontology and Peri-implant Diseases, Philips University Marburg, Marburg, Germany
- Clinic for Prosthetic Dentistry, University Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Laura MacDonald
- Cochrane Oral Health, Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Tanya Walsh
- Cochrane Oral Health, Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sharon R Lewis
- Cochrane Oral Health, Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
2
|
Souza DAS, de Lima Dantas JB, Souto CS, Mendonça DM, Oliveira TJS, Dos Santos Vianna Néri J. Photodynamic therapy adjuvant to non-surgical periodontal therapy: Systematic review of randomized clinical trials. Int J Dent Hyg 2024; 22:45-55. [PMID: 37752814 DOI: 10.1111/idh.12759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVES To systematically evaluate randomised controlled trials (RCTs) on whether adjuvant application of antimicrobial photodynamic therapy (aPDT) through the technique of irradiation in the external region of the periodontal pocket with optic-fibre tip offers benefits to scaling and root planning (SRP). METHODS Five databases were searched by two independent reviewers according to pre-specified eligibility criteria up to April 2023. No restrictions regarding date of publication, language and minimum follow-up period were imposed. The Cochrane Collaboration's Risk of Bias tool (RoB 2.0) was used for quality appraisal and Grading of Recommendations, Assessment, Development and Evaluation for assessing the certainty of evidence. RESULTS A total of 1388 publications were identified and reviewed for eligibility. Four of them fulfilled the inclusion criteria. The sample consisted of a total of 83 patients with periodontitis. In these, 330 periodontal sites were evaluated. The clinical findings of the majority of the included studies demonstrated that patients who received the association of aPDT + RAR with the protocol evaluated here, obtained clinical results similar to patients who received only the SRP alone. In none of the evaluated RCTs, clinical advantages were observed that would categorise this aPDT protocol as superior to conventional treatment. CONCLUSION Applying aPDT after SRP with external irradiation of the periodontal pocket does not seem to result in any clinical benefit compared to the use of SRP alone in patients with periodontitis.
Collapse
Affiliation(s)
- Daniel Adrian Silva Souza
- Federal University of Bahia, Stricto Sensu Graduate Program in Dentistry, Salvador, Bahia, Brazil
- Dentistry Course, Adventist College of Bahia, Cachoeira, Bahia, Brazil
| | - Juliana Borges de Lima Dantas
- Dentistry Course, Adventist College of Bahia, Cachoeira, Bahia, Brazil
- Federal University of Bahia, Institute of Health Sciences, Stricto Sensu Graduate Program in Interactive Process of Organs and Systems, Salvador, Bahia, Brazil
- School of Medicine and Public Health, Salvador, Bahia, Brazil
| | | | | | - Tiago José Silva Oliveira
- Dentistry Course, Adventist College of Bahia, Cachoeira, Bahia, Brazil
- São Leopoldo Mandic Dental Research Center, Stricto Sensu Graduate Program in Dental Sciences (Implantology), São Paulo, Brazil
| | - Júlia Dos Santos Vianna Néri
- Federal University of Bahia, Stricto Sensu Graduate Program in Dentistry, Salvador, Bahia, Brazil
- Dentistry Course, Adventist College of Bahia, Cachoeira, Bahia, Brazil
| |
Collapse
|
3
|
Nie M, Zhang P, Pathak JL, Wang X, Wu Y, Yang J, Shen Y. Photodynamic therapy in periodontitis: A narrative review. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12946. [PMID: 38288767 DOI: 10.1111/phpp.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Periodontitis, a chronic infectious disease, is primarily caused by a dysbiotic microbiome, leading to the destruction of tooth-supporting tissues and tooth loss. Photodynamic therapy (PDT), which combines excitation light with photosensitizers (PS) and oxygen to produce antibacterial reactive oxygen species, is emerging as a promising adjuvant treatment for periodontitis. METHODS This review focuses on studies examining the antibacterial effects of PDT against periodontal pathogens. It also explores the impact of PDT on various aspects of periodontal health, including periodontal immune cells, human gingival fibroblasts, gingival collagen, inflammatory mediators, cytokines in the periodontium, vascular oxidative stress, vascular behavior, and alveolar bone health. Clinical trials assessing the types of PSs and light sources used in PDT, as well as its effects on clinical and immune factors in gingival sulcus fluid and the bacterial composition of dental plaque, are discussed. RESULTS The findings indicate that PDT is effective in reducing periodontal pathogens and improving markers of periodontal health. It has shown positive impacts on periodontal immune response, tissue integrity, and alveolar bone preservation. Clinical trials have demonstrated improvements in periodontal health and alterations in the microbial composition of dental plaque when PDT is used alongside conventional treatments. CONCLUSIONS PDT offers a promising adjunctive treatment for periodontitis, with benefits in bacterial reduction, tissue healing, and immune modulation. This article highlights the potential of PDT in periodontal therapy and emphasizes the need for further research to refine its clinical application and efficacy.
Collapse
Affiliation(s)
- Min Nie
- Department of Periodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Periodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peipei Zhang
- Department of Oral Medicine, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Janak Lal Pathak
- Department of Periodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Wang
- Department of Periodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yafei Wu
- Department of Periodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingmei Yang
- Department of Periodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqin Shen
- Department of Periodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Mengarda AC, Iles B, Longo JPF, de Moraes J. Recent approaches in nanocarrier-based therapies for neglected tropical diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1852. [PMID: 36161523 DOI: 10.1002/wnan.1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/09/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Neglected tropical diseases (NTDs) remain major public health problems in developing countries. Reducing the burden of NTDs requires sustained collaborative drug discovery efforts to achieve the goals of the new NTDs roadmap launched by the World Health Organization. Oral drugs are the most convenient choice and usually the safest and least expensive. However, the oral use of some drugs for NTDs treatment has many drawbacks, including toxicity, adverse reactions, drug resistance, drug low solubility, and bioavailability. Since there is an imperative need for novel and more effective drugs to treat the various NTDs, in recent years, several compound-loaded nanoparticles have been prepared with the objective of evaluating their application as an oral drug delivery system for the treatment of NTDs. This review focuses on the various types of nanoparticle drug delivery systems that have been recently used against the major NTDs caused by parasites such as leishmaniasis, Chagas disease, and schistosomiasis. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Ana C Mengarda
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Bruno Iles
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - João Paulo F Longo
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| |
Collapse
|
5
|
Ma F, Luo S, Lu C, Jiang X, Chen K, Deng J, Ma S, Li Z. The role of Nrf2 in periodontal disease by regulating lipid peroxidation, inflammation and apoptosis. Front Endocrinol (Lausanne) 2022; 13:963451. [PMID: 36482997 PMCID: PMC9723463 DOI: 10.3389/fendo.2022.963451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
Nuclear factor E2-related factor 2(Nrf2) is a transcription factor that mainly regulates oxidative stress in the body. It initiates the expression of several downstream antioxidants, anti-inflammatory proteins and detoxification enzymes through the Kelch-like ECH-associating protein 1 (Keap1) -nuclear factor E2-related factor 2(Nrf2) -antioxidant response element (ARE) signaling pathway. Its anti-apoptosis, anti-oxidative stress and anti-inflammatory effects have gradually become the focus of periodontal disease research in recent years. In this paper, the structure and function of Nrf2 pathway and its mechanism of action in the treatment of periodontitis in recent years were analyzed and summarized, so as to further clarify the relationship between Nrf2 pathway and oxidative stress in the occurrence and development of periodontitis, and to provide ideas for the development of new treatment drugs targeting Nrf2 pathway.
Collapse
Affiliation(s)
- Fengyu Ma
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Shangdie Luo
- Department of Orthodontics, Huizhou Stomatological Hospital, Huizhou, Guangdong, China
| | - Chunting Lu
- Science and Education Office, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xinrong Jiang
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Kexiao Chen
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Jianwen Deng
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Shuyuan Ma
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zejian Li
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
- Chaoshan Hospital, The First Affiliated Hospital of Jinan University, Chaozhou, Guangdong, China
| |
Collapse
|
6
|
Mengarda AC, Iles B, F Longo JP, de Moraes J. Recent trends in praziquantel nanoformulations for helminthiasis treatment. Expert Opin Drug Deliv 2022; 19:383-393. [PMID: 35264036 DOI: 10.1080/17425247.2022.2051477] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Infections caused by parasitic flatworms impose a considerable worldwide health burden. Recently, World Health Organization launched its roadmap for neglected diseases for the period 2021 to 2030 and oral treatment with praziquantel (PZQ) in tablet form is the main drug therapy for combating these diseases, but its use is limited by many drawbacks, including the high therapeutic dose due to the drug's low solubility and bioavailability. Among the strategies to improve PZQ performance, the use of drug nanocarriers has been cited as an interesting approach to overcome these pharmacological issues. AREAS COVERED This review focuses on the various types of nanomaterials (polymeric, lipidic, inorganic nanoparticles, and nanocrystals) which have been recently used to improve PZQ therapy. In addition, recent advances in PZQ nanoformulations, developed to overcome the barriers of the conventional drug are described. EXPERT OPINION Considering the poor rate of discovery in the anthelmintic segment observed in recent decades, the effective management of existing drugs has become essential. The application of new strategies based on nanotechnology can extend the useful life of PZQ in new and more effective formulations. Pharmaceutical nanotechnology can solve the pharmacokinetic challenges characteristic of PZQ and improve its solubility and bioavailability.
Collapse
Affiliation(s)
- Ana C Mengarda
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, SP, Brazil
| | - Bruno Iles
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - João Paulo F Longo
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, SP, Brazil
| |
Collapse
|
7
|
Sun J, Yu J, Shen Z, Niu X, Wang D, Wang X, Xu H, Chuang HC, Cao J, Ho KF. Oxidative stress-inducing effects of various urban PM 2.5 road dust on human lung epithelial cells among 10 Chinese megacities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112680. [PMID: 34418851 DOI: 10.1016/j.ecoenv.2021.112680] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
PM2.5 Road dust samples were collected from 10 representative cities in southern and northern China for examination of chemical components and oxidative stress levels in A549 cells. Downtown road dust was abundance of heavy metals, EC and PAHs compared to nondowntown road dust. Source apportionment also revealed the relative higher contribution of vehicle emission to downtown (35.8%) than nondowntown road dust (25.5%). Consequently, downtown road dust induced much higher intracellular reactive oxidative species (ROS) levels than that from nondowntown (p < 0.05). This study highlights that the ROS-inducing capacity of road dust in China is lower at lower latitudes, which resulted in a significantly higher ROS-inducing capacity of road dust from northern cities than southern ones. Hotspot analysis demonstrated that heavy metals (i.e., Cr, Zn, Cu and Pb) in road dust were the most closely associated with ROS production in A549 cells. Vehicle emission and combustion emission in road dust were identified to be correlated with cellular ROS production. The findings highlight the ROS-inducing effect of PM2.5 road dust and also serve as a reference to make the targeted solutions for urban road dust pollution control, especially from a public health perspective.
Collapse
Affiliation(s)
- Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Diwei Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin Wang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, USA
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Role of PDT as an adjunct to SRP on whole salivary RANKL and OPG ratio in type-2 diabetic and normoglycemic individuals with chronic periodontitis. Photodiagnosis Photodyn Ther 2021; 34:102220. [PMID: 33610736 DOI: 10.1016/j.pdpdt.2021.102220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim was to assess the effect of scaling and root planing (SRP) with and without adjunct photodynamic therapy (PDT) on the levels of osteoprotegerin (OPG) receptor activator of NF-kappa B ligand (RANKL) in the unstimulated whole saliva (UWS) of type-2 diabetic and normoglycemic individuals with chronic periodontitis (CP). METHODS Type-2 diabetic and normoglycemic subjects with CP (Groups 1 and 2, respectively) were divided into test- (SRP + PDT) and control (SRP only) groups. Patient demographics were recorded; and periodontal parameters (marginal bone loss [MBL], probing depth [P.D], plaque index [PI], gingival index [GI], and clinical attachment loss [CAL]) were assessed at baseline and at 3-months-follow-up. Rate of flow of unstimulated whole saliva and levels of RANKL and osteoprotegerin were measured at both time intervals. P < 0.05 was considered statistically significant. RESULTS Eighty-four persons with CP (42 with and 42 without type-2 DM) were included. At baseline, clinicoradiographic parameters were comparable in all groups. At 3-months of follow-up, there was no significant difference in the clinicoradiographic parameters in all groups. At 3-months of follow-up, there was no significant reduction in whole salivary RANKL and osteoprotegerin levels among individuals in the test and control groups among CP patients with and without CP. CONCLUSION The whole salivary RANKL/OPG ratio remains high in patients with poorly-controlled type-2 DM after SRP with or without adjunct PDT.
Collapse
|