1
|
da Rosa Pinheiro T, Urquhart CG, Dantas GA, Cargnelutti JF, da Silva RB, de Souza PR, de Oliveira TE, Santos RCV, Iglesias BA. In vitro antimicrobial, antibiofilm photodynamic activity, and molecular dynamic simulations of tetra-cationic porphyrinmembrane interactions against foodborne microorganisms. World J Microbiol Biotechnol 2024; 40:248. [PMID: 38904740 DOI: 10.1007/s11274-024-04054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
This manuscript presents a new report on the in vitro antimicrobial photo-inactivation of foodborne microorganisms (Salmonella spp. and Listeria monocytogenes) using tetra-cationic porphyrins. Isomeric tetra-cationic porphyrins (3MeTPyP, 4MeTPyP, 3PtTPyP, and 4PtTPyP) were tested, and antimicrobial activity assays were performed at specific photosensitizer concentrations under dark and white-light LED irradiation conditions. Among the tested bacterial strains, 4MeTPyP exhibited the highest efficiency, inhibiting bacterial growth within just 60 min at low concentrations (17.5 μM). The minimal inhibitory concentration of 4MeTPyP increased when reactive oxygen species scavengers were present, indicating the significant involvement of singlet oxygen species in the photooxidation mechanism. Furthermore, the checkerboard assay testing the association of 4MeTPyP showed an indifferent effect. Atomic force microscopy analyses and dynamic simulations were conducted to enhance our understanding of the interaction between this porphyrin and the strain's membrane.
Collapse
Affiliation(s)
- Ticiane da Rosa Pinheiro
- Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Carolina Gonzalez Urquhart
- Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Gabrielle Aguiar Dantas
- Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | | | | | - Paulo Ricardo de Souza
- Department of Physics, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | | | | | - Bernardo Almeida Iglesias
- Bioinorganic and Porphyrin Materials Laboratory, Department of Chemistry, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
2
|
Upoma N, Akter N, Ferdousi FK, Sultan MZ, Rahman S, Alodhayb A, Alibrahim KA, Habib A. Interactions of Co(II)- and Zn(II)porphyrin of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin with DNA in Aqueous Solution and Their Antimicrobial Activities. ACS OMEGA 2024; 9:22325-22335. [PMID: 38799349 PMCID: PMC11112571 DOI: 10.1021/acsomega.4c01708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Antibiotics are frequently used to treat, prevent, or control bacterial infections, but in recent years, infections resistant to all known classes of conventional antibiotics have significantly grown. The development of novel, nontoxic, and nonincursive antimicrobial methods that work more quickly and efficiently than the present antibiotics is required to combat this growing public health issue. Here, Co(II) and Zn(II) derivatives of tetrakis(1-methylpyridinium-4yl)porphyrin [H2TMPyP]4+ as a tetra(ρ-toluenesulfonate) were synthesized and purified to investigate their interactions with DNA (pH 7.40, 25 °C) using UV-vis, fluorescence techniques, and antimicrobial activity. UV-vis results showed that [H2TMPyP]4+ had a high hypochromicity (∼64%) and a substantial bathochromic shift (Δλ, 14 nm), while [Co(II)TMPyP]4+ and [Zn(II)TMPyP]4+ showed little hypochromicity (∼37%) and a small bathochromic shift (Δλ, 3-6 nm). Results reveal that [H2TMPyP]4+ interacts with DNA via intercalation, while Co(II)- and [Zn(II)TMPyP]4+ interact with DNA via outside self-stacking. Fluorescence results also confirmed the interaction of [H2TMPyP]4+ and the metalloporphyrins with DNA. Results of the antimicrobial activity assay revealed that the metalloporphyrins showed inhibitory effects on Gram-positive and Gram-negative bacteria and fungi, but that neither the counterions nor [H2TMPyP]4+ exhibited any inhibitory effects. Mechanism of antimicrobial activities of metalloporphyrins are discussed.
Collapse
Affiliation(s)
| | - Nazmin Akter
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Md. Zakir Sultan
- Centre
for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Shofiur Rahman
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khuloud A. Alibrahim
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ahsan Habib
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
3
|
Mikulich AV, Plavskii VY, Tretyakova AI, Nahorny RK, Sobchuk AN, Dudchik NV, Emeliyanova OA, Zhabrouskaya AI, Plavskaya LG, Ananich TS, Dudinova ON, Leusenka IA, Yakimchuk SV, Svechko AD, Tien TQ, Tong QC, Nguyen TP. Potential of using medicinal plant extracts as photosensitizers for antimicrobial photodynamic therapy. Photochem Photobiol 2024. [PMID: 38456366 DOI: 10.1111/php.13935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising approach to overcome antimicrobial resistance. However, for widespread implementation of this approach, approved photosensitizers are needed. In this study, we used commercially available preparations (Calendulae officinalis floridis extract, Chamomillae recutitae floridis extract, Achillea millefolii herbae extract; Hypericum perforatum extract; Eucalyptus viminalis folia extract) as photosensitizers for inactivation of gram-negative (Pseudomonas aeruginosa) and gram-positive (Staphylococcus aureus) bacteria. Spectral-luminescent analysis has shown that the major chromophores are of chlorophyll (mainly chlorophyll a and b) and hypericin nature. The extracts are efficient generators of singlet oxygen with quantum yield (γΔ ) from 0.40 to 0.64 (reference compound, methylene blue with γΔ = 0.52). In APDT assays, bacteria before irradiation were incubated with extracts for 30 min. After irradiation and 24 h of incubation, colony-forming units (CFU) were counted. Upon exposure of P. aeruginosa to radiation of 405 nm, 590 nm, and 660 nm at equal energy dose of 30 J/cm2 (irradiance - 100 mW/cm2 , exposure time - 5 min), the most pronounced effect is observed with blue light (>3 log10 reduction); in case of S. aureus, the effect is approximately equivalent for light of indicated wavelengths and dose (>4 log10 reduction).
Collapse
Affiliation(s)
- Aliaksandr V Mikulich
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Vitaly Yu Plavskii
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Antonina I Tretyakova
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Raman K Nahorny
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Andrey N Sobchuk
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Natalia V Dudchik
- Republican Unitary Enterprise «Scientific Practical Centre of Hygiene», Minsk, Republic of Belarus
| | - Olga A Emeliyanova
- Republican Unitary Enterprise «Scientific Practical Centre of Hygiene», Minsk, Republic of Belarus
| | - Anastasia I Zhabrouskaya
- Republican Unitary Enterprise «Scientific Practical Centre of Hygiene», Minsk, Republic of Belarus
| | - Ludmila G Plavskaya
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Tatsiana S Ananich
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Olga N Dudinova
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Ihar A Leusenka
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Sergey V Yakimchuk
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Alexei D Svechko
- State Scientific Institution "B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus", Minsk, Republic of Belarus
| | - Tran Quoc Tien
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Quang Cong Tong
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thanh Phuong Nguyen
- School of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
4
|
Secker B, Shaw S, Atterbury RJ. Pseudomonas spp. in Canine Otitis Externa. Microorganisms 2023; 11:2650. [PMID: 38004662 PMCID: PMC10673570 DOI: 10.3390/microorganisms11112650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Canine otitis externa (OE) is a commonly diagnosed condition seen in veterinary practice worldwide. In this review, we discuss the mechanisms of the disease, with a particular focus on the biological characteristics of Pseudomonas aeruginosa and the impact that antibiotic resistance has on successful recovery from OE. We also consider potential alternatives to antimicrobial chemotherapy for the treatment of recalcitrant infections. P. aeruginosa is not a typical constituent of the canine ear microbiota, but is frequently isolated from cases of chronic OE, and the nature of this pathogen often makes treatment difficult. Biofilm formation is identified in 40-95% of P. aeruginosa from cases of OE and intrinsic and acquired antibiotic resistance, especially resistance to clinically important antibiotics, highlights the need for alternative treatments. The role of other virulence factors in OE remains relatively unexplored and further work is needed. The studies described in this work highlight several potential alternative treatments, including the use of bacteriophages. This review provides a summary of the aetiology of OE with particular reference to the dysbiosis that leads to colonisation by P. aeruginosa and highlights the need for novel treatments for the future management of P. aeruginosa otitis.
Collapse
Affiliation(s)
- Bailey Secker
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK; (B.S.); (S.S.)
- School of Biosciences, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - Stephen Shaw
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK; (B.S.); (S.S.)
| | - Robert J. Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK; (B.S.); (S.S.)
| |
Collapse
|
5
|
Espitia-Almeida F, Valle-Molinares R, Navarro Quiroz E, Pacheco-Londoño LC, Galán-Freyle NJ. Photodynamic Antimicrobial Activity of a Novel 5,10,15,20-Tetrakis (4-Ethylphenyl) Porphyrin against Clinically Important Bacteria. Pharmaceuticals (Basel) 2023; 16:1059. [PMID: 37630978 PMCID: PMC10459089 DOI: 10.3390/ph16081059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
The growing emergence of microbes resistant to commercially available antibiotic therapies poses a threat to healthcare systems worldwide. Multiple factors have been associated with the increasing incidence of hospital-acquired infections caused by antibiotic-resistant pathogens, including the indiscriminate use of broad-spectrum antibiotics, the massive application of antibiotics in hospitals as a prophylactic measure, self-medication, and nonadherence to pharmacological therapies by patients. In this study, we developed a novel treatment to mitigate the impact of microbial resistance. We synthesized a benzoporphyrin derivative, 5,10,15,20-tetrakis (4-ethylphenyl) porphyrin (TEtPP), with a reaction yield close to 50%. TEtPP exhibited excellent photophysical properties (Φf = 0.12 ± 0.04 and ΦΔ = 0.81 ± 0.23) and was thereby assessed as a potential agent for antibacterial photodynamic therapy. The photophysical properties of the synthesized porphyrin derivative were correlated with the assayed antimicrobial activity. TEtPP showed higher activity against the MRSA strain under irradiation than in the absence of irradiation (minimum inhibitory concentration (MIC) = 69.42 µg/mL vs. MIC = 109.30 µg/mL, p < 0.0001). Similar behavior was observed against P. aeruginosa (irradiated MIC = 54.71 µg/mL vs. nonirradiated MIC = 402.90 µg/mL, p < 0.0001). TEtPP exhibited high activity against S. aureus in both the irradiated and nonirradiated assays (MIC = 67.68 µg/mL vs. MIC = 58.26 µg/mL, p = 0.87).
Collapse
Affiliation(s)
- Fabián Espitia-Almeida
- Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia (N.J.G.-F.)
- Faculty of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Faculty of Basic Sciences, Biology Program, Universidad del Atlántico, Puerto Colombia 081001, Colombia
| | - Roger Valle-Molinares
- Faculty of Basic Sciences, Biology Program, Universidad del Atlántico, Puerto Colombia 081001, Colombia
| | - Elkin Navarro Quiroz
- Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia (N.J.G.-F.)
| | | | - Nataly J. Galán-Freyle
- Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia (N.J.G.-F.)
| |
Collapse
|
6
|
Pinheiro TDR, Urquhart CG, Acunha TV, Santos RCV, Iglesias BA. Antimicrobial photodynamic in vitro inactivation of Enterococcus spp. and Staphylococcus spp. strains using tetra-cationic platinum(II) porphyrins. Photodiagnosis Photodyn Ther 2023; 42:103542. [PMID: 37003596 DOI: 10.1016/j.pdpdt.2023.103542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
This manuscript presents the first report on antimicrobial photo-inactivation in vitro using tetra-cationic porphyrins with peripheral platinum(II) bipyridyl complexes against Gram-positive bacteria. Two isomeric tetra-cationic porphyrins (3TPyP and 4TPyP) were tested against clinically important bacterial species. The antimicrobial activity assays were performed at specific photosensitizer (PS) concentrations under dark and white-light LED irradiation conditions for 120 min. The porphyrin 3-PtTPyP was the most efficient PS against the bacteria tested, inhibiting bacterial growth in just 15 min and 30 min at low concentrations (3.75 and 0.45 µM). The minimal inhibitory concentration of the porphyrin increased in the presence of reactive oxygen species scavengers, indicating that singlet oxygen and radical species likely participated in the photo-oxidation mechanism. In addition, the checkerboard assay that tests the association of compounds, showed a synergistic effect, suggesting a potentiation of the antibacterial effect when porphyrin was tested in combination with ciprofloxacin and vancomycin. Thus, tetra-cationic porphyrins containing platinum(II) complexes are promising agents for microbial photo-inactivation as an alternative therapy against infections.
Collapse
Affiliation(s)
- Ticiane da Rosa Pinheiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia - LAPEMICRO, Universidade Federal de Santa Maria, RS, Brazil
| | - Carolina Gonzalez Urquhart
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia - LAPEMICRO, Universidade Federal de Santa Maria, RS, Brazil
| | - Thiago V Acunha
- Laboratório de Bioinorgânica e Materiais Porfirínicos (LBMP), Departamento de Química, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Roberto Christ Vianna Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia - LAPEMICRO, Universidade Federal de Santa Maria, RS, Brazil.
| | - Bernardo Almeida Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos (LBMP), Departamento de Química, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
7
|
Zagami R, Rubin Pedrazzo A, Franco D, Caldera F, De Plano LM, Trapani M, Patanè S, Trotta F, Mazzaglia A. Supramolecular Assemblies based on Polymeric Cyclodextrin Nanosponges and a Cationic Porphyrin with Antimicrobial Photodynamic Therapy Action. Int J Pharm 2023; 637:122883. [PMID: 36972777 DOI: 10.1016/j.ijpharm.2023.122883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Within of the increasing requirement of alternative approaches to fight emerging infections, nano-photosensitisers (nanoPS) are currently designed with the aim to optimize the antimicrobial photodynamic (aPDT) efficacy. The utilize of less expensive nanocarriers prepared by simple and eco-friendly methodologies and commercial photosensitisers are highly desiderable. In this direction, here we propose a novel nanoassembly composed of water soluble anionic polyester β-CD nanosponges (β-CD-PYRO hereafter named βNS) and the cationic 5,10,15,20-tetrakis(1-methylpyridinium-4- yl)porphine (TMPyP). Nanoassemblies were prepared in ultrapure water by mixing PS and βNS, by exploiting their mutual electrostatic interaction, and characterized by various spectroscopic techniques such as UV/Vis, Steady-State and Time Resolved Fluorescence, Dynamic Light Scattering and ζ-potential. NanoPS produce appreciable amount of single oxygen similar to free porphyrin and a prolonged stability after 6 days of incubations in physiological conditions and following photoirradiation. Antimicrobial photodynamic action against fatal hospital-acquired infections such as P. aeruginosa and S. aureus was investigated by pointing out the ability of cationic porphyrin loaded- CD nanosponges to photo-kill bacterial cells at prolonged time of incubation and following irradiation (MBC99 = 3.75 µM, light dose = 54.82 J/cm2).
Collapse
Affiliation(s)
- Roberto Zagami
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, URT Messina c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy; Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | | | - Domenico Franco
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Fabrizio Caldera
- Dipartimento di Chimica, University of Torino, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Laura M De Plano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Mariachiara Trapani
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, URT Messina c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Salvatore Patanè
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Francesco Trotta
- Dipartimento di Chimica, University of Torino, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Antonino Mazzaglia
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, URT Messina c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| |
Collapse
|
8
|
Urquhart CG, Pinheiro TDR, da Silva JLG, Leal DBR, Burgo TAL, Iglesias BA, Santos RCV. Antimicrobial activity of water-soluble tetra-cationic porphyrins on Pseudomonas aeruginosa. Photodiagnosis Photodyn Ther 2022; 42:103266. [PMID: 36587859 DOI: 10.1016/j.pdpdt.2022.103266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
This manuscript presents the cytotoxicity, antimicrobial activity, antibiofilm preliminary properties, and associated therapy with commercial drugs using water-soluble tetra-cationic porphyrins against Pseudomonas aeruginosa. Two commercial tetra-cationic porphyrins were tested against a standard strain of P. aeruginosa 01 (PA01) in antibacterial activity assays under dark conditions and irradiated with white light for 120 min. Porphyrin 4-H2TMePor showed better antimicrobial activity and was chosen for further tests. Increased minimum inhibitory concentration was observed in the presence of reactive oxygen species, suggesting that photooxidation was mediated by the singlet oxygen production. In the time-kill curve assay, 4-H2TMePor inhibited bacterial growth in 90 min of irradiation. The checkerboard assay revealed synergistic interactions. Biofilms of the standard PA01 strain and three clinical isolates were formed. The biofilm destruction assay was more efficient for PA01, significantly reducing the biofilm biomass formed compared to the positive control. The associated treatment to destroy the biofilm potentiated a significant decrease in the biofilm biomass compared to the positive control. The photosensitizer did not damage human keratinocytes or mouse fibroblasts in the cytotoxicity assays, demonstrating the safety of using 4-H2TMePor. Atomic force microscopy indicated lower adhesion force, higher cell wall deformation, and higher dissipation energy in the treated control compared to untreated PA01. Given our findings, it is evident that water-soluble tetra-cationic porphyrins have excellent antimicrobial and a preliminary antibiofilm activity against Gram-negative bacteria, proving to be a potential photosensitizer for clinical use.
Collapse
Affiliation(s)
- Carolina Gonzalez Urquhart
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia (LAPEMICRO), Universidade Federal de Santa Maria, RS, Brazil
| | - Ticiane da Rosa Pinheiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia (LAPEMICRO), Universidade Federal de Santa Maria, RS, Brazil
| | - Jean Lucas Gutknecht da Silva
- Laboratório de Imunologia Experimental e Aplicada (LABIBIO), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Daniela Bitencourt Rosa Leal
- Laboratório de Imunologia Experimental e Aplicada (LABIBIO), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Thiago Augusto Lima Burgo
- Department of Chemistry and Environmental Sciences, Ibilce, Sao Paulo State University (Unesp), R. Cristovao Colombo, 2265, S. J. Rio Preto, SP 15014-100, Brazil
| | - Bernardo Almeida Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos (LBMP), Departamento de Química, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Roberto Christ Vianna Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia (LAPEMICRO), Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
9
|
Photodynamic Inactivation of Bacteria and Biofilms with Benzoselenadiazole-Doped Metal-Organic Frameworks. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248908. [PMID: 36558041 PMCID: PMC9781904 DOI: 10.3390/molecules27248908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Bacterial biofilms are difficult to treat due to their resistance to traditional antibiotics. Although photodynamic therapy (PDT) has made significant progress in biomedical applications, most photosensitizers have poor water solubility and can thus aggregate in hydrophilic environments, leading to the quenching of photosensitizing activity in PDT. Herein, a benzoselenadiazole-containing ligand was designed and synthesized to construct the zirconium (IV)-based benzoselenadiazole-doped metal-organic framework (Se-MOF). Characterizations revealed that Se-MOF is a type of UiO-68 topological framework with regular crystallinity and high porosity. Compared to the MOF without benzoselenadiazole, Se-MOF exhibited a higher 1O2 generation efficacy and could effectively kill Staphylococcus aureus bacteria under visible-light irradiation. Importantly, in vitro biofilm experiments confirmed that Se-MOF could efficiently inhibit the formation of bacteria biofilms upon visible-light exposure. This study provides a promising strategy for developing MOF-based PDT agents, facilitating their transformation into clinical photodynamic antibacterial applications.
Collapse
|
10
|
Bertoldo Stefanello L, Pinto Teixeira E, Almeida Iglesias B, Valandro Soares M, Alexandre Antunes Soares F, Monteiro B, Luísa Kloster C, de Bona da Silva C, Antonio Villetti M, Borsali R. Carbohydrate-based block copolymer nanoparticles: Novel nanocarrier for delivery of chlorine-aluminum phthalocyanine for use in photodynamic therapy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Ledwaba MM, Magaela NB, Ndlovu KS, Mack J, Nyokong T, Managa M. Photophysical and in vitro photoinactivation of Escherichia coli using cationic 5,10,15,20-tetra(pyridin-3-yl) porphyrin and Zn(II) derivative conjugated to graphene quantum dots. Photodiagnosis Photodyn Ther 2022; 40:103127. [PMID: 36162756 DOI: 10.1016/j.pdpdt.2022.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Pathogenic microorganisms may continue causing infection through the transfer of antibiotic resistance genes. As a result, the efficacy of pharmaceuticals in microbial inactivation is deteriorating. The present study was conducted to investigate the antimicrobial activity of neutral and quaternized free base and Zn 5,10,15,20-tetra(pyridin-3-yl) porphyrins on Escherichia coli (E. coli), a gram-negative bacterium that causes cholecystitis, pneumonia and urinary tract infections. Conjugation of the porphyrin to graphene quantum dots (GQDs) was implemented to enhance photocatalysis and reactive oxygen species generation. Density functional theory (DFT) geometry optimizations for free base and Zn porphyrin based on the B3LYP (Becke 3-Parameter (Exchange), Lee, Yang and Parr) functional of the Gaussian09 program package and Time-dependent density-functional theory (TD-DFT) calculations of the associated UV-visible absorption spectra are reported to analyse the electronic structure and optical properties of the porphyrins. The TD-DFT calculations showed that for both porphyrins the value of highest occupied molecular orbital (ΔHOMO) is greater than that of lowest unoccupied molecular orbital (ΔLUMO) which tells that there is no unusual splitting of (LUMO) orbitals which may be caused by systematic error in TD-DFT calculations. Due to the red shift in the spectrum of ZnT(3-Py)P and the ΔLUMO being higher, the HOMO-LUMO gap was expected to be lower than that of H2T(3-Py)P. The photophysical properties and Photodynamic antimicrobial chemotherapy activities of these nanoconjugates were investigated. The highest ΦΔ was that of Q-ZnT(3-Py)P- GDQs at 0.69 with the log reduction of 9.42.
Collapse
Affiliation(s)
| | | | - Knowledge Siyabonga Ndlovu
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa.
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa.
| |
Collapse
|
12
|
Machado CS, Seeger MG, Moreira KS, Burgo TAL, Iglesias BA, Vogel FSF, Cargnelutti JF. In vitro porphyrin-based photodynamic therapy against mono and polyculture of multidrug-resistant bacteria isolated from integumentary infections in animals. Photodiagnosis Photodyn Ther 2022; 40:103179. [PMID: 36334907 DOI: 10.1016/j.pdpdt.2022.103179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Multidrug-resistant (MDR) organisms have been frequently isolated from integumentary lesions of animals, and these lesions are usually infected by more than one pathogen. This study evaluated an in vitro antimicrobial photodynamic therapy (aPDT) using two water-soluble tetra-cationic porphyrins (3-H2TMeP and 4-H2TMeP) against mono and polyculture of MDR bacteria isolated from dogs, cats, and horses. Ten isolates of MDR bacteria (two of each species: Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus pseudointermedius) were used to evaluate aPDT against the monoculture using a non-cytotoxic concentration of 3-H2TMeP and 4-H2TMeP porphyrins (40 µM), with 30 min of light irradiation in Gram-positive and 90 min for Gram-negative bacteria. The aPDT using the 4-H2TMeP porphyrin was also tested against five different polycultures (Coagulase positive Staphylococcus (CPS) and Pseudomonas sp.; E. coli and Proteus sp.; Pseudomonas sp. and Proteus sp.; CPS and E. coli; and CPS and Proteus sp.) for 90 min. The efficacy of both treatments was evaluated by plating the solution exposed to light or kept in the dark and counting the colonies forming units after 24 h of incubation at 37 °C. Atomic force microscope analysis was used to map bacteria morphological changes and extract adhesion force parameters from the bacteria membranes. Only the 4-H2TMeP porphyrin had antibacterial activity against MDR bacteria in monoculture, especially S. pseudointermedius and P. aeruginosa. In polyculture, the 4-H2TMeP porphyrin reduced bacterial concentrations (p < 0.05) in the associations of E. coli and S. pseudointermedius, P. aeruginosa and S. pseudointermedius, and P. aeruginosa and P. mirabilis. These results showed that aPDT using 4-H2TMeP is a good option for future associations of aPDT and other therapies or in vivo research.
Collapse
Affiliation(s)
- Carolina S Machado
- Programa de Pós-graduação em Medicina Veterinária (PPGMV) - Av. Roraima, Universidade Federal de Santa Maria (UFSM), 1000, prédio 97 - HVU, bairro Camobi, Santa Maria, RS CEP 97105-900, Brazil
| | - Marlane G Seeger
- Programa de Pós-graduação em Medicina Veterinária (PPGMV) - Av. Roraima, Universidade Federal de Santa Maria (UFSM), 1000, prédio 97 - HVU, bairro Camobi, Santa Maria, RS CEP 97105-900, Brazil
| | - Kelly S Moreira
- Coulomb Electrostatic and Mechanochemical Laboratory, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Campus Camobi, Santa Maria, RS CEP 97105-900, Brazil
| | - Thiago A L Burgo
- Coulomb Electrostatic and Mechanochemical Laboratory, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Campus Camobi, Santa Maria, RS CEP 97105-900, Brazil; Department of Chemistry and Environmental Sciences, Ibilce, São Paulo state University (Unesp), São José do Rio Preto, São Paulo, Brazil
| | - Bernardo A Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos - Departamento de Química, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Campus Camobi, Santa Maria, RS CEP 97105-900, Brazil.
| | - Fernanda S F Vogel
- Departamento de Medicina Veterinária Preventiva (DMVP) - Av. Roraima, Universidade Federal de Santa Maria (UFSM), 1000, prédio 63D - bairro Camobi, Santa Maria, RS CEP 97105-900, Brazil
| | - Juliana F Cargnelutti
- Departamento de Medicina Veterinária Preventiva (DMVP) - Av. Roraima, Universidade Federal de Santa Maria (UFSM), 1000, prédio 63D - bairro Camobi, Santa Maria, RS CEP 97105-900, Brazil.
| |
Collapse
|
13
|
Uliana MP, da Cruz Rodrigues A, Ono BA, Pratavieira S, de Oliveira KT, Kurachi C. Photodynamic Inactivation of Microorganisms Using Semisynthetic Chlorophyll a Derivatives as Photosensitizers. Molecules 2022; 27:5769. [PMID: 36144496 PMCID: PMC9653790 DOI: 10.3390/molecules27185769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 08/27/2023] Open
Abstract
In this study, we describe the semisynthesis of cost-effective photosensitizers (PSs) derived from chlorophyll a containing different substituents and using previously described methods from the literature. We compared their structures when used in photodynamic inactivation (PDI) against Staphylococcus aureus, Escherichia coli, and Candida albicans under different conditions. The PSs containing carboxylic acids and butyl groups were highly effective against S. aureus and C. albicans following our PDI protocol. Overall, our results indicate that these nature-inspired PSs are a promising alternative to selectively inactivate microorganisms using PDI.
Collapse
Affiliation(s)
- Marciana Pierina Uliana
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235-SP-310, São Carlos, São Paulo CEP 13565-905, Brazil
- Universidade Federal da Integração Latino-Americana, Foz do Iguaçu CEP 85866-000, Brazil
| | | | - Bruno Andrade Ono
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| | - Sebastião Pratavieira
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| | - Kleber Thiago de Oliveira
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235-SP-310, São Carlos, São Paulo CEP 13565-905, Brazil
| | - Cristina Kurachi
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| |
Collapse
|
14
|
da Silva Canielles Caprara C, da Silva Freitas L, Iglesias BA, Ferreira LB, Ramos DF. Charge effect of water-soluble porphyrin derivatives as a prototype to fight infections caused by Acinetobacter baumannii by aPDT approaches. BIOFOULING 2022; 38:605-613. [PMID: 35875928 DOI: 10.1080/08927014.2022.2103804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/28/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In the last decade, Acinetobacter baumannii has emerged as a pathogen associated with infections in intensive care units worldwide, especially due to its ability to resist an extensive list of antibiotics. In this context, porphyrins have emerged as an important strategy in photodynamic therapy, since they are a group of tetrapyrrolic compounds with important photochemical and photobiological activities. In this study, the antimicrobial photodynamic activity of meso-tetra(4-N-methyl-pyridyl)porphyrin (H2TMePyP+) and meso-tetra(4-sulfonatophenyl)porphyrin (H2TPPS‒) was evaluated against A. baumannii by minimum inhibitory concentration (MIC), anti-biofilm activity, and the interaction with antibiotics after exposure to white-light LED irradiation. The cationic derivative H2TMePyP+ was more potent (MIC = 0.61 µM) than H2TPPS‒, with anti-biofilm activity and increased the antimicrobial activity of ciprofloxacin and amikacin. Given these findings, the tetra-cationic porphyrins can be assumed as prototypes to optimize and develop new agents by promoting oxidative stress and inducing free radical production.
Collapse
Affiliation(s)
- Carolina da Silva Canielles Caprara
- Laboratório de Desenvolvimento de Novos Fármacos, Faculdade de Medicina, Universidade Federal do Rio Grande (FURG) - Rio Grande, Rio Grande, Brazil
| | - Livia da Silva Freitas
- Laboratório de Desenvolvimento de Novos Fármacos, Faculdade de Medicina, Universidade Federal do Rio Grande (FURG) - Rio Grande, Rio Grande, Brazil
| | - Bernardo Almeida Iglesias
- Departamento de Química, Laboratório de Bioinorgânica e Materiais Porfirínicos, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Lara Beatriz Ferreira
- Laboratório de Desenvolvimento de Novos Fármacos, Faculdade de Medicina, Universidade Federal do Rio Grande (FURG) - Rio Grande, Rio Grande, Brazil
| | - Daniela Fernandes Ramos
- Laboratório de Desenvolvimento de Novos Fármacos, Faculdade de Medicina, Universidade Federal do Rio Grande (FURG) - Rio Grande, Rio Grande, Brazil
| |
Collapse
|
15
|
Seeger MG, Machado CS, Iglesias BA, Vogel FSF, Cargnelutti JF. Antimicrobial efficacy of in vitro and ex vivo photodynamic therapy using porphyrins against Moraxella spp. isolated from bovine keratoconjunctivitis. World J Microbiol Biotechnol 2022; 38:103. [PMID: 35501420 DOI: 10.1007/s11274-022-03291-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/19/2022] [Indexed: 11/28/2022]
Abstract
Infectious bovine keratoconjunctivitis (IBK) is an ocular disease affecting bovine herds worldwide, and it causes significant economic loss. The etiologic agent of IBK is considered to be Moraxella bovis, but M. ovis and M. bovoculi are frequently recovered of animals presenting clinical signs of IBK. The therapeutic measures available for its control have limited efficacy. Antimicrobial photodynamic therapy (aPDT) using porphyrins as photosensitizing molecules is an alternative method that can be used to reduce microbial growth. We evaluated the antibacterial activity of aPDT using two water-soluble tetra-cationic porphyrins (H2TMeP and ZnTMeP) against 22 clinical isolates and standard strains of Moraxella spp. in vitro and in an ex vivo model. For the in vitro assay, 4.0 µM of porphyrin was incubated with approximately 1.0 × 104 CFU/mL of each Moraxella sp. isolate and exposed to artificial light for 0, 2.5, 5, and 7.5 min. Next, 50 µL of this solution was plated and incubated for 24 h until CFU measurement. For the ex vivo assay, corneas excised from the eyeballs of slaughtered cattle were irrigated with Moraxella spp. culture, followed by the addition of zinc(II) porphyrin ZnTMeP (4.0 μM). The corneal samples were irradiated for 0, 7.5, and 30 min, followed by swab collection, plating, and CFU count. The results demonstrated the in vitro inactivation of the strains and clinical isolates of Moraxella spp. after 2.5 min of irradiation using ZnTMeP, reaching complete inactivation until 7.5 min. In the ex vivo experiment, the use of ZnTMeP resulted in the most significant reduction in bacterial concentration after 30 min of irradiation. These results encourage future in vivo experiments to investigate the role of metalloporphyrin ZnTMeP in the inactivation of Moraxella spp. isolates causing IBK.
Collapse
Affiliation(s)
- M G Seeger
- Programa de Pós-Graduação em Medicina Veterinária, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - C S Machado
- Programa de Pós-Graduação em Medicina Veterinária, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - B A Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Departamento de Química, UFSM, Santa Maria, RS, Brazil
| | - F S F Vogel
- Departamento de Medicina Veterinária Preventiva (DMVP), Centro de Ciências Rurais (CCR), UFSM, Santa Maria, RS, Brazil
| | - J F Cargnelutti
- Departamento de Medicina Veterinária Preventiva (DMVP), Centro de Ciências Rurais (CCR), UFSM, Santa Maria, RS, Brazil.
| |
Collapse
|
16
|
Guterres KB, Rossi GG, de Campos MMA, Moreira KS, Burgo TAL, Iglesias BA. Nanomolar effective and first report of tetra-cationic silver(II) porphyrins against non-tuberculous mycobacteria in antimicrobial photodynamic approaches. Photodiagnosis Photodyn Ther 2022; 38:102770. [DOI: 10.1016/j.pdpdt.2022.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
|
17
|
Tuchin VV, Genina EA, Tuchina ES, Svetlakova AV, Svenskaya YI. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Adv Drug Deliv Rev 2022; 180:114037. [PMID: 34752842 DOI: 10.1016/j.addr.2021.114037] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
This review presents principles and novelties in the field of tissue optical clearing (TOC) technology, as well as application for optical monitoring of drug delivery and effective antimicrobial phototherapy. TOC is based on altering the optical properties of tissue through the introduction of immersion optical cleaning agents (OCA), which impregnate the tissue of interest. We also analyze various methods and kinetics of delivery of photodynamic agents, nanoantibiotics and their mixtures with OCAs into the tissue depth in the context of antimicrobial and antifungal phototherapy. In vitro and in vivo studies of antimicrobial phototherapies, such as photodynamic, photothermal plasmonic and photocatalytic, are summarized, and the prospects of a new TOC technology for effective killing of pathogens are discussed.
Collapse
|
18
|
Maldonado-Carmona N, Ouk TS, Leroy-Lhez S. Latest trends on photodynamic disinfection of Gram-negative bacteria: photosensitizer's structure and delivery systems. Photochem Photobiol Sci 2021; 21:113-145. [PMID: 34784052 DOI: 10.1007/s43630-021-00128-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/26/2021] [Indexed: 02/01/2023]
Abstract
Antimicrobial resistance is threatening to overshadow last century's medical advances. Etiological agents of previously eradicated infectious diseases are now resurgent as multidrug-resistant strains, especially for Gram-negative strains. Finding new therapeutic solutions is a real challenge for our society. In this framework, Photodynamic Antimicrobial ChemoTherapy relies on the generation of toxic reactive oxygen species in the presence of light, oxygen, and a photosensitizer molecule. The use of reactive oxygen species is common for disinfection processes, using chemical agents, such as chlorine and hydrogen peroxide, and as they do not have a specific molecular target, it decreases the potential of tolerance to the antimicrobial treatment. However, light-driven generated reactive species result in an interesting alternative, as reactive species generation can be easily tuned with light irradiation and several PSs are known for their low environmental impact. Over the past few years, this topic has been thoroughly studied, exploring strategies based on single-molecule PSs (tetrapyrrolic compounds, dipyrrinate derivatives, metal complexes, etc.) or on conjunction with delivery systems. The present work describes some of the most relevant advances of the last 6 years, focusing on photosensitizers design, formulation, and potentiation, aiming for the disinfection of Gram-negative bacteria.
Collapse
Affiliation(s)
- Nidia Maldonado-Carmona
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060, Limoges, France.,Department of Chemistry, University of Coimbra, Coimbra Chemistry Center, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Tan-Sothea Ouk
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060, Limoges, France
| | - Stéphanie Leroy-Lhez
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060, Limoges, France.
| |
Collapse
|
19
|
Pinto SC, Acunha TV, Santurio JM, Denardi LB, Iglesias BA. Investigation of powerful fungicidal activity of tetra-cationic platinum(II) and palladium(II) porphyrins by antimicrobial photodynamic therapy assays. Photodiagnosis Photodyn Ther 2021; 36:102550. [PMID: 34571273 DOI: 10.1016/j.pdpdt.2021.102550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
This manuscript reports enhanced antimicrobial photoinactivation using tetra-cationic porphyrins with peripheral platinum(II) and palladium(II) complexes against fungal dermatophyte strains. Six different positively charged porphyrins were used and applied in antimicrobial photodynamic therapy experiments (aPDT) against dermatophyte fungi colonies. The microbiological tests were conducted with an adequate concentration of photosensitizer (PS) under white-light irradiation for 120 min and the most effective PS meta isomer 3PtP significantly reduced the concentration of viable fungal colony. In this way, tetra-cationic porphyrins containing platinum(II)-bipyridyl complexes may be promising fungicidal aPDT agents with potential applications in future clinical cases.
Collapse
Affiliation(s)
- Stefania C Pinto
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia - LAPEMI, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Thiago V Acunha
- Laboratório de Bioinorgânica e Materiais Porfirínicos (LBMP), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Janio M Santurio
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia - LAPEMI, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Laura B Denardi
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia - LAPEMI, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Bernardo A Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos (LBMP), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
20
|
Rossi GG, Guterres KB, Moreira KS, Burgo TAL, de Campos MMA, Iglesias BA. Photo-damage promoted by tetra-cationic palladium(II) porphyrins in rapidly growing mycobacteria. Photodiagnosis Photodyn Ther 2021; 36:102514. [PMID: 34481062 DOI: 10.1016/j.pdpdt.2021.102514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) has gained prominence in microbiology, especially in treating non-invasive infections. Diseases such as mycobacteriosis, which causes localized infections and has a slow treatment, tend to be future targets for this type of technology. Therefore, this study aimed to explore the action of two isomeric Pd(II)-porphyrins on fast-growing mycobacterial strains (RGM). Tetra-cationic porphyrins (4-PdTPyP and 3-PdTPyP) were synthesized and applied against standard strains of Mycobacteroides abscessus subsp. abscessus (ATCC 19977), Mycolicibacterium fortuitum (ATCC 6841), Mycolicibacterium smegmatis (ATCC 700084), and Mycobacteroides abscessus subsp. massiliense (ATCC 48898). Reactive oxygen species (ROS) scavengers were used in an attempt to determine possible ROS produced by the photosensitizers (PS) under study. Moreover, the impact of porphyrin on the mycobacterial surface was further evaluated by atomic force microscopy (AFM), and we observed significant damage on cells walls and altered nanomechanical and electrostatic adhesion properties. The results presented herein show that the positively charged porphyrin at the meta position (3-PdTPyP) was the most efficient PS against the RGM strains, and its bactericidal activity was proven in two irradiation sessions, with singlet oxygen species being the main ROS involved in this process. This study demonstrated the therapeutic potential of porphyrins, especially the 3-PdTPyP derivative.
Collapse
Affiliation(s)
- Grazille Guidolin Rossi
- Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Kevim Bordignon Guterres
- Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Kelly Schneider Moreira
- Coulomb Electrostatic and Mechanochemistry Laboratory, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Thiago Augusto Lima Burgo
- Coulomb Electrostatic and Mechanochemistry Laboratory, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Marli Matiko Anraku de Campos
- Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Bernardo Almeida Iglesias
- Bioinorganic and Porphyrinic Materials Laboratory, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil..
| |
Collapse
|
21
|
Guidi EEA, Vercelli A, Corona A, Vercelli A, Cornegliani L. A case of drug-resistant staphylococcal para-aural abscess treated with photodynamic therapy in a West Highland White Terrier presenting with chronic otitis and craniomandibular osteopathy. Photodiagnosis Photodyn Ther 2021; 35:102424. [PMID: 34214685 DOI: 10.1016/j.pdpdt.2021.102424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
A 10-year-old canine with chronic unilateral otitis and a history of unsuccessful systemic and topical antibiotic treatments was referred. A computer tomography scan (CT scan) revealed unilateral chronic otitis with calcification of the ear canal, abscessation and fistula. On bacterial culture a Staphylococcus pseudintermedius sensitive to pradofloxacin was isolated. Systemic treatment with pradofloxacin, 3 mg/kg per os once daily, improved the infection and the dog had total ear canal ablation and bulla osteotomy performed. After one month, despite antibiotic treatment new fistulas developed in the same area. Bacterial culture revealed an drug-resistant S. pseudintermedius sensitive only to rifampicin. Under general anesthesia, the area was cleaned with 0.5% saline solution and 1 mL of indocyanine green (Emundo®, A.R.C.) was injected into the fistulas. A treatment with diode laser (A.R.C. Laser 810 nm, GmbH, Nurnberg, Germany) of four cycles 500 mw for 30 s, with a dosage of 50 J/cm2 in the effected area was performed. No antibiotic was administered and one week later, 50% of the fistulas were closed with a significant improvement of the patient's clinical condition. Cytology and bacterial culture were negative 72 h after the treatment. Total recovery occurred after two weeks. Photodynamic Therapy(PDT) is a promising antibacterial technique in case of localized refractory bacterial infections.
Collapse
Affiliation(s)
| | - Antonella Vercelli
- Institutional affiliation: *Clinica Veterinaria Città di Torino, Corso Traiano 99,10135 Turin, Italy
| | - Antonio Corona
- Institutional affiliation: *Clinica Veterinaria Città di Torino, Corso Traiano 99,10135 Turin, Italy
| | - Andrea Vercelli
- Institutional affiliation: *Clinica Veterinaria Città di Torino, Corso Traiano 99,10135 Turin, Italy
| | - Luisa Cornegliani
- Institutional affiliation: *Clinica Veterinaria Città di Torino, Corso Traiano 99,10135 Turin, Italy
| |
Collapse
|
22
|
Polat E, Kang K. Natural Photosensitizers in Antimicrobial Photodynamic Therapy. Biomedicines 2021; 9:584. [PMID: 34063973 PMCID: PMC8224061 DOI: 10.3390/biomedicines9060584] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Health problems and reduced treatment effectiveness due to antimicrobial resistance have become important global problems and are important factors that negatively affect life expectancy. Antimicrobial photodynamic therapy (APDT) is constantly evolving and can minimize this antimicrobial resistance problem. Reactive oxygen species produced when nontoxic photosensitizers are exposed to light are the main functional components of APDT responsible for microbial destruction; therefore, APDT has a broad spectrum of target pathogens, such as bacteria, fungi, and viruses. Various photosensitizers, including natural extracts, compounds, and their synthetic derivatives, are being investigated. The main limitations, such as weak antimicrobial activity against Gram-negative bacteria, solubility, specificity, and cost, encourage the exploration of new photosensitizer candidates. Many additional methods, such as cell surface engineering, cotreatment with membrane-damaging agents, nanotechnology, computational simulation, and sonodynamic therapy, are also being investigated to develop novel APDT methods with improved properties. In this review, we summarize APDT research, focusing on natural photosensitizers used in in vitro and in vivo experimental models. In addition, we describe the limitations observed for natural photosensitizers and the methods developed to counter those limitations with emerging technologies.
Collapse
Affiliation(s)
- Ece Polat
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Gangwon-do, Korea;
| | - Kyungsu Kang
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Gangwon-do, Korea;
- Division of Bio-Medical Science Technology, KIST School, University of Science and Technology (UST), Gangneung 25451, Gangwon-do, Korea
| |
Collapse
|
23
|
Paul S, Thakur NS, Chandna S, Reddy YN, Bhaumik J. Development of a light activatable lignin nanosphere based spray coating for bioimaging and antimicrobial photodynamic therapy. J Mater Chem B 2021; 9:1592-1603. [PMID: 33471014 DOI: 10.1039/d0tb02643c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many coating materials are commercially available to combat microbial infections. However, these coatings are difficult to synthesize, and are mostly composed of toxic chemicals. Lignin is an under-explored natural biopolymer with multifaceted potential. Lignin, with adhesive, UV resistant, and antimicrobial properties, is a suitable candidate to develop coating materials. Here we report a smart method to fabricate a sustainable nanospray coating from lignin which does not require any toxic chemicals or additives during synthesis. Initially, we have developed stable lignin nanospheres in a single step in aqueous medium, which were later utilized as a lignin nanospray (LNSR). The LNSR was characterized by dynamic light scattering, scanning electron microscopy, FTIR and other analytical techniques. This LNSR showed remarkable UV blocking, antioxidant and light-activated antimicrobial properties. Interestingly, for the first time, the LNSR demonstrated photoluminescence, making it useful for bioimaging. Moreover, singlet oxygen generation potential was observed in the LNSR, which could render it useful in phototheranostic applications (i.e. light assisted imaging and photodynamic therapy). Further, the LNSR was directly utilized to fabricate a sustainable coating. The nanospray coating exhibited maximum light-induced cell killing when applied to common microbes as detected by live-dead cell imaging. Taken together, the lignin nanospray coating developed via a direct pathway holds great promise to disinfect microbes in the presence of light.
Collapse
Affiliation(s)
- Shatabdi Paul
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), Punjab, India. and Regional Centre for Biotechnology, Department of Biotechnology (DBT), Faridabad-Gurgaon Expressway, Government of India, 3rd Milestone, Haryana 121001, Faridabad, India
| | - Neeraj S Thakur
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), Punjab, India.
| | - Sanjam Chandna
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), Punjab, India. and Department of Microbial Biotechnology, Panjab University, South Campus, Sector 25, 160036, Chandigarh, India
| | - Y Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), Punjab, India. and Department of Chemical Sciences, Indian Institute of Science Education and Research, Sector-81 (Knowledge City), S.A.S Nagar, 140306, Mohali, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), Punjab, India.
| |
Collapse
|
24
|
Couto GK, Seixas FK, Iglesias BA, Collares T. Perspectives of photodynamic therapy in biotechnology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112051. [PMID: 33074140 DOI: 10.1016/j.jphotobiol.2020.112051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
Photodynamic therapy (PDT) is a current and innovative technique that can be applied in different areas, such as medical, biotechnological, veterinary, among others, both for the treatment of different pathologies, as well as for diagnosis. It is based on the action of light to activate photosensitizers that will perform their activity on target tissues, presenting high sensitivity and less adverse effects. Therefore, knowing that biotechnology aims to use processes to develop products aimed at improving the quality of life of human and the environment, and optimizing therapeutic actions, researchers have been used PDT as a tool of choice. This review aims to identify the impacts and perspectives and challenges of PDT in different areas of biotechnology, such as health and agriculture and oncology. Our search demonstrated that PDT has an important impact around oncology, minimizing the adverse effects and resistance to chemotherapeutic to the current treatments available for cancer. Veterinary medicine is another area with continuous interest in this therapy, since studies have shown promising results for the treatment of different animal pathologies such as Bovine mastitis, Malassezia, cutaneous hemangiosarcoma, among others. In agriculture, PDT has been used, for example, to remove traces of antibiotics of milk. The challenges, in general, of PDT in the field of biotechnology are mainly the development of effective and non-toxic or less toxic photosensitizers for humans, animals and plants. We believe that there is a current and future potential for PDT in different fields of biotechnology due to the existing demand.
Collapse
Affiliation(s)
- Gabriela Klein Couto
- Molecular and Cellular Oncology Research Group, Cancer Biotechnology Laboratory, Technological Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Fabiana Kommling Seixas
- Molecular and Cellular Oncology Research Group, Cancer Biotechnology Laboratory, Technological Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Bernardo Almeida Iglesias
- Laboratory of Bioinorganic and Porphyrinoid Materials, Chemistry Department, Federal University of Santa Maria, Santa Maria, Brazil.
| | - Tiago Collares
- Molecular and Cellular Oncology Research Group, Cancer Biotechnology Laboratory, Technological Development Center, Federal University of Pelotas, Pelotas, Brazil.
| |
Collapse
|