1
|
Bradbury AM, Bagel J, Swain G, Miyadera K, Pesayco JP, Assenmacher CA, Brisson B, Hendricks I, Wang XH, Herbst Z, Pyne N, Odonnell P, Shelton GD, Gelb M, Hackett N, Szabolcs P, Vite CH, Escolar M. Combination HSCT and intravenous AAV-mediated gene therapy in a canine model proves pivotal for translation of Krabbe disease therapy. Mol Ther 2024; 32:44-58. [PMID: 37952085 PMCID: PMC10787152 DOI: 10.1016/j.ymthe.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is the only approved treatment for presymptomatic infantile globoid cell leukodystrophy (GLD [Krabbe disease]). However, correction of disease is not complete, and outcomes remain poor. Herein we evaluated HSCT, intravenous (IV) adeno-associated virus rh10 vector (AAVrh10) gene therapy, and combination HSCT + IV AAVrh10 in the canine model of GLD. While HSCT alone resulted in no increase in survival as compared with untreated GLD dogs (∼16 weeks of age), combination HSCT + IV AAVrh10 at a dose of 4E13 genome copies (gc)/kg resulted in delayed disease progression and increased survival beyond 1 year of age. A 5-fold increase in AAVrh10 dose to 2E14 gc/kg, in combination with HSCT, normalized neurological dysfunction up to 2 years of age. IV AAVrh10 alone resulted in an average survival to 41.2 weeks of age. In the peripheral nervous system, IV AAVrh10 alone or in addition to HSCT normalized nerve conduction velocity, improved ultrastructure, and normalized GALC enzyme activity and psychosine concentration. In the central nervous system, only combination therapy at the highest dose was able to restore galactosylceramidase activity and psychosine concentrations to within the normal range. These data have now guided clinical translation of systemic AAV gene therapy as an addition to HSCT (NCT04693598, NCT05739643).
Collapse
Affiliation(s)
- Allison M Bradbury
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA; Abigail Wexner Research Institute, Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH 43215, USA.
| | - Jessica Bagel
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Gary Swain
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Jill P Pesayco
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92161, USA
| | - Charles-Antoine Assenmacher
- Comparative Pathology Core, Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Becky Brisson
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Ian Hendricks
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Xiao H Wang
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Zachary Herbst
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Nettie Pyne
- Abigail Wexner Research Institute, Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Patricia Odonnell
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92161, USA
| | - Michael Gelb
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Neil Hackett
- Neil Hackett Consulting, New York, NY 10003, USA
| | - Paul Szabolcs
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92161, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Maria Escolar
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA; Forge Biologics, Grove City, OH 43123, USA
| |
Collapse
|
2
|
Nowacki JC, Fields AM, Fu MM. Emerging cellular themes in leukodystrophies. Front Cell Dev Biol 2022; 10:902261. [PMID: 36003149 PMCID: PMC9393611 DOI: 10.3389/fcell.2022.902261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Leukodystrophies are a broad spectrum of neurological disorders that are characterized primarily by deficiencies in myelin formation. Clinical manifestations of leukodystrophies usually appear during childhood and common symptoms include lack of motor coordination, difficulty with or loss of ambulation, issues with vision and/or hearing, cognitive decline, regression in speech skills, and even seizures. Many cases of leukodystrophy can be attributed to genetic mutations, but they have diverse inheritance patterns (e.g., autosomal recessive, autosomal dominant, or X-linked) and some arise from de novo mutations. In this review, we provide an updated overview of 35 types of leukodystrophies and focus on cellular mechanisms that may underlie these disorders. We find common themes in specialized functions in oligodendrocytes, which are specialized producers of membranes and myelin lipids. These mechanisms include myelin protein defects, lipid processing and peroxisome dysfunction, transcriptional and translational dysregulation, disruptions in cytoskeletal organization, and cell junction defects. In addition, non-cell-autonomous factors in astrocytes and microglia, such as autoimmune reactivity, and intercellular communication, may also play a role in leukodystrophy onset. We hope that highlighting these themes in cellular dysfunction in leukodystrophies may yield conceptual insights on future therapeutic approaches.
Collapse
|
3
|
Peterson L, Siemon A, Olewiler L, McBride KL, Allain DC. A qualitative assessment of parental experiences with false-positive newborn screening for Krabbe disease. J Genet Couns 2021; 31:252-260. [PMID: 34265137 DOI: 10.1002/jgc4.1480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/30/2021] [Accepted: 06/29/2021] [Indexed: 11/08/2022]
Abstract
Numerous US states have implemented newborn screening for Krabbe disease (Krabbe NBS) as a result of legislative state mandates. While healthcare provider opinions toward Krabbe NBS have been documented, few studies have explored parental experiences and opinions regarding Krabbe NBS. Eleven families, who received a false-positive Krabbe NBS result and received genetic counseling at an institution in central Ohio, were consented to participate in semistructured interviews. Interviews explored parents' experiences throughout the NBS process and ascertained their opinions regarding Krabbe NBS. Three major themes emerged from thematic analysis: (1) improved understanding of the NBS process from a parent perspective, (2) the role of healthcare provider communication, and (3) the value of Krabbe NBS. Parents saw value in Krabbe NBS, despite many disclosing emotional distress and uncertainty throughout the NBS process. Parent experiences throughout the NBS process varied widely. Due to the expressed emotional distress, further research assessing effective communication during the NBS process is warranted. The researchers suggest additional NBS education for non-genetics healthcare providers (i.e., nurses or primary care physicians) and further participation of genetic counselors in the NBS process may benefit families with a positive Krabbe NBS result.
Collapse
Affiliation(s)
- Laiken Peterson
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Amy Siemon
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Leah Olewiler
- Division of Medical Genetics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Kim L McBride
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Dawn C Allain
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Rafi MA, Luzi P, Wenger DA. Can early treatment of twitcher mice with high dose AAVrh10-GALC eliminate the need for BMT? ACTA ACUST UNITED AC 2021; 11:135-146. [PMID: 33842284 PMCID: PMC8022232 DOI: 10.34172/bi.2021.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
![]()
Introduction: Krabbe disease (KD) is an autosomal recessive disorder caused by mutations in the galactocerebrosidase (GALC) gene resulting in neuro-inflammation and defective myelination in the central and peripheral nervous systems. Most infantile patients present with clinical features before six months of age and die before two years of age. The only treatment available for pre-symptomatic or mildly affected individuals is hematopoietic stem cell transplantation (HSCT). In the animal models, combining bone marrow transplantation (BMT) with gene therapy has shown the best results in disease outcome. In this study, we examine the outcome of gene therapy alone. Methods: Twitcher (twi) mice used in the study, have a W339X mutation in the GALC gene. Genotype identification of the mice was performed shortly after birth or post-natal day 1 (PND1), using polymerase chain reaction on the toe clips followed by restriction enzyme digestion and electrophoresis. Eight or nine-day-old affected mice were used for gene therapy treatment alone or combined with BMT. While iv injection of 4 × 1013 gc/kg of body weight of viral vector was used originally, different viral titers were also used without BMT to evaluate their outcomes. Results: When the standard viral dose was increased four- and ten-fold (4X and 10X) without BMT, the lifespans were increased significantly. Without BMT the affected mice were fertile, had the same weight and appearance as wild type mice and had normal strength and gait. The brains showed no staining for CD68, a marker for activated microglia/macrophages, and less astrogliosis than untreated twi mice. Conclusion: Our results demonstrate that, it may be possible to treat human KD patients with high dose AAVrh10 without blood stem cell transplantation which would eliminate the side effects of HSCT.
Collapse
Affiliation(s)
- Mohammad A Rafi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paola Luzi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David A Wenger
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Li Y, Miller CA, Shea LK, Jiang X, Guzman MA, Chandler RJ, Ramakrishnan SM, Smith SN, Venditti CP, Vogler CA, Ory DS, Ley TJ, Sands MS. Enhanced Efficacy and Increased Long-Term Toxicity of CNS-Directed, AAV-Based Combination Therapy for Krabbe Disease. Mol Ther 2021; 29:691-701. [PMID: 33388420 PMCID: PMC7854295 DOI: 10.1016/j.ymthe.2020.12.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/25/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Infantile globoid cell leukodystrophy (GLD, Krabbe disease) is a demyelinating disease caused by the deficiency of the lysosomal enzyme galactosylceramidase (GALC) and the progressive accumulation of the toxic metabolite psychosine. We showed previously that central nervous system (CNS)-directed, adeno-associated virus (AAV)2/5-mediated gene therapy synergized with bone marrow transplantation and substrate reduction therapy (SRT) to greatly increase therapeutic efficacy in the murine model of Krabbe disease (Twitcher). However, motor deficits remained largely refractory to treatment. In the current study, we replaced AAV2/5 with an AAV2/9 vector. This single change significantly improved several endpoints primarily associated with motor function. However, nearly all (14/16) of the combination-treated Twitcher mice and all (19/19) of the combination-treated wild-type mice developed hepatocellular carcinoma (HCC). 10 out of 10 tumors analyzed had AAV integrations within the Rian locus. Several animals had additional integrations within or near genes that regulate cell growth or death, are known or potential tumor suppressors, or are associated with poor prognosis in human HCC. Finally, the substrate reduction drug L-cycloserine significantly decreased the level of the pro-apoptotic ceramide 18:0. These data demonstrate the value of AAV-based combination therapy for Krabbe disease. However, they also suggest that other therapies or co-morbidities must be taken into account before AAV-mediated gene therapy is considered for human therapeutic trials.
Collapse
Affiliation(s)
- Yedda Li
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A Miller
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lauren K Shea
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Miguel A Guzman
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Randy J Chandler
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Sai M Ramakrishnan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie N Smith
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Charles P Venditti
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Carole A Vogler
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy J Ley
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
LeVine SM, Tsau S. Substrate Reduction Therapy for Krabbe Disease: Exploring the Repurposing of the Antibiotic D-Cycloserine. Front Pediatr 2021; 9:807973. [PMID: 35118033 PMCID: PMC8804370 DOI: 10.3389/fped.2021.807973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Krabbe disease is a lysosomal storage disease that is caused by a deficiency in galactosylceramidase. Infantile onset disease is the most common presentation, which includes progressive neurological deterioration with corresponding demyelination, development of globoid cells, astrocyte gliosis, etc. Hemopoietic stem cell transplantation (HSCT) is a disease modifying therapy, but this intervention is insufficient with many patients still experiencing developmental delays and progressive deterioration. Preclinical studies have used animal models, e.g., twitcher mice, to test different experimental therapies resulting in developments that have led to progressive improvements in the therapeutic impact. Some recent advances have been in the areas of gene therapy and substrate reduction therapy (SRT), as well as using these in combination with HSCT. Unfortunately, new experimental approaches have encountered obstacles which have impeded the translation of novel therapies to human patients. In an effort to identify a safe adjunct therapy, D-cycloserine was tested in preliminary studies in twitcher mice. When administered as a standalone therapy, D-cycloserine was shown to lengthen the lifespan of twitcher mice in a small but significant manner. D-Cycloserine is an FDA approved antibiotic used for drug resistant tuberculosis. It also acts as a partial agonist of the NMDA receptor, which has led to numerous human studies for a range of neuropsychiatric and neurological conditions. In addition, D-cycloserine may inhibit serine palmitoyltransferase (SPT), which catalyzes the rate-limiting step in sphingolipid production. The enantiomer, L-cycloserine, is a much more potent inhibitor of SPT than D-cycloserine. Previously, L-cycloserine was found to act as an effective SRT agent in twitcher mice as both a standalone therapy and as part of combination therapies. L-Cycloserine is not approved for human use, and its potent inhibitory properties may limit its ability to maintain a level of partial inactivation of SPT that is also safe. In theory, D-cycloserine would encompass a much broader dosage range to achieve a safe degree of partial inhibition of SPT, which increases the likelihood it could advance to human studies in patients with Krabbe disease. Furthermore, additional properties of D-cycloserine raise the possibility of other therapeutic mechanisms that could be exploited for the treatment of this disease.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sheila Tsau
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
7
|
Corado CR, Pinkstaff J, Jiang X, Galban EM, Fisher SJ, Scholler O, Russell C, Bagel JH, ODonnell PA, Ory DS, Vite CH, Bradbury AM. Cerebrospinal fluid and serum glycosphingolipid biomarkers in canine globoid cell leukodystrophy (Krabbe Disease). Mol Cell Neurosci 2019; 102:103451. [PMID: 31794880 DOI: 10.1016/j.mcn.2019.103451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 11/18/2022] Open
Abstract
Globoid cell leukodystrophy (GLD, Krabbe disease, Krabbe's disease) is caused by genetic mutations in the gene encoding, galactosylceramidase (GALC). Deficiency of this enzyme results in central and peripheral nervous system pathology, and is characterized by loss of myelin and an infiltration of globoid cells. The canine model of GLD provides a translational model which faithfully recapitulates much of the human disease pathology. Targeted lipidomic analysis was conducted in serum and cerebrospinal fluid (CSF) over the lifetime of GLD affected and normal canines, and in brain tissue at humane endpoint to better understand disease progression and identify potential biomarkers of disease. Psychosine, a substrate of GALC and primary contributor to the pathology in GLD, was observed to be significantly elevated in the serum and CSF by 2 or 4 weeks of age, respectively, and steadily increased over the lifetime of affected animals. Importantly, psychosine concentration strongly correlated with disease severity. Galactosylceramide, glucosylceramide, and lactosylceramide were also found to be elevated in the CSF of affected animals and increased with age. Psychosine and galactosylceramide were found to be significantly increased in brain tissue at humane endpoint. This study identified several biomarkers which may be useful in the development of therapeutics for GLD.
Collapse
Affiliation(s)
- Carley R Corado
- BioMarin Pharmaceutical, Inc., 105 Digital Drive, Novato, CA 94949, United States of America
| | - Jason Pinkstaff
- AnaptysBio, Inc., 10421 Pacific Center Court, San Diego, CA 92121, United States of America
| | - Xuntian Jiang
- Washington University, 1 Brookings Drive, St Louis, MO 63130, United States of America
| | - Evelyn M Galban
- University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, United States of America
| | - Samantha J Fisher
- University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, United States of America
| | - Oriane Scholler
- BioMarin Pharmaceutical, Inc., 105 Digital Drive, Novato, CA 94949, United States of America
| | - Chris Russell
- BioMarin Pharmaceutical, Inc., 105 Digital Drive, Novato, CA 94949, United States of America
| | - Jessica H Bagel
- University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, United States of America
| | - Patricia A ODonnell
- University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, United States of America
| | - Daniel S Ory
- Washington University, 1 Brookings Drive, St Louis, MO 63130, United States of America
| | - Charles H Vite
- University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, United States of America
| | - Allison M Bradbury
- University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
8
|
Bradbury AM, Rafi MA, Bagel JH, Brisson BK, Marshall MS, Pesayco Salvador J, Jiang X, Swain GP, Prociuk ML, ODonnell PA, Fitzgerald C, Ory DS, Bongarzone ER, Shelton GD, Wenger DA, Vite CH. AAVrh10 Gene Therapy Ameliorates Central and Peripheral Nervous System Disease in Canine Globoid Cell Leukodystrophy (Krabbe Disease). Hum Gene Ther 2018; 29:785-801. [PMID: 29316812 PMCID: PMC6066194 DOI: 10.1089/hum.2017.151] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/07/2018] [Indexed: 12/13/2022] Open
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe disease, is an inherited, neurologic disorder that results from deficiency of a lysosomal enzyme, galactosylceramidase. Most commonly, deficits of galactosylceramidase result in widespread central and peripheral nervous system demyelination and death in affected infants typically by 2 years of age. Hematopoietic stem-cell transplantation is the current standard of care in children diagnosed prior to symptom onset. However, disease correction is incomplete. Herein, the first adeno-associated virus (AAV) gene therapy experiments are presented in a naturally occurring canine model of GLD that closely recapitulates the clinical disease progression, neuropathological alterations, and biochemical abnormalities observed in human patients. Adapted from studies in twitcher mice, GLD dogs were treated by combination intravenous and intracerebroventricular injections of AAVrh10 to target both the peripheral and central nervous systems. Combination of intravenous and intracerebroventricular AAV gene therapy had a clear dose response and resulted in delayed onset of clinical signs, extended life-span, correction of biochemical defects, and attenuation of neuropathology. For the first time, therapeutic effect has been established in the canine model of GLD by targeting both peripheral and central nervous system impairments with potential clinical implications for GLD patients.
Collapse
Affiliation(s)
- Allison M. Bradbury
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mohammed A. Rafi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jessica H. Bagel
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Becky K. Brisson
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S. Marshall
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, Illinois
| | - Jill Pesayco Salvador
- Department of Pathology, School of Medicine, Comparative Neuromuscular Laboratory, University of California, San Diego, La Jolla, California
| | - Xuntain Jiang
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri
| | - Gary P. Swain
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maria L. Prociuk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patricia A. ODonnell
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caitlin Fitzgerald
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel S. Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri
| | - Ernesto R. Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, Illinois
- Departamento de Química Biologica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - G. Diane Shelton
- Department of Pathology, School of Medicine, Comparative Neuromuscular Laboratory, University of California, San Diego, La Jolla, California
| | - David A. Wenger
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Charles H. Vite
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Sidhu R, Mikulka CR, Fujiwara H, Sands MS, Schaffer JE, Ory DS, Jiang X. A HILIC-MS/MS method for simultaneous quantification of the lysosomal disease markers galactosylsphingosine and glucosylsphingosine in mouse serum. Biomed Chromatogr 2018; 32:e4235. [PMID: 29516569 PMCID: PMC5992066 DOI: 10.1002/bmc.4235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 01/20/2023]
Abstract
Deficiencies of galactosylceramidase and glucocerebrosidase result in the accumulation of galactosylsphingosine (GalSph) and glucosylsphingosine (GluSph) in Krabbe and Gaucher diseases, respectively. GalSph and GluSph are useful biomarkers for both diagnosis and monitoring of treatment effects. We have developed and validated a sensitive, accurate, high-throughput assay for simultaneous determination of the concentration of GalSph and GluSph in mouse serum. GalSph and GluSph and their deuterated internal standards were extracted by protein precipitation in quantitative recoveries, baseline separated by hydrophilic interaction chromatography and detected by positive-ion electrospray mass spectrometry in multiple reaction monitoring mode. Total run time was 7 min. The lower limit of quantification was 0.2 ng/mL for both GalSph and GluSph. Sample stability, assay precision and accuracy, and method robustness were demonstrated. This method has been successfully applied to measurement of these lipid biomarkers in a natural history study in twitcher (Krabbe) mice.
Collapse
Affiliation(s)
- Rohini Sidhu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Christina R. Mikulka
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Hideji Fujiwara
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Mark S. Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Jean E. Schaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Daniel S. Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
10
|
Scott-Hewitt NJ, Folts CJ, Hogestyn JM, Piester G, Mayer-Pröschel M, Noble MD. Heterozygote galactocerebrosidase (GALC) mutants have reduced remyelination and impaired myelin debris clearance following demyelinating injury. Hum Mol Genet 2018; 26:2825-2837. [PMID: 28575206 DOI: 10.1093/hmg/ddx153] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/07/2017] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies are identifying multiple genetic risk factors for several diseases, but the functional role of these changes remains mostly unknown. Variants in the galactocerebrosidase (GALC) gene, for example, were identified as a risk factor for Multiple Sclerosis (MS); however, the potential biological relevance of GALC variants to MS remains elusive. We found that heterozygote GALC mutant mice have reduced myelin debris clearance and diminished remyelination after a demyelinating insult. We found no histological or behavioral differences between adult wild-type and GALC +/- animals under normal conditions. Following exposure to the demyelinating agent cuprizone, however, GALC +/- animals had significantly reduced remyelination during recovery. In addition, the microglial phagocytic response and elevation of Trem2, both necessary for clearing damaged myelin, were markedly reduced in GALC +/- animals. These altered responses could be corrected in vitro by treatment with NKH-477, a compound discovered as protective in our previous studies on Krabbe disease, which is caused by mutations in both GALC alleles. Our data are the first to show remyelination defects in individuals with a single mutant GALC allele, suggesting such carriers may have increased vulnerability to myelin damage following injury or disease due to inefficient myelin debris clearance. We thus provide a potential functional link between GALC variants and increased MS susceptibility, particularly due to the failure of remyelination associated with progressive MS. Finally, this work demonstrates that genetic variants identified through genome-wide association studies may contribute significantly to complex diseases, not by driving initial symptoms, but by altering repair mechanisms.
Collapse
Affiliation(s)
- Nicole J Scott-Hewitt
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Christopher J Folts
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jessica M Hogestyn
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Gavin Piester
- Department of Biochemistry, University of Rochester, Rochester, NY 14642, USA
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Mark D Noble
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
11
|
Cell therapy for diverse central nervous system disorders: inherited metabolic diseases and autism. Pediatr Res 2018; 83:364-371. [PMID: 28985203 DOI: 10.1038/pr.2017.254] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022]
Abstract
The concept of utilizing human cells for the treatment of medical conditions is not new. In its simplest form, blood product transfusion as treatment of severe hemorrhage has been practiced since the 1800s. The advent of hematopoietic stem cell transplantation (HSCT) began with the development of bone marrow transplantation for hematological malignancies in the mid-1900s and is now the standard of care for many hematological disorders. In the past few decades, HSCT has expanded to additional sources of donor cells, a wider range of indications, and the development of novel cell products. This trajectory has sparked a rapidly growing interest in the pursuit of innovative cell therapies to treat presently incurable diseases, including neurological conditions. HSCT is currently an established therapy for certain neurologically devastating inherited metabolic diseases, in which engrafting donor cells provide lifelong enzyme replacement that prevents neurological deterioration and significantly extends the lives of affected children. Knowledge gained from the treatment of these rare conditions has led to refinement of the indications and timing of HSCT, the study of additional cellular products and techniques to address its limitations, and the investigation of cellular therapies without transplantation to treat more common neurological conditions, such as autism spectrum disorder.
Collapse
|
12
|
Graziano ACE, Pannuzzo G, Avola R, Cardile V. Chaperones as potential therapeutics for Krabbe disease. J Neurosci Res 2017; 94:1220-30. [PMID: 27638605 DOI: 10.1002/jnr.23755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/24/2016] [Accepted: 04/04/2016] [Indexed: 12/12/2022]
Abstract
Krabbe's disease (KD) is an autosomal recessive, neurodegenerative disorder. It is classified among the lysosomal storage diseases (LSDs). It was first described in , but the genetic defect for the galactocerebrosidase (GALC) gene was not discovered until the beginning of the 1970s, 20 years before the GALC cloning. Recently, in 2011, the crystal structures of the GALC enzyme and the GALC-product complex were obtained. For this, compared with other LSDs, the research on possible therapeutic interventions is much more recent. Thus, it is not surprising that some treatment options are still under preclinical investigation, whereas their relevance for other pathologies of the same group has already been tested in clinical studies. This is specifically the case for pharmacological chaperone therapy (PCT), a promising strategy for selectively correcting defective protein folding and trafficking and for enhancing enzyme activity by small molecules. These compounds bind directly to a partially folded biosynthetic intermediate, stabilize the protein, and allow completion of the folding process to yield a functional protein. Here, we review the chaperones that have demonstrated potential therapeutics during preclinical studies for KD, underscoring the requirement to invigorate research for KD-addressed PCT that will benefit from recent insights into the molecular understanding of GALC structure, drug design, and development in cellular models. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania, Italy
| | - Rosanna Avola
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania, Italy.
| |
Collapse
|
13
|
Ricca A, Gritti A. Perspective on innovative therapies for globoid cell leukodystrophy. J Neurosci Res 2017; 94:1304-17. [PMID: 27638612 DOI: 10.1002/jnr.23752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 12/24/2022]
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe's disease, is a lysosomal storage disorder resulting from deficiency of the lysosomal hydrolase galactosylceramidase. The infantile forms are characterized by a unique relentless and aggressive progression with a wide range of neurological symptoms and complications. Here we review and discuss the basic concepts and the novel mechanisms identified as key contributors to the peculiar GLD pathology, highlighting their therapeutic implications. Then, we evaluate evidence from extensive experimental studies on GLD animal models that have highlighted fundamental requirements to obtain substantial therapeutic benefit, including early and timely intervention, high levels of enzymatic reconstitution, and global targeting of affected tissues. Continuous efforts in understanding GLD pathophysiology, the interplay between various therapies, and the mechanisms of disease correction upon intervention may allow advancing research with innovative approaches and prioritizing treatment strategies to develop more efficacious treatments. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alessandra Ricca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
14
|
Wenger DA, Rafi MA, Luzi P. Krabbe disease: One Hundred years from the bedside to the bench to the bedside. J Neurosci Res 2017; 94:982-9. [PMID: 27638583 DOI: 10.1002/jnr.23743] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/24/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022]
Abstract
This Review summarizes the progress in understanding the pathogenesis and treatment of Krabbe disease from the description of five patients in by Knud Krabbe until 2016. To determine the cause of this genetic disease, pathological and chemical analyses of tissues from the nervous systems of patients were performed. It was determined that these patients had a pathological feature known as globoid cell in the brain and that this consisted partially of galactosylceramide, a major sphingolipid component of myelin. The finding that these patients had a deficiency of galactocerebrosidase (GALC) activity opened the way to relatively simple diagnostic testing with easily obtainable tissue samples, studies leading to the purification of GALC, and cloning of the GALC cDNA and gene. The availability of the gene sequence led to the identification of mutations in patients and to the current studies involving the use of viral vectors containing the GALC cDNA to treat experimentally naturally occurring animal models, such as twitcher mice. Currently, treatment of presymptomatic human patients is limited to hematopoietic stem cell transplantation (HSCT). With recent studies showing successful treatment of animal models with a combination of HSCT and viral gene therapy, it is hoped that more effective treatments will soon be available for human patients. For this Review, it is not possible to reference all of the articles contributing to our current state of knowledge about this disease; however, we have chosen those that have influenced our studies by suggesting research paths to pursue. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David A Wenger
- Department of Neurology, Sidney Kimmel College of Medicine at Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel College of Medicine at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paola Luzi
- Department of Neurology, Sidney Kimmel College of Medicine at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Del Grosso A, Antonini S, Angella L, Tonazzini I, Signore G, Cecchini M. Lithium improves cell viability in psychosine-treated MO3.13 human oligodendrocyte cell line via autophagy activation. J Neurosci Res 2017; 94:1246-60. [PMID: 27638607 DOI: 10.1002/jnr.23910] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/30/2022]
Abstract
Globoid cell leukodystrophy (GLD) is a rare, rapidly progressing childhood leukodystrophy triggered by deficit of the lysosomal enzyme galactosylceramidase (GALC) and characterized by the accumulation of galactosylsphingosine (psychosine; PSY) in the nervous system. PSY is a cytotoxic sphingolipid, which leads to widespread degeneration of oligodendrocytes and Schwann cells, causing demyelination. Here we report on autophagy in the human oligodendrocyte cell line MO3.13 treated with PSY and exploitation of Li as an autophagy modulator to rescue cell viability. We demonstrate that PSY causes upregulation of the autophagic flux at the level of autophagosome and autolysosome formation and LC3-II expression. We show that pretreatment with Li, a drug clinically used to treat bipolar disorders, can further stimulate autophagy, improving cell tolerance to PSY. This Li protective effect is found not to be linked to reduction of PSY-induced oxidative stress and might not stem from a reduction of PSY accumulation. These data provide novel information on the intracellular pathways activated during PSY-induced toxicity and suggest the autophagy pathway as a promising novel therapeutic target for ameliorating the GLD phenotype. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ambra Del Grosso
- NEST, Istituto Nanoscienze-CNR, Pisa, Italy.,NEST, Scuola Normale Superiore, Pisa, Italy
| | | | | | - Ilaria Tonazzini
- NEST, Istituto Nanoscienze-CNR, Pisa, Italy.,Fondazione Umberto Veronesi, Milano, Italy
| | - Giovanni Signore
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR, Pisa, Italy. .,NEST, Scuola Normale Superiore, Pisa, Italy.
| |
Collapse
|
16
|
Orsini JJ, Saavedra-Matiz CA, Gelb MH, Caggana M. Newborn screening for Krabbe's disease. J Neurosci Res 2017; 94:1063-75. [PMID: 27638592 DOI: 10.1002/jnr.23781] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/27/2016] [Accepted: 05/09/2016] [Indexed: 11/10/2022]
Abstract
Live newborn screening for Krabbe's disease (KD) was initiated in New York on August 7, 2006, and started in Missouri in August, 2012. As of August 7, 2015, nearly 2.5 million infants had been screened, and 443 (0.018%) infants had been referred for followup clinical evaluation; only five infants had been determined to have KD. As of August, 2015, the combined incidence of infantile KD in New York and Missouri is ∼1 per 500,000; however, patients who develop later-onset forms of KD may still emerge. This Review provides an overview of the processes used to develop the screening and followup algorithms. It also includes updated results from screening and discussion of observations, lessons learned, and suggested areas for improvement that will reduce referral rates and the number of infants defined as at risk for later-onset forms of KD. Although current treatment options for infants with early-infantile Krabbe's disease are not curative, over time treatment options should improve; in the meantime, it is essential to evaluate the lessons learned and to ensure that screening is completed in the best possible manner until these improvements can be realized. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joseph J Orsini
- Laboratory of Human Genetics, Wadsworth Center, New York State Department of Health, Albany, New York.
| | - Carlos A Saavedra-Matiz
- Laboratory of Human Genetics, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Michael H Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington
| | - Michele Caggana
- Laboratory of Human Genetics, Wadsworth Center, New York State Department of Health, Albany, New York
| |
Collapse
|
17
|
|
18
|
Lysosomal Re-acidification Prevents Lysosphingolipid-Induced Lysosomal Impairment and Cellular Toxicity. PLoS Biol 2016; 14:e1002583. [PMID: 27977664 PMCID: PMC5169359 DOI: 10.1371/journal.pbio.1002583] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative lysosomal storage disorders (LSDs) are severe and untreatable, and mechanisms underlying cellular dysfunction are poorly understood. We found that toxic lipids relevant to three different LSDs disrupt multiple lysosomal and other cellular functions. Unbiased drug discovery revealed several structurally distinct protective compounds, approved for other uses, that prevent lysosomal and cellular toxicities of these lipids. Toxic lipids and protective agents show unexpected convergence on control of lysosomal pH and re-acidification as a critical component of toxicity and protection. In twitcher mice (a model of Krabbe disease [KD]), a central nervous system (CNS)-penetrant protective agent rescued myelin and oligodendrocyte (OL) progenitors, improved motor behavior, and extended lifespan. Our studies reveal shared principles relevant to several LSDs, in which diverse cellular and biochemical disruptions appear to be secondary to disruption of lysosomal pH regulation by specific lipids. These studies also provide novel protective strategies that confer therapeutic benefits in a mouse model of a severe LSD.
Collapse
|
19
|
Macauley SL. Combination Therapies for Lysosomal Storage Diseases: A Complex Answer to a Simple Problem. PEDIATRIC ENDOCRINOLOGY REVIEWS : PER 2016; 13 Suppl 1:639-648. [PMID: 27491211 PMCID: PMC5374980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Abstract Lysosomal storage diseases (LSDs) are a group of 40-50 rare monogenic disorders that result in disrupted lysosomal function and subsequent lysosomal pathology. Depending on the protein or enzyme deficiency associated with each disease, LSDs affect an array of organ systems and elicit a complex set of secondary disease mechanisms that make many of these disorders difficult to fully treat. The etiology of most LSDs is known and the innate biology of lysosomal enzymes favors therapeutic intervention, yet most attempts at treating LSDs with enzyme replacement strategies fall short of being curative. Even with the advent of more sophisticated approaches, like substrate reduction therapy, pharmacologic chaperones, gene therapy or stem cell therapy, comprehensive treatments for LSDs have yet to be achieved. Given the limitations with individual therapies, recent research has focused on using a combination approach to treat LSDs. By coupling protein-, cell-, and gene- based therapies with small molecule drugs, researchers have found greater success in eradicating the clinical features of disease. This review seeks to discuss the positive and negatives of singular therapies used to treat LSDs, and discuss how, in combination, studies have demonstrated a more holistic benefit on pathological and functional parameters. By optimizing routes of delivery, therapeutic timing, and targeting secondary disease mechanisms, combination therapy represents the future for LSD treatment.
Collapse
|
20
|
Design of a regulated lentiviral vector for hematopoietic stem cell gene therapy of globoid cell leukodystrophy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15038. [PMID: 26509184 PMCID: PMC4605225 DOI: 10.1038/mtm.2015.38] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 08/26/2015] [Indexed: 12/21/2022]
Abstract
Globoid cell leukodystrophy (GLD) is a demyelinating lysosomal storage disease due to the deficiency of the galactocerebrosidase (GALC) enzyme. The favorable outcome of hematopoietic stem and progenitor cell (HSPC)-based approaches in GLD and other similar diseases suggests HSPC gene therapy as a promising therapeutic option for patients. The path to clinical development of this strategy was hampered by a selective toxicity of the overexpressed GALC in the HSPC compartment. Here, we presented the optimization of a lentiviral vector (LV) in which miR-126 regulation was coupled to codon optimization of the human GALC cDNA to obtain a selective and enhanced enzymatic activity only upon transduced HSPCs differentiation. The safety of human GALC overexpression driven by this LV was extensively demonstrated in vitro and in vivo on human HSPCs from healthy donors. No perturbation in the content of proapoptotic sphingolipids, gene expression profile, and capability of engraftment and mutlilineage differentiation in chimeric mice was observed. The therapeutic potential of this LV was then assessed in a severe GLD murine model that benefited from transplantation of corrected HSPCs with longer survival and ameliorated phenotype as compared to untreated siblings. This construct has thus been selected as a candidate for clinical translation.
Collapse
|
21
|
Enzyme replacement therapy of a novel humanized mouse model of globoid cell leukodystrophy. Exp Neurol 2015; 271:36-45. [DOI: 10.1016/j.expneurol.2015.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 12/31/2022]
|
22
|
Tobo A, Tobo M, Nakakura T, Ebara M, Tomura H, Mogi C, Im DS, Murata N, Kuwabara A, Ito S, Fukuda H, Arisawa M, Shuto S, Nakaya M, Kurose H, Sato K, Okajima F. Characterization of Imidazopyridine Compounds as Negative Allosteric Modulators of Proton-Sensing GPR4 in Extracellular Acidification-Induced Responses. PLoS One 2015; 10:e0129334. [PMID: 26070068 PMCID: PMC4466532 DOI: 10.1371/journal.pone.0129334] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/07/2015] [Indexed: 02/02/2023] Open
Abstract
G protein-coupled receptor 4 (GPR4), previously proposed as the receptor for sphingosylphosphorylcholine, has recently been identified as the proton-sensing G protein-coupled receptor (GPCR) coupling to multiple intracellular signaling pathways, including the Gs protein/cAMP and G13 protein/Rho. In the present study, we characterized some imidazopyridine compounds as GPR4 modulators that modify GPR4 receptor function. In the cells that express proton-sensing GPCRs, including GPR4, OGR1, TDAG8, and G2A, extracellular acidification stimulates serum responsive element (SRE)-driven transcriptional activity, which has been shown to reflect Rho activity, with different proton sensitivities. Imidazopyridine compounds inhibited the moderately acidic pH-induced SRE activity only in GPR4-expressing cells. Acidic pH-stimulated cAMP accumulation, mRNA expression of inflammatory genes, and GPR4 internalization within GPR4-expressing cells were all inhibited by the GPR4 modulator. We further compared the inhibition property of the imidazopyridine compound with psychosine, which has been shown to selectively inhibit actions induced by proton-sensing GPCRs, including GPR4. In the GPR4 mutant, in which certain histidine residues were mutated to phenylalanine, proton sensitivity was significantly shifted to the right, and psychosine failed to further inhibit acidic pH-induced SRE activation. On the other hand, the imidazopyridine compound almost completely inhibited acidic pH-induced action in mutant GPR4. We conclude that some imidazopyridine compounds show specificity to GPR4 as negative allosteric modulators with a different action mode from psychosine, an antagonist susceptible to histidine residues, and are useful for characterizing GPR4-mediated acidic pH-induced biological actions.
Collapse
Affiliation(s)
- Ayaka Tobo
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Masayuki Tobo
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Takashi Nakakura
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Masashi Ebara
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hideaki Tomura
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Chihiro Mogi
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Dong-Soon Im
- Laboratory of Pharmacology, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Naoya Murata
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Atsushi Kuwabara
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Saki Ito
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Hayato Fukuda
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Mitsuhiro Arisawa
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Michio Nakaya
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Sato
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- * E-mail: (FO); (KS)
| | - Fumikazu Okajima
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- * E-mail: (FO); (KS)
| |
Collapse
|
23
|
Aldenhoven M, Kurtzberg J. Cord blood is the optimal graft source for the treatment of pediatric patients with lysosomal storage diseases: clinical outcomes and future directions. Cytotherapy 2015; 17:765-774. [DOI: 10.1016/j.jcyt.2015.03.609] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/10/2015] [Indexed: 02/06/2023]
|
24
|
Affiliation(s)
- Mustafa Sahin
- Department of Neurology, Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts.
| |
Collapse
|