1
|
Engineered Molecular Therapeutics Targeting Fibrin and the Coagulation System: a Biophysical Perspective. Biophys Rev 2022; 14:427-461. [PMID: 35399372 PMCID: PMC8984085 DOI: 10.1007/s12551-022-00950-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
The coagulation cascade represents a sophisticated and highly choreographed series of molecular events taking place in the blood with important clinical implications. One key player in coagulation is fibrinogen, a highly abundant soluble blood protein that is processed by thrombin proteases at wound sites, triggering self-assembly of an insoluble protein hydrogel known as a fibrin clot. By forming the key protein component of blood clots, fibrin acts as a structural biomaterial with biophysical properties well suited to its role inhibiting fluid flow and maintaining hemostasis. Based on its clinical importance, fibrin is being investigated as a potentially valuable molecular target in the development of coagulation therapies. In this topical review, we summarize our current understanding of the coagulation cascade from a molecular, structural and biophysical perspective. We highlight single-molecule studies on proteins involved in blood coagulation and report on the current state of the art in directed evolution and molecular engineering of fibrin-targeted proteins and polymers for modulating coagulation. This biophysical overview will help acclimatize newcomers to the field and catalyze interdisciplinary work in biomolecular engineering toward the development of new therapies targeting fibrin and the coagulation system.
Collapse
|
3
|
Popovic G, Kirby NC, Dement TC, Peterson KM, Daub CE, Belcher HA, Guthold M, Offenbacher AR, Hudson NE. Development of Transient Recombinant Expression and Affinity Chromatography Systems for Human Fibrinogen. Int J Mol Sci 2022; 23:ijms23031054. [PMID: 35162976 PMCID: PMC8835685 DOI: 10.3390/ijms23031054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Fibrin forms the structural scaffold of blood clots and has great potential for biomaterial applications. Creating recombinant expression systems of fibrinogen, fibrin’s soluble precursor, would advance the ability to construct mutational libraries that would enable structure–function studies of fibrinogen and expand the utility of fibrin as a biomaterial. Despite these needs, recombinant fibrinogen expression systems, thus far, have relied on the time-consuming creation of stable cell lines. Here we present tests of a transient fibrinogen expression system that can rapidly generate yields of 8–12 mg/L using suspension HEK Expi293TM cells. We report results from two different plasmid systems encoding the fibrinogen cDNAs and two different transfection reagents. In addition, we describe a novel, affinity-based approach to purifying fibrinogen from complex media such as human plasma. We show that using a high-affinity peptide which mimics fibrin’s knob ‘A’ sequence enables the purification of 50–75% of fibrinogen present in plasma. Having robust expression and purification systems of fibrinogen will enable future studies of basic fibrin(ogen) biology, while paving the way for the ubiquitous use of fibrin as a biomaterial.
Collapse
Affiliation(s)
- Grega Popovic
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA; (G.P.); (N.C.K.); (C.E.D.); (A.R.O.)
| | - Nicholas C. Kirby
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA; (G.P.); (N.C.K.); (C.E.D.); (A.R.O.)
| | - Taylor C. Dement
- Department of Physics, East Carolina University, Greenville, NC 27858, USA; (T.C.D.); (H.A.B.)
| | - Kristine M. Peterson
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA;
| | - Caroline E. Daub
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA; (G.P.); (N.C.K.); (C.E.D.); (A.R.O.)
| | - Heather A. Belcher
- Department of Physics, East Carolina University, Greenville, NC 27858, USA; (T.C.D.); (H.A.B.)
| | - Martin Guthold
- Department of Physics, Wake Forest University, Winston Salem, NC 27109, USA;
| | - Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA; (G.P.); (N.C.K.); (C.E.D.); (A.R.O.)
| | - Nathan E. Hudson
- Department of Physics, East Carolina University, Greenville, NC 27858, USA; (T.C.D.); (H.A.B.)
- Correspondence: ; Tel.: +1-252-737-5349
| |
Collapse
|
4
|
Fu DY, Xue YR, Guo Y, Qu Z, Li HW, Wu H, Wu Y. Strong red-emitting gold nanoclusters protected by glutathione S-transferase. NANOSCALE 2018; 10:23141-23148. [PMID: 30515506 DOI: 10.1039/c8nr05691a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glutathione S-transferase (GST) is distributed widely in tissues and has been proven to be vital in the body. For example, it catalyzes reduced glutathione (GSH) to a variety of electrophilic substances and thus protects cells against many toxic chemicals. Therefore, GST-related investigations have always been significant for medical and/or life sciences. In the present study, a new material of gold nanoclusters (Au-NCs) protected by GST, Au-NCs@GST, was fabricated via an improved one-step heating method. The products were fully characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS), and Fourier transform infrared (FT-IR) and circular dichroism (CD) spectra. The results confirmed that around 10 gold atoms are encapsulated in one intact GST, forming Au-NCs@GST with strong (QY = 13.5%) red emission at 670 nm. Therefore, a new nanomaterial possessing both strong luminescence and bio-functions of GST was developed, and it has great potential in GST-related investigations. To prove the concept, Au-NCs@GST was successfully applied to detect metronidazole (MNZ) both in solution and in living cells. Therefore, in the present study, we report not only a new nanomaterial of Au-NCs@GST but also a feasible fluorescence probe for antibiotic detection. Both the improved synthetic method and the design concept can be extended to the fabrication of other kinds of metal nanoclusters using different functional proteins for various purposes.
Collapse
Affiliation(s)
- Ding-Yi Fu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China.
| | | | | | | | | | | | | |
Collapse
|
5
|
Mangione PP, Verona G, Corazza A, Marcoux J, Canetti D, Giorgetti S, Raimondi S, Stoppini M, Esposito M, Relini A, Canale C, Valli M, Marchese L, Faravelli G, Obici L, Hawkins PN, Taylor GW, Gillmore JD, Pepys MB, Bellotti V. Plasminogen activation triggers transthyretin amyloidogenesis in vitro. J Biol Chem 2018; 293:14192-14199. [PMID: 30018138 PMCID: PMC6139548 DOI: 10.1074/jbc.ra118.003990] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
Systemic amyloidosis is a usually fatal disease caused by extracellular accumulation of abnormal protein fibers, amyloid fibrils, derived by misfolding and aggregation of soluble globular plasma protein precursors. Both WT and genetic variants of the normal plasma protein transthyretin (TTR) form amyloid, but neither the misfolding leading to fibrillogenesis nor the anatomical localization of TTR amyloid deposition are understood. We have previously shown that, under physiological conditions, trypsin cleaves human TTR in a mechano-enzymatic mechanism that generates abundant amyloid fibrils in vitro In sharp contrast, the widely used in vitro model of denaturation and aggregation of TTR by prolonged exposure to pH 4.0 yields almost no clearly defined amyloid fibrils. However, the exclusive duodenal location of trypsin means that this enzyme cannot contribute to systemic extracellular TTR amyloid deposition in vivo Here, we therefore conducted a bioinformatics search for systemically active tryptic proteases with appropriate tissue distribution, which unexpectedly identified plasmin as the leading candidate. We confirmed that plasmin, just as trypsin, selectively cleaves human TTR between residues 48 and 49 under physiological conditions in vitro Truncated and full-length protomers are then released from the native homotetramer and rapidly aggregate into abundant fibrils indistinguishable from ex vivo TTR amyloid. Our findings suggest that physiological fibrinolysis is likely to play a critical role in TTR amyloid formation in vivo Identification of this surprising intersection between two hitherto unrelated pathways opens new avenues for elucidating the mechanisms of TTR amyloidosis, for seeking susceptibility risk factors, and for therapeutic innovation.
Collapse
Affiliation(s)
- P Patrizia Mangione
- From the Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, United Kingdom.,Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Guglielmo Verona
- From the Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, United Kingdom
| | - Alessandra Corazza
- From the Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, United Kingdom.,Department of Medicine (DAME), University of Udine, 33100 Udine, Italy.,Istituto Nazionale Biostrutture e Biosistemi, 00136 Roma, Italy
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Diana Canetti
- From the Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, United Kingdom
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Sara Raimondi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Monica Stoppini
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Marilena Esposito
- From the Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, United Kingdom
| | - Annalisa Relini
- Department of Chemistry and Industrial Chemistry, University of Genoa, 16146 Genoa, Italy
| | - Claudio Canale
- Department of Physics, University of Genoa, 16146 Genoa, Italy
| | - Maurizia Valli
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Loredana Marchese
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Giulia Faravelli
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Laura Obici
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Philip N Hawkins
- National Amyloidosis Centre, University College London and Royal Free Hospital, London NW3 2PF, United Kingdom
| | - Graham W Taylor
- From the Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, United Kingdom
| | - Julian D Gillmore
- National Amyloidosis Centre, University College London and Royal Free Hospital, London NW3 2PF, United Kingdom
| | - Mark B Pepys
- From the Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, United Kingdom.,National Amyloidosis Centre, University College London and Royal Free Hospital, London NW3 2PF, United Kingdom
| | - Vittorio Bellotti
- From the Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, United Kingdom, .,Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
6
|
Chen JY, Chen WN, Liu LL, Lin WS, Jiao BY, Wu YL, Lin JY, Lin X. Hepatitis B spliced protein (HBSP) generated by a spliced hepatitis B virus RNA participates in abnormality of fibrin formation and functions by binding to fibrinogen γ chain. J Med Virol 2011; 82:2019-26. [PMID: 20981788 DOI: 10.1002/jmv.21918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hepatitis B spliced protein (HBSP) encoded by a 2.2 kb singly spliced hepatitis B virus (HBV) pre-genomic RNA (spliced between positions 2447 and 489 nt) is involved in the pathogenesis of HBV infection, whereas the exact mechanism is far from being fully elucidated. In this study, a yeast two-hybrid system using HBSP as bait was employed to screen binding partners for HBSP from a human liver cDNA library. The interaction between HBSP and fibrinogen γ chain (FGG) was further confirmed in vitro using a GST pull-down assay and confirmed in vivo using a mammalian two-hybrid assay and co-immunoprecipitation. It was identified that this interaction is mediated by the N terminal 47 amino acid residues of HBSP. HBSP could inhibit fibrin polymerization, factor XIIIa-mediated fibrin cross-linking, adhesion of platelets to fibrinogen and ADP-stimulated platelet aggregation. However, the interaction-mediating fragment 1-47 of HBSP is not sufficient for the inhibitory activity on fibrinogen function. The findings suggested that HBSP may participate in the hemostatic abnormality in patients with HBV-related liver diseases.
Collapse
Affiliation(s)
- Jin-Yan Chen
- Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou 350004, Fujian, PR China
| | | | | | | | | | | | | | | |
Collapse
|