1
|
Fu Y, Han Z, Cheng W, Niu S, Wang T, Wang X. Improvement strategies for transient gene expression in mammalian cells. Appl Microbiol Biotechnol 2024; 108:480. [PMID: 39365308 PMCID: PMC11452495 DOI: 10.1007/s00253-024-13315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Mammalian cells are suitable hosts for producing recombinant therapeutic proteins, with Chinese hamster ovary (CHO) and human embryonic kidney 293 (HEK293) cells being the most commonly used cell lines. Mammalian cell expression system includes stable and transient gene expression (TGE) system, with the TGE system having the advantages of short cycles and simple operation. By optimizing the TGE system, the expression of recombinant proteins has been significantly improved. Here, the TGE system and the detailed and up-to-date improvement strategies of mammalian cells, including cell line, expression vector, culture media, culture processes, transfection conditions, and co-expression of helper genes, are reviewed. KEY POINTS: • Detailed improvement strategies of transient gene expression system of mammalian cells are reviewed • The composition of transient expression system of mammalian cell are summarized • Proposed optimization prospects for transient gene expression systems.
Collapse
Affiliation(s)
- Yushun Fu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zimeng Han
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, China
| | - Wanting Cheng
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shuaichen Niu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tianyun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Xiaoyin Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Bo S, Sun Q, Ning P, Yuan N, Weng Y, Liang Y, Wang H, Lu Z, Li Z, Zhao X. A novel approach to analyze the association characteristics between post-spliced introns and their corresponding mRNA. Front Genet 2023; 14:1151172. [PMID: 36923795 PMCID: PMC10008863 DOI: 10.3389/fgene.2023.1151172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Studies have shown that post-spliced introns promote cell survival when nutrients are scarce, and intron loss/gain can influence many stages of mRNA metabolism. However, few approaches are currently available to study the correlation between intron sequences and their corresponding mature mRNA sequences. Here, based on the results of the improved Smith-Waterman local alignment-based algorithm method (SW method) and binding free energy weighted local alignment algorithm method (BFE method), the optimal matched segments between introns and their corresponding mature mRNAs in Caenorhabditis elegans (C.elegans) and their relative matching frequency (RF) distributions were obtained. The results showed that although the distributions of relative matching frequencies on mRNAs obtained by the BFE method were similar to the SW method, the interaction intensity in 5'and 3'untranslated regions (UTRs) regions was weaker than the SW method. The RF distributions in the exon-exon junction regions were comparable, the effects of long and short introns on mRNA and on the five functional sites with BFE method were similar to the SW method. However, the interaction intensity in 5'and 3'UTR regions with BFE method was weaker than with SW method. Although the matching rate and length distribution shape of the optimal matched fragment were consistent with the SW method, an increase in length was observed. The matching rates and the length of the optimal matched fragments were mainly in the range of 60%-80% and 20-30bp, respectively. Although we found that there were still matching preferences in the 5'and 3'UTR regions of the mRNAs with BFE, the matching intensities were significantly lower than the matching intensities between introns and their corresponding mRNAs with SW method. Overall, our findings suggest that the interaction between introns and mRNAs results from synergism among different types of sequences during the evolutionary process.
Collapse
Affiliation(s)
- Suling Bo
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Qiuying Sun
- Department of Oncology, Inner Mongolia Cancer Hospital and The Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Pengfei Ning
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Ningping Yuan
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Yujie Weng
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Ying Liang
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Huitao Wang
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China.,School of Life Science, Inner Mongolia University, Hohhot, China.,Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China.,6 Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Zhongxian Li
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Xiaoqing Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China.,School of Life Science, Inner Mongolia University, Hohhot, China.,Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China.,6 Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| |
Collapse
|
3
|
Chen WCW, Gaidukov L, Lai Y, Wu MR, Cao J, Gutbrod MJ, Choi GCG, Utomo RP, Chen YC, Wroblewska L, Kellis M, Zhang L, Weiss R, Lu TK. A synthetic transcription platform for programmable gene expression in mammalian cells. Nat Commun 2022; 13:6167. [PMID: 36257931 PMCID: PMC9579178 DOI: 10.1038/s41467-022-33287-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/13/2022] [Indexed: 12/24/2022] Open
Abstract
Precise, scalable, and sustainable control of genetic and cellular activities in mammalian cells is key to developing precision therapeutics and smart biomanufacturing. Here we create a highly tunable, modular, versatile CRISPR-based synthetic transcription system for the programmable control of gene expression and cellular phenotypes in mammalian cells. Genetic circuits consisting of well-characterized libraries of guide RNAs, binding motifs of synthetic operators, transcriptional activators, and additional genetic regulatory elements express mammalian genes in a highly predictable and tunable manner. We demonstrate the programmable control of reporter genes episomally and chromosomally, with up to 25-fold more activity than seen with the EF1α promoter, in multiple cell types. We use these circuits to program the secretion of human monoclonal antibodies and to control T-cell effector function marked by interferon-γ production. Antibody titers and interferon-γ concentrations significantly correlate with synthetic promoter strengths, providing a platform for programming gene expression and cellular function in diverse applications.
Collapse
Affiliation(s)
- William C W Chen
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| | - Leonid Gaidukov
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yong Lai
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ming-Ru Wu
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Jicong Cao
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael J Gutbrod
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Gigi C G Choi
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Rachel P Utomo
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biochemistry, Wellesley College, Wellesley, MA, 02481, USA
| | - Ying-Chou Chen
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Lin Zhang
- Pfizer Inc., Andover, MA, 01810, USA
| | - Ron Weiss
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Timothy K Lu
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
4
|
Cao J, Novoa EM, Zhang Z, Chen WCW, Liu D, Choi GCG, Wong ASL, Wehrspaun C, Kellis M, Lu TK. High-throughput 5' UTR engineering for enhanced protein production in non-viral gene therapies. Nat Commun 2021; 12:4138. [PMID: 34230498 PMCID: PMC8260622 DOI: 10.1038/s41467-021-24436-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Despite significant clinical progress in cell and gene therapies, maximizing protein expression in order to enhance potency remains a major technical challenge. Here, we develop a high-throughput strategy to design, screen, and optimize 5' UTRs that enhance protein expression from a strong human cytomegalovirus (CMV) promoter. We first identify naturally occurring 5' UTRs with high translation efficiencies and use this information with in silico genetic algorithms to generate synthetic 5' UTRs. A total of ~12,000 5' UTRs are then screened using a recombinase-mediated integration strategy that greatly enhances the sensitivity of high-throughput screens by eliminating copy number and position effects that limit lentiviral approaches. Using this approach, we identify three synthetic 5' UTRs that outperform commonly used non-viral gene therapy plasmids in expressing protein payloads. In summary, we demonstrate that high-throughput screening of 5' UTR libraries with recombinase-mediated integration can identify genetic elements that enhance protein expression, which should have numerous applications for engineered cell and gene therapies.
Collapse
Affiliation(s)
- Jicong Cao
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eva Maria Novoa
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Genomic Regulation (CRG), Barcelona, Spain
| | - Zhizhuo Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William C W Chen
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dianbo Liu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gigi C G Choi
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Alan S L Wong
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Claudia Wehrspaun
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Timothy K Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Woodchuck Hepatitis Virus Post-Transcriptional Regulation Element (WPRE) Promotes Anti-CD19 BiTE Expression in Expi293 Cells. IRANIAN BIOMEDICAL JOURNAL 2021; 25:275-83. [PMID: 34217158 PMCID: PMC8334396 DOI: 10.52547/ibj.25.4.275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background: Bispecific antibodies represent an important class of mAbs, with great therapeutic potentials due to their ability to target simultaneously two distinct epitopes. The generation of functional bispecific antibodies with the highest possible yields is particularly critical for the production of these compounds on industrial scales. Anti- CD3 × CD19 bsAb is a bispecific T-cell engager (BiTE) currently used for treating ALL. Herein, we have tried to optimize the expression level of this antibody in mammalian hosts. Methods: WPRE sequence was incorporated at the 3’ end of the expression cassette. This modification resulted in a notable about two-fold increase in the expression of the bsAb in the Expi293 cell line. Results & Conclusion: Follow-up flow cytometry analysis demonstrated the binding properties of the produced antibody at acceptable levels, and in vitro bioactivity assays showed that this product is potent enough for targeting and destroying CD19-positive cells. Our findings show that WPRE enhances the expression of this type of bispecific mAbs in HEK-293 family cell lines. This approach can be used in biopharma industry for the mass production of anti-CD3 × CD19 bispecific antibody.
Collapse
|
6
|
Carrara SC, Fiebig D, Bogen JP, Grzeschik J, Hock B, Kolmar H. Recombinant Antibody Production Using a Dual-Promoter Single Plasmid System. ANTIBODIES (BASEL, SWITZERLAND) 2021; 10:antib10020018. [PMID: 34068440 PMCID: PMC8161450 DOI: 10.3390/antib10020018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 01/21/2023]
Abstract
Monoclonal antibodies (mAbs) have demonstrated tremendous effects on the treatment of various disease indications and remain the fastest growing class of therapeutics. Production of recombinant antibodies is performed using mammalian expression systems to facilitate native antibody folding and post-translational modifications. Generally, mAb expression systems utilize co-transfection of heavy chain (hc) and light chain (lc) genes encoded on separate plasmids. In this study, we examine the production of two FDA-approved antibodies using a bidirectional (BiDi) vector encoding both hc and lc with mirrored promoter and enhancer elements on a single plasmid, by analysing the individual hc and lc mRNA expression levels and subsequent quantification of fully-folded IgGs on the protein level. From the assessment of different promoter combinations, we have developed a generic expression vector comprised of mirrored enhanced CMV (eCMV) promoters showing comparable mAb yields to a two-plasmid reference. This study paves the way to facilitate small-scale mAb production by transient cell transfection with a single vector in a cost- and time-efficient manner.
Collapse
Affiliation(s)
- Stefania C. Carrara
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany; (S.C.C.); (D.F.); (J.P.B.)
- Ferring Darmstadt Laboratories, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany;
| | - David Fiebig
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany; (S.C.C.); (D.F.); (J.P.B.)
- Ferring Darmstadt Laboratories, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany;
| | - Jan P. Bogen
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany; (S.C.C.); (D.F.); (J.P.B.)
- Ferring Darmstadt Laboratories, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany;
| | - Julius Grzeschik
- Ferring Darmstadt Laboratories, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany;
| | - Björn Hock
- Ferring International Center S.A, Chemin de la Vergognausaz 50, CH-1162 Saint Prex, Switzerland;
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany; (S.C.C.); (D.F.); (J.P.B.)
- Correspondence:
| |
Collapse
|
7
|
Sherwood LJ, Hayhurst A. Toolkit for Quickly Generating and Characterizing Molecular Probes Specific for SARS-CoV-2 Nucleocapsid as a Primer for Future Coronavirus Pandemic Preparedness. ACS Synth Biol 2021; 10:379-390. [PMID: 33534552 PMCID: PMC7875338 DOI: 10.1021/acssynbio.0c00566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 12/31/2022]
Abstract
Generating and characterizing immunoreagents to enable studies of novel emerging viruses is an area where ensembles of synthetic genes, recombinant antibody pipelines, and modular antibody-reporter fusion proteins can respond rapidly. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread through the global population causing widespread morbidity, mortality, and socioeconomic chaos. Using SARS-CoV-2 as our model and starting with a gBlocks encoded nucleocapsid (N) gene, we purified recombinant protein from E. coli, to serve as bait for selecting semisynthetic nanobodies from our Nomad single-pot library. Clones were isolated in days and first fused to Gaussia luciferase to determine EC50 in the tens of nM range, and second fused to the ascorbate peroxidase derivative APEX2 for sensitive detection of SARS-CoV-2 infected cells. To generate inherently fluorescent immunoreagents, we introduce novel periplasmic sdAb fusions made with mNeonGreen and mScarlet-I, which were produced at milligram amounts. The fluorescent fusion proteins enabled concise visualization of SARS-CoV-2 N in the cytoplasm but not in the nucleus 24 h post infection, akin to the distribution of SARS-CoV N, thereby validating these useful imaging tools. SdAb reactivity appeared specific to SARS-CoV-2 with very much weaker binding to SARS-CoV, and no noticeable cross-reactivity to a panel of overexpressed human codon optimized N proteins from other CoV. High periplasmic expression levels and in silico immortalization of the nanobody constructs guarantees a cost-effective and reliable source of SARS-CoV-2 immunoreagents. Our proof-of-principle study should be applicable to known and newly emerging CoV to broaden the tools available for their analysis and help safeguard human health in a more proactive than reactive manner.
Collapse
Affiliation(s)
- Laura Jo Sherwood
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Andrew Hayhurst
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
8
|
Wang X, Zhang W, Jia Y, Wang M, Yi D, Wang TY. Woodchuck hepatitis post-transcriptional regulatory element improves transgene expression and stability mediated by episomal vectors in CHO-K1 cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1285-1288. [PMID: 33196825 DOI: 10.1093/abbs/gmaa105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xiaoyin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453003, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
| | - Weili Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yanlong Jia
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, China
| | - Meng Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
| | - Dandan Yi
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453003, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
| | - Tian-yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453003, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
9
|
Sergeeva D, Lee GM, Nielsen LK, Grav LM. Multicopy Targeted Integration for Accelerated Development of High-Producing Chinese Hamster Ovary Cells. ACS Synth Biol 2020; 9:2546-2561. [PMID: 32835482 DOI: 10.1021/acssynbio.0c00322] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ever-growing biopharmaceutical industry relies on the production of recombinant therapeutic proteins in Chinese hamster ovary (CHO) cells. The traditional timelines of CHO cell line development can be significantly shortened by the use of targeted gene integration (TI). However, broad use of TI has been limited due to the low specific productivity (qP) of TI-generated clones. Here, we show a 10-fold increase in the qP of therapeutic glycoproteins in CHO cells through the development and optimization of a multicopy TI method. We used a recombinase-mediated cassette exchange (RMCE) platform to investigate the effect of gene copy number, 5' and 3' gene regulatory elements, and landing pad features on qP. We evaluated the limitations of multicopy expression from a single genomic site as well as multiple genomic sites and found that a transcriptional bottleneck can appear with an increase in gene dosage. We created a dual-RMCE system for simultaneous multicopy TI in two genomic sites and generated isogenic high-producing clones with qP of 12-14 pg/cell/day and product titer close to 1 g/L in fed-batch. Our study provides an extensive characterization of the multicopy TI method and elucidates the relationship between gene copy number and protein expression in mammalian cells. Moreover, it demonstrates that TI-generated CHO cells are capable of producing therapeutic proteins at levels that can support their industrial manufacture.
Collapse
Affiliation(s)
- Daria Sergeeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Lars Keld Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane 4072, Australia
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
10
|
Effects of viral promoters, the Woodchuck hepatitis post-transcriptional regulatory element, and weakened antibiotic resistance markers on transgene expression in Chinese hamster ovary cells. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Mufarrege EF, Benizio EL, Prieto CC, Chiappini F, Rodriguez MC, Etcheverrigaray M, Kratje RB. Development of Magoh protein-overexpressing HEK cells for optimized therapeutic protein production. Biotechnol Appl Biochem 2020; 68:230-238. [PMID: 32249976 DOI: 10.1002/bab.1915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 11/07/2022]
Abstract
In the pharmaceutical industry, the need for high levels of protein expression in mammalian cells has prompted the search for new strategies, including technologies to obtain cells with improved mechanisms that enhance its transcriptional activity, folding, or protein secretion. Chinese Hamster Ovary (CHO) cells are by far the most used host cell for therapeutic protein expression. However, these cells produce specific glycans that are not present in human cells and therefore potentially immunogenic. As a result, there is an increased interest in the use of human-derived cells for therapeutic protein production. For many decades, human embryonic kidney (HEK) cells were exclusively used for research. However, two products for therapeutic indication were recently approved in the United States. It was previously shown that tethered Magoh, an Exon-junction complex core component, to specific mRNA sequences, have had significant positive effects on mRNA translational efficiency. In this study, a HEK Magoh-overexpressing cell line and clones, designated here as HEK-MAGO, were developed for the first time. These cells exhibited improved characteristics in protein expression, reaching -two- to threefold increases in rhEPO protein production in comparison with the wild-type cells. Moreover, this effect was promoter independent highlighting the versatility of this expression platform.
Collapse
Affiliation(s)
- Eduardo F Mufarrege
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Edificio FBCB - Ciudad Universitaria UNL, Santa Fe, Argentina.,Cell Culture Laboratory, Edificio FBCB, Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Evangelina L Benizio
- Cell Culture Laboratory, Edificio FBCB, Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Claudio C Prieto
- Cell Culture Laboratory, Edificio FBCB, Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Fabricio Chiappini
- Cell Culture Laboratory, Edificio FBCB, Ciudad Universitaria UNL, Santa Fe, Argentina
| | | | - Marina Etcheverrigaray
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Edificio FBCB - Ciudad Universitaria UNL, Santa Fe, Argentina.,Cell Culture Laboratory, Edificio FBCB, Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Ricardo B Kratje
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Edificio FBCB - Ciudad Universitaria UNL, Santa Fe, Argentina.,Cell Culture Laboratory, Edificio FBCB, Ciudad Universitaria UNL, Santa Fe, Argentina
| |
Collapse
|
12
|
Li YM, Wang M, Wang TY, Wei YG, Guo X, Mi CL, Zhao CP, Cao XX, Dou YY. Effects of different 2A peptides on transgene expression mediated by tricistronic vectors in transfected CHO cells. Mol Biol Rep 2019; 47:469-475. [PMID: 31659692 DOI: 10.1007/s11033-019-05153-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
Multicistronic vectors can increase transgene expression and decrease the imbalance of gene expression in the Chinese hamster ovary (CHO) cell expression system. Small, self-cleaving 2A peptides have a high cleavage efficiency and are essential for constructing high-expression multicistronic vectors. In this study, we investigated the effects of two different 2A peptides on transgene expression in CHO cells via their mediating action on tricistronic vectors. The enhanced green fluorescent protein (eGFP) and red fluorescent protein (RFP) genes were linked by the porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A) peptides in a multicistronic vector. We transfected CHO cells with these vectors and screened for the presence of blasticidin-resistant colonies. Flow cytometry and real-time quantitative PCR (qPCR) were used to detect the expression levels of eGFP and RFP and the copy numbers of stably transfected cells. The results showed that P2A could enhance eGFP and RFP expression by 1.48- and 1.47-fold, respectively, compared to T2A. The expression levels of the genes were not proportional to their copy numbers. In conclusion, we found that P2A can effectively drive transgene expression in CHO cells and a potent 2A peptide can be used for recombinant protein production in the CHO cell system.
Collapse
Affiliation(s)
- Yan-Mei Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
| | - Meng Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China. .,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China.
| | - Yong-Ge Wei
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
| | - Xiao Guo
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
| | - Chun-Liu Mi
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
| | - Chun-Peng Zhao
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
| | - Xiang-Xiang Cao
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
| | - Yuan-Yuan Dou
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
| |
Collapse
|
13
|
Rogala KB, Gu X, Kedir JF, Abu-Remaileh M, Bianchi LF, Bottino AMS, Dueholm R, Niehaus A, Overwijn D, Fils ACP, Zhou SX, Leary D, Laqtom NN, Brignole EJ, Sabatini DM. Structural basis for the docking of mTORC1 on the lysosomal surface. Science 2019; 366:468-475. [PMID: 31601708 PMCID: PMC7176403 DOI: 10.1126/science.aay0166] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
Abstract
The mTORC1 (mechanistic target of rapamycin complex 1) protein kinase regulates growth in response to nutrients and growth factors. Nutrients promote its translocation to the lysosomal surface, where its Raptor subunit interacts with the Rag guanosine triphosphatase (GTPase)-Ragulator complex. Nutrients switch the heterodimeric Rag GTPases among four different nucleotide-binding states, only one of which (RagA/B•GTP-RagC/D•GDP) permits mTORC1 association. We used cryo-electron microscopy to determine the structure of the supercomplex of Raptor with Rag-Ragulator at a resolution of 3.2 angstroms. Our findings indicate that the Raptor α-solenoid directly detects the nucleotide state of RagA while the Raptor "claw" threads between the GTPase domains to detect that of RagC. Mutations that disrupted Rag-Raptor binding inhibited mTORC1 lysosomal localization and signaling. By comparison with a structure of mTORC1 bound to its activator Rheb, we developed a model of active mTORC1 docked on the lysosome.
Collapse
Affiliation(s)
- Kacper B Rogala
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xin Gu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jibril F Kedir
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Monther Abu-Remaileh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Laura F Bianchi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Rikke Dueholm
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Anna Niehaus
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Daan Overwijn
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Sherry X Zhou
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Daniel Leary
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Nouf N Laqtom
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Edward J Brignole
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- MIT.nano, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Hunter M, Yuan P, Vavilala D, Fox M. Optimization of Protein Expression in Mammalian Cells. ACTA ACUST UNITED AC 2018; 95:e77. [DOI: 10.1002/cpps.77] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Optimising the transient expression of GABA(A) receptors in adherent HEK293 cells. Protein Expr Purif 2018; 154:7-15. [PMID: 30248449 DOI: 10.1016/j.pep.2018.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 11/22/2022]
Abstract
Owing to their therapeutic relevance, considerable efforts are devoted to the structural characterisation of membrane proteins. Such studies are limited by the availability of high quality protein due to the difficulty of overexpression in recombinant mammalian systems. We sought to systematically optimise multiple aspects in the process of transiently transfecting HEK293 cells, to allow the rapid expression of membrane proteins, without the lengthy process of stable clone formation. We assessed the impact of medium formulation, cell line, and harvest time on the expression of GABAA receptors, as determined by [3H]muscimol binding in cell membranes. Furthermore, transfection with the use of calcium phosphate/polyethyleneimine multishell nanoparticles was optimised, and a dual vector system utilising viral enhancing elements was designed and implemented. These efforts resulted in a 40-fold improvement in GABAA α1β3 receptor expression, providing final yields of 22 fmol/cm2. The findings from this work provide a guide to the optimisation of transient expression of proteins in mammalian cells and should assist in the structural characterisation of membrane proteins.
Collapse
|
16
|
Biochemical and metabolic engineering approaches to enhance production of therapeutic proteins in animal cell cultures. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Xu DH, Wang XY, Jia YL, Wang TY, Tian ZW, Feng X, Zhang YN. SV40 intron, a potent strong intron element that effectively increases transgene expression in transfected Chinese hamster ovary cells. J Cell Mol Med 2018; 22:2231-2239. [PMID: 29441681 PMCID: PMC5867124 DOI: 10.1111/jcmm.13504] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022] Open
Abstract
Chinese hamster ovary (CHO) cells have become the most widely utilized mammalian cell line for the production of recombinant proteins. However, the product yield and transgene instability need to be further increased and solved. In this study, we investigated the effect of five different introns on transgene expression in CHO cells. hCMV intron A, adenovirus tripartite leader sequence intron, SV40 intron, Chinese hamster EF-1alpha gene intron 1 and intervening sequence intron were cloned downstream of the eGFP expression cassette in a eukaryotic vector, which was then transfected into CHO cells. qRT-PCR and flow cytometry were used to explore eGFP expression levels. And gene copy number was also detected by qPCR, respectively. Furthermore, the erythropoietin (EPO) protein was used to test the selected more strong intron. The results showed that SV40 intron exhibited the highest transgene expression level among the five compared intron elements under transient and stable transfections. In addition, the SV40 intron element can increase the ratio of positive colonies and decrease the coefficient of variation in transgene expression level. Moreover, the transgene expression level was not related to the gene copy number in stable transfected CHO cells. Also, the SV40 intron induced higher level of EPO expression than IVS intron in transfected CHO cell. In conclusion, SV40 intron is a potent strong intron element that increases transgene expression, which can readily be used to more efficient transgenic protein production in CHO cells.
Collapse
Affiliation(s)
- Dan-Hua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yan-Long Jia
- Pharmacy collage, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zheng-Wei Tian
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xin Feng
- Grade 2014, The Third Clinical Medical College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yin-Na Zhang
- Grade 2014, The Third Clinical Medical College of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
18
|
Jazayeri SH, Amiri-Yekta A, Bahrami S, Gourabi H, Sanati MH, Khorramizadeh MR. Vector and Cell Line Engineering Technologies Toward Recombinant Protein Expression in Mammalian Cell Lines. Appl Biochem Biotechnol 2018; 185:986-1003. [PMID: 29396733 DOI: 10.1007/s12010-017-2689-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/29/2017] [Indexed: 11/26/2022]
Abstract
The rapid growth of global biopharmaceutical market in the recent years has been a good indication of its significance in biotechnology industry. During a long period of time in recombinant protein production from 1980s, optimizations in both upstream and downstream processes were launched. In this regard, one of the most promising strategies is expression vector engineering technology based on incorporation of DNA opening elements found in the chromatin border regions of vectors as well as targeting gene integration. Along with these approaches, cell line engineering has revealed convenient outcomes in isolating high-producing clones. According to the fact that more than 50% of the approved therapeutic proteins is being manufactured in mammalian cell lines, in this review, we focus on several approaches and developments in vector and cell line engineering technologies in mammalian cell culture.
Collapse
Affiliation(s)
- Seyedeh Hoda Jazayeri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Salahadin Bahrami
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Mohammad Hossein Sanati
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran.
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, P.O. Box: 1411413137, Tehran, Iran.
| |
Collapse
|
19
|
Hansen HG, Pristovšek N, Kildegaard HF, Lee GM. Improving the secretory capacity of Chinese hamster ovary cells by ectopic expression of effector genes: Lessons learned and future directions. Biotechnol Adv 2017; 35:64-76. [DOI: 10.1016/j.biotechadv.2016.11.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/12/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022]
|
20
|
Ooi A, Wong A, Esau L, Lemtiri-Chlieh F, Gehring C. A Guide to Transient Expression of Membrane Proteins in HEK-293 Cells for Functional Characterization. Front Physiol 2016; 7:300. [PMID: 27486406 PMCID: PMC4949579 DOI: 10.3389/fphys.2016.00300] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/28/2016] [Indexed: 01/17/2023] Open
Abstract
The human embryonic kidney 293 (HEK-293) cells are commonly used as host for the heterologous expression of membrane proteins not least because they have a high transfection efficiency and faithfully translate and process proteins. In addition, their cell size, morphology and division rate, and low expression of native channels are traits that are particularly attractive for current-voltage measurements. Nevertheless, the heterologous expression of complex membrane proteins such as receptors and ion channels for biological characterization and in particular for single-cell applications such as electrophysiology remains a challenge. Expression of functional proteins depends largely on careful step-by-step optimization that includes the design of expression vectors with suitable identification tags, as well as the selection of transfection methods and detection parameters appropriate for the application. Here, we use the heterologous expression of a plant potassium channel, the Arabidopsis thaliana guard cell outward-rectifying K(+) channel, AtGORK (At5G37500) in HEK-293 cells as an example, to evaluate commonly used transfection reagents and fluorescent detection methods, and provide a detailed methodology for optimized transient transfection and expression of membrane proteins for in vivo studies in general and for single-cell applications in particular. This optimized protocol will facilitate the physiological and cellular characterization of complex membrane proteins.
Collapse
Affiliation(s)
- Amanda Ooi
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| | - Aloysius Wong
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia; Institute of Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Le Commissariat à l'Energie Atomique et aux Energies Alternatives, Paris-Sud UniversityGif-Sur-Yvette, France
| | - Luke Esau
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| | - Fouad Lemtiri-Chlieh
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| | - Chris Gehring
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| |
Collapse
|
21
|
Zulliger R, Conley SM, Naash MI. Non-viral therapeutic approaches to ocular diseases: An overview and future directions. J Control Release 2015; 219:471-487. [PMID: 26439665 PMCID: PMC4699668 DOI: 10.1016/j.jconrel.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
Currently there are no viable treatment options for patients with debilitating inherited retinal degeneration. The vast variability in disease-inducing mutations and resulting phenotypes has hampered the development of therapeutic interventions. Gene therapy is a logical approach, and recent work has focused on ways to optimize vector design and packaging to promote optimized expression and phenotypic rescue after intraocular delivery. In this review, we discuss ongoing ocular clinical trials, which currently use viral gene delivery, but focus primarily on new advancements in optimizing the efficacy of non-viral gene delivery for ocular diseases. Non-viral delivery systems are highly customizable, allowing functionalization to improve cellular and nuclear uptake, bypassing cellular degradative machinery, and improving gene expression in the nucleus. Non-viral vectors often yield transgene expression levels lower than viral counterparts, however their favorable safety/immune profiles and large DNA capacity (critical for the delivery of large ocular disease genes) make their further development a research priority. Recent work on particle coating and vector engineering presents exciting ways to overcome limitations of transient/low gene expression levels, but also highlights the fact that further refinements are needed before use in the clinic.
Collapse
Affiliation(s)
- Rahel Zulliger
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States.
| |
Collapse
|
22
|
Spronken MI, Short KR, Herfst S, Bestebroer TM, Vaes VP, van der Hoeven B, Koster AJ, Kremers GJ, Scott DP, Gultyaev AP, Sorell EM, de Graaf M, Bárcena M, Rimmelzwaan GF, Fouchier RA. Optimisations and Challenges Involved in the Creation of Various Bioluminescent and Fluorescent Influenza A Virus Strains for In Vitro and In Vivo Applications. PLoS One 2015; 10:e0133888. [PMID: 26241861 PMCID: PMC4524686 DOI: 10.1371/journal.pone.0133888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/03/2015] [Indexed: 01/15/2023] Open
Abstract
Bioluminescent and fluorescent influenza A viruses offer new opportunities to study influenza virus replication, tropism and pathogenesis. To date, several influenza A reporter viruses have been described. These strategies typically focused on a single reporter gene (either bioluminescent or fluorescent) in a single virus backbone. However, whilst bioluminescence is suited to in vivo imaging, fluorescent viruses are more appropriate for microscopy. Therefore, the idea l reporter virus varies depending on the experiment in question, and it is important that any reporter virus strategy can be adapted accordingly. Herein, a strategy was developed to create five different reporter viruses in a single virus backbone. Specifically, enhanced green fluorescent protein (eGFP), far-red fluorescent protein (fRFP), near-infrared fluorescent protein (iRFP), Gaussia luciferase (gLUC) and firefly luciferase (fLUC) were inserted into the PA gene segment of A/PR/8/34 (H1N1). This study provides a comprehensive characterisation of the effects of different reporter genes on influenza virus replication and reporter activity. In vivo reporter gene expression, in lung tissues, was only detected for eGFP, fRFP and gLUC expressing viruses. In vitro, the eGFP-expressing virus displayed the best reporter stability and could be used for correlative light electron microscopy (CLEM). This strategy was then used to create eGFP-expressing viruses consisting entirely of pandemic H1N1, highly pathogenic avian influenza (HPAI) H5N1 and H7N9. The HPAI H5N1 eGFP-expressing virus infected mice and reporter gene expression was detected, in lung tissues, in vivo. Thus, this study provides new tools and insights for the creation of bioluminescent and fluorescent influenza A reporter viruses.
Collapse
Affiliation(s)
- Monique I. Spronken
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Kirsty R. Short
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Vincent P. Vaes
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Barbara van der Hoeven
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, the Netherlands
| | - Abraham J. Koster
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gert-Jan Kremers
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Alexander P. Gultyaev
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, the Netherlands
| | - Erin M. Sorell
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- Milken Institute School of Public Health, Department of Health Policy and Management, George Washington University, Washington, DC, United States of America
| | - Miranda de Graaf
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Montserrat Bárcena
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, the Netherlands
| | - Guus F. Rimmelzwaan
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Ron A. Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
23
|
Kaas CS, Bolt G, Hansen JJ, Andersen MR, Kristensen C. Deep sequencing reveals different compositions of mRNA transcribed from the F8 gene in a panel of FVIII-producing CHO cell lines. Biotechnol J 2015; 10:1081-9. [PMID: 25963793 DOI: 10.1002/biot.201400667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/27/2015] [Accepted: 05/08/2015] [Indexed: 12/15/2022]
Abstract
Coagulation factor VIII (FVIII) is one of the most complex biopharmaceuticals due to the large size, poor protein stability and extensive post-translational modifications. As a consequence, efficient production of FVIII in mammalian cells poses a major challenge, with typical yields two to three orders of magnitude lower than for antibodies. In the present study we investigated CHO DXB11 cells transfected with a plasmid encoding human coagulation factor VIII. Single cell clones were isolated from the pool of transfectants and a panel of 14 clones representing a dynamic range of FVIII productivities was selected for RNA sequencing analysis. The analysis showed distinct differences in F8 RNA composition between the clones. The exogenous F8-dhfr transcript was found to make up the most abundant transcript in the present clones. No correlation was seen between F8 mRNA levels and the measured FVIII productivity. It was found that three MTX resistant, nonproducing clones had different truncations of the F8 transcripts. We find that by using deep sequencing, in contrast to microarray technology, for determining the transcriptome from CHO transfectants, we are able to accurately deduce the mature mRNA composition of the transgene and identify significant truncations that would probably otherwise have remained undetected.
Collapse
Affiliation(s)
- Christian S Kaas
- Mammalian Cell Technology, Novo Nordisk A/S, Maaloev, Denmark. .,Department of Systems Biology, Technical University of Denmark, Kgs Lyngby, Denmark.
| | - Gert Bolt
- Mammalian Cell Technology, Novo Nordisk A/S, Maaloev, Denmark
| | - Jens J Hansen
- Mammalian Cell Technology, Novo Nordisk A/S, Maaloev, Denmark
| | - Mikael R Andersen
- Department of Systems Biology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Claus Kristensen
- Mammalian Cell Technology, Novo Nordisk A/S, Maaloev, Denmark.,Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Mariati, Koh EYC, Yeo JHM, Ho SCL, Yang Y. Toward stable gene expression in CHO cells. Bioengineered 2015; 5:340-5. [PMID: 25482237 DOI: 10.4161/bioe.32111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Maintaining high gene expression level during long-term culture is critical when producing therapeutic recombinant proteins using mammalian cells. Transcriptional silencing of promoters, most likely due to epigenetic events such as DNA methylation and histone modifications, is one of the major mechanisms causing production instability. Previous studies demonstrated that the core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene is effective to prevent DNA methylation. We generated one set of modified human cytomegalovirus (hCMV) promoters by insertion of one or two copies of IE in either forward or reverse orientations into different locations of the hCMV promoter. The modified hCMV with one copy of IE inserted between the hCMV enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability in CHO cells without comprising expression level when compared with the wild type hCMV. We also found that insertion of IE into a chimeric murine CMV (mCMV) enhancer and human elongation factor-1α core (hEF) promoter in reverse orientation did not enhance expression stability, indicating that the effect of IE on expression stability is possibly promoter specific.
Collapse
Affiliation(s)
- Mariati
- a Bioprocessing Technology Institute; Agency for Science, Technology, and Research (A*STAR); Singapore, Republic of Singapore
| | | | | | | | | |
Collapse
|
25
|
Mariati, Yeo JHM, Koh EYC, Ho SCL, Yang Y. Insertion of core CpG island element into human CMV promoter for enhancing recombinant protein expression stability in CHO cells. Biotechnol Prog 2014; 30:523-34. [DOI: 10.1002/btpr.1919] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/02/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Mariati
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Jessna H. M. Yeo
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Esther Y. C. Koh
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Steven C. L. Ho
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University; Singapore 637459 Singapore
| |
Collapse
|
26
|
Almo SC, Love JD. Better and faster: improvements and optimization for mammalian recombinant protein production. Curr Opin Struct Biol 2014; 26:39-43. [PMID: 24721463 DOI: 10.1016/j.sbi.2014.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 11/18/2022]
Abstract
Thanks to numerous technological advances, the production of recombinant proteins in mammalian cell lines has become an increasingly routine task that is no longer viewed as a heroic enterprise. While production in prokaryotic or lower eukaryotic systems may be more rapid and economical, the advantages of producing large amounts of protein that closely resembles the native form is often advantageous and may be essential for the realization of functionally active material for biological studies or biopharmaceuticals. The correct folding, processing and post-translational modifications conferred by expression in a mammalian cell is relevant to all classes of proteins, including cytoplasmic, secreted or integral membrane proteins. Therefore considerable efforts have focused on the development of growth media, cell lines, transformation methods and selection techniques that enable the production of grams of functional protein in weeks, rather than months. This review will focus on a plethora of methods that are broadly applicable to the high yield production of any class of protein (cytoplasmic, secreted or integral membrane) from mammalian cells.
Collapse
Affiliation(s)
- Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - James D Love
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| |
Collapse
|
27
|
Mufarrege EF, Antuña S, Etcheverrigaray M, Kratje R, Prieto C. Development of lentiviral vectors for transient and stable protein overexpression in mammalian cells. A new strategy for recombinant human FVIII (rhFVIII) production. Protein Expr Purif 2014; 95:50-6. [DOI: 10.1016/j.pep.2013.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/17/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
|
28
|
Chiou HC, Vasu S, Liu CY, Cisneros I, Jones MB, Zmuda JF. Scalable transient protein expression. Methods Mol Biol 2014; 1104:35-55. [PMID: 24297408 DOI: 10.1007/978-1-62703-733-4_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Transient transfection is a well-established method to rapidly express recombinant proteins from mammalian cells. Accelerating activity in biotherapeutic drug development, demand for protein-based reagents, vaccine research, and large initiatives in structural and functional studies of proteins have propelled the need to generate moderate to high amounts of recombinant proteins and other macromolecules in a flexible and rapid manner. Progress over the last 10-15 years has demonstrated that transient transfections can be reliably and readily scaled up to handle milliliters to tens of liters of cells in suspension culture and obtain milligrams to grams of recombinant protein in a process that requires only days to weeks. This review will summarize developments in this field, properties of the components of a transient expression system that enable maximal protein production, and detailed protocols for this application.
Collapse
|
29
|
CHO cell engineering to prevent polypeptide aggregation and improve therapeutic protein secretion. Metab Eng 2013; 21:91-102. [PMID: 23380542 DOI: 10.1016/j.ymben.2012.12.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/13/2012] [Accepted: 12/21/2012] [Indexed: 01/31/2023]
Abstract
The ability to efficiently produce recombinant proteins in a secreted form is highly desirable and cultured mammalian cells such as CHO cells have become the preferred host as they secrete proteins with human-like post-translational modifications. However, attempts to express high levels of particular proteins in CHO cells may consistently result in low yields, even for non-engineered proteins such as immunoglobulins. In this study, we identified the responsible faulty step at the stage of translational arrest, translocation and early processing for such a "difficult-to-express" immunoglobulin, resulting in improper cleavage of the light chain and its precipitation in an insoluble cellular fraction unable to contribute to immunoglobulin assembly. We further show that proper processing and secretion were restored by over-expressing human signal receptor protein SRP14 and other components of the secretion pathway. This allowed the expression of the difficult-to-express protein to high yields, and it also increased the production of an easy-to-express protein. Our results demonstrate that components of the secretory and processing pathways can be limiting, and that engineering of the secretory pathway may be used to improve the secretion efficiency of therapeutic proteins from CHO cells.
Collapse
|
30
|
Lanza AM, Cheng JK, Alper HS. Emerging synthetic biology tools for engineering mammalian cell systems and expediting cell line development. Curr Opin Chem Eng 2012. [DOI: 10.1016/j.coche.2012.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
Quilici LS, Silva-Pereira I, Andrade AC, Albuquerque FC, Brigido MM, Maranhão AQ. A minimal cytomegalovirus intron A variant can improve transgene expression in different mammalian cell lines. Biotechnol Lett 2012; 35:21-7. [PMID: 22955677 DOI: 10.1007/s10529-012-1043-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/21/2012] [Indexed: 11/28/2022]
Abstract
The expression enhancement by cytomegalovirus promoter and different intron A (IA) variants were evaluated in CHO-K1, HepG2, HEK-293 and COS-7 cells by assessing the levels of luciferase activity. This data along with mRNA levels measurement indicated that the construct harboring an IA variant with a 200-nucleotide deletion (Δ200) had the greatest impact on increasing luciferase expression among all constructs evaluated. Based on these results, we redesigned pCMV-IA variants and cloned them into plasmids expressing a humanized antibody. These plasmids were then used to transfect CHO-K1 cells. Production of the antibody was not augmented with the Δ200 promoter variant. The 600-nucleotide deletion (Δ600) and whole IA promoter variants expressed similar levels of the recombinant protein. These data indicate that the IA-based enhanced expression of transgenes depends on a small region within the intron.
Collapse
Affiliation(s)
- L S Quilici
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Imunologia Molecular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The first protocols describing transient gene expression in mammalian cells for the rapid generation of recombinant proteins emerged more than 10 years ago as an alternative to the establishment of stable, often amplified clonal cell lines, and relieved somewhat the bias against mammalian cell systems as being too complicated, labor intensive, and tedious to serve as a source for tool proteins in industrial research and academia. Over the past decade, these attempts have been refined and optimized, giving rise to expression protocols applicable in every lab in dependence on available tools, equipment, and envisaged outcome. This chapter summarizes the development of transient expression technologies over the past decade up to its current status and provides an outlook into what may be the future of transient technology development.
Collapse
|
33
|
Ho SCL, Yap MGS, Yang Y. Post-transcriptional regulatory elements for enhancing transient gene expression levels in mammalian cells. Methods Mol Biol 2012; 801:125-35. [PMID: 21987251 DOI: 10.1007/978-1-61779-352-3_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Low yield from transient gene expression in mammalian cells limits its application to areas where large amount of proteins are needed. One effective approach to enhance transient gene expression levels is to use post-transcriptional regulatory elements (PTREs). We have evaluated the effect of five PTREs on the transient gene expression of three proteins in two cell lines. Most of the elements increased expression but exhibited cell-specific and gene-specific effects. The tripartite leader sequence of human adenovirus mRNA linked with a major late promoter enhancer gave the most universal and highest enhancement of gene expression levels. It increased the expression of all three proteins in HEK293 cells and two proteins in CHO K1 cells by 3.6- to 7.6-fold. Combinations of multiple PTREs increased protein expression as much as 10.5-fold.
Collapse
|
34
|
Li PY, Yu L, Wu XA, Bai WT, Li K, Wang HT, Hu G, Zhang L, Zhang FL, Xu ZK. Modification of the adenoviral transfer vector enhances expression of the Hantavirus fusion protein GnS0.7 and induces a strong immune response in C57BL/6 mice. J Virol Methods 2011; 179:90-6. [PMID: 22015676 DOI: 10.1016/j.jviromet.2011.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 09/28/2011] [Accepted: 10/04/2011] [Indexed: 11/20/2022]
Abstract
Hantavirus glycoproteins (Gn and Gc) are significant components of vaccines for haemorrhagic fever with renal syndrome (HFRS); however, they are not effective due to weak immunogenicity and low levels of production in expression systems. To circumvent this problem, a 0.7-kb fragment of the S segment was fused to Gn, and a hybrid CAG promoter/enhancer in conjunction with (or without) the WPRE (Woodchuck hepatitis virus post-transcriptional regulatory element) was used to improve the expression of fusion protein GnS0.7 in the adenoviral expression system. The expression level of the fusion protein as well as the response of mice immunized with recombinant adenoviruses containing GnS0.7 was investigated. In addition, a series of immunological assays were conducted to determine the immunogenicity of the recombinant adenoviruses. The results showed that the recombinant adenovirus with the CAG promoter/enhancer (rAd-GnS0.7-pCAG) expressed approximately 2.1-fold more GnS0.7 than the unmodified recombinant adenovirus containing GnS0.7 (rAd-GnS0.7-pShuttle). This enhanced expression level was also higher than for other modified recombinant adenoviruses studied. Animal experiments showed that rAd-GnS0.7-pCAG induced a stronger Hantaan virus (HTNV)-specific humoral and cellular immune response in mice, with the cellular immune response to the GnS0.7 being stronger than the HFRS vaccine control. These results demonstrate that the CAG promoter/enhancer improved significantly the expression of the chimeric gene GnS0.7 in the adenovirus expression system. These findings may have significant implications for the development of genetically engineered vaccines for HFRS.
Collapse
Affiliation(s)
- Pu-Yuan Li
- Department of Microbiology, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zou XH, Xiao X, Chen DL, Li ZL, Song JD, Wang M, Qu JG, Lu ZZ, Hung T. An improved HAdV-41 E1B55K-expressing 293 cell line for packaging fastidious adenovirus. J Virol Methods 2011; 175:188-96. [DOI: 10.1016/j.jviromet.2011.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/06/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|
36
|
Hasegawa H, Wendling J, He F, Trilisky E, Stevenson R, Franey H, Kinderman F, Li G, Piedmonte DM, Osslund T, Shen M, Ketchem RR. In vivo crystallization of human IgG in the endoplasmic reticulum of engineered Chinese hamster ovary (CHO) cells. J Biol Chem 2011; 286:19917-31. [PMID: 21464137 DOI: 10.1074/jbc.m110.204362] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein synthesis and secretion are essential to cellular life. Although secretory activities may vary in different cell types, what determines the maximum secretory capacity is inherently difficult to study. Increasing protein synthesis until reaching the limit of secretory capacity is one strategy to address this key issue. Under highly optimized growth conditions, recombinant CHO cells engineered to produce a model human IgG clone started housing rod-shaped crystals in the endoplasmic reticulum (ER) lumen. The intra-ER crystal growth was accompanied by cell enlargement and multinucleation and continued until crystals outgrew cell size to breach membrane integrity. The intra-ER crystals were composed of correctly folded, endoglycosidase H-sensitive IgG. Crystallizing propensity was due to the intrinsic physicochemical properties of the model IgG, and the crystallization was reproduced in vitro by exposing a high concentration of IgG to a near neutral pH. The striking cellular phenotype implicated the efficiency of IgG protein synthesis and oxidative folding exceeded the capacity of ER export machinery. As a result, export-ready IgG accumulated progressively in the ER lumen until a threshold concentration was reached to nucleate crystals. Using an in vivo system that reports accumulation of correctly folded IgG, we showed that the ER-to-Golgi transport steps became rate-limiting in cells with high secretory activity.
Collapse
Affiliation(s)
- Haruki Hasegawa
- Department of Protein Science, Amgen Inc., Seattle, Washington 98119, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Methods to improve plasmid-mediated transgene expression are needed for gene medicine and gene vaccination applications. To maintain a low risk of insertional mutagenesis-mediated gene activation, expression-augmenting sequences would ideally function to improve transgene expression from transiently transfected intact plasmid, but not from spurious genomically integrated vectors. We report herein the development of potent minimal, antibiotic-free, high-manufacturing-yield mammalian expression vectors incorporating rationally designed additive combinations of expression enhancers. The SV40 72 bp enhancer incorporated upstream of the cytomegalovirus (CMV) enhancer selectively improved extrachromosomal transgene expression. The human T-lymphotropic virus type I (HTLV-I) R region, incorporated downstream of the CMV promoter, dramatically increased mRNA translation efficiency, but not overall mRNA levels, after transient transfection. A similar mRNA translation efficiency increase was observed with plasmid vectors incorporating and expressing the protein kinase R-inhibiting adenoviral viral associated (VA)1 RNA. Strikingly, HTLV-I R and VA1 did not increase transgene expression or mRNA translation efficiency from plasmid DNA after genomic integration. The vector platform, when combined with electroporation delivery, further increased transgene expression and improved HIV-1 gp120 DNA vaccine-induced neutralizing antibody titers in rabbits. These antibiotic-free vectors incorporating transient expression enhancers are safer, more potent alternatives to improve transgene expression for DNA therapy or vaccination.
Collapse
|
38
|
Codamo J, Munro TP, Hughes BS, Song M, Gray PP. Enhanced CHO Cell-Based Transient Gene Expression with the Epi-CHO Expression System. Mol Biotechnol 2010; 48:109-15. [DOI: 10.1007/s12033-010-9351-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|