1
|
Dhingra K, Sinha I, Snyder M, Roush D, Cramer SM. Exploring preferred binding domains of IgG1 mAbs to multimodal adsorbents using a combined biophysics and simulation approach. Biotechnol Prog 2024; 40:e3415. [PMID: 38043031 DOI: 10.1002/btpr.3415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023]
Abstract
In this work, we employ a recently developed biophysical technique that uses diethylpyrocarbonate (DEPC) covalent labeling and mass spectrometry for the identification of mAb binding patches to two multimodal cation exchange resins at different pH. This approach compares the labeling results obtained in the bound and unbound states to identify residues that are sterically shielded and thus located in the mAb binding domains. The results at pH 6 for one mAb (mAb B) indicated that while the complementarity determining region (CDR) had minimal interactions with both resins, the FC domain was actively involved in binding. In contrast, DEPC/MS data with another mAb (mAb C) indicated that both the CDR and FC domains were actively involved in binding. These results corroborated chromatographic retention data with these two mAbs and their fragments and helped to explain the significantly stronger retention of both the intact mAb C and its Fab fragment. In contrast, labeling results with mAb C at pH 7, indicated that only the CDR played a significant role in resin binding, again corroborating chromatographic data. The binding domains identified from the DEPC/MS experiments were also examined using protein surface hydrophobicity maps obtained using a recently developed sparse sampling molecular dynamics (MD) approach in concert with electrostatic potential maps. These results demonstrate that the DEPC covalent labeling/mass spectrometry technique can provide important information about the domain contributions of multidomain proteins such as monoclonal antibodies when interacting with multimodal resins over a range of pH conditions.
Collapse
Affiliation(s)
- Kabir Dhingra
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Imee Sinha
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Mark Snyder
- Process Chemistry Division, Bio-Rad Laboratories, Hercules, California, USA
| | - David Roush
- Process R&D, Merck &Co., Inc., Rahway, New Jersey, USA
| | - Steven M Cramer
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
2
|
Wolkersdorfer AM, Jugovic I, Scheller L, Gutmann M, Hahn L, Diessner J, Lühmann T, Meinel L. PEGylation of Human Vascular Endothelial Growth Factor. ACS Biomater Sci Eng 2024; 10:149-155. [PMID: 37296497 DOI: 10.1021/acsbiomaterials.3c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Vascular endothelial growth factor A-165 (VEGF-A165) positively modulates neointimal hyperplasia, lumen stenosis, and neovascularization. One challenge for the use of VEGF-A165 for potential therapy is its short serum half-life. Therefore, we are designing VEGF-A165 bioconjugates carrying polyethylene glycol (PEG). The purity of the recombinantly expressed human VEGF-A165 exceeded 90%. The growth factor had a half-maximal effective concentration of 0.9 ng/mL (EC50) and induced tube formation of human umbilical vein endothelial cells. PEGylation was conducted by Schiff base reaction followed by reductive amination. After purification, two species were obtained, with one or two PEG attached per VEGF-A165 dimer. Both resulting bioconjugates had a purity exceeding 90%, wild-type bioactivity, and increased hydrodynamic radii as required for prolonging the half-life.
Collapse
Affiliation(s)
- Alena Maria Wolkersdorfer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, University, Am Hubland, Würzburg DE-97074, Germany
| | - Isabelle Jugovic
- Institute of Pharmacy and Food Chemistry, University of Würzburg, University, Am Hubland, Würzburg DE-97074, Germany
| | - Lena Scheller
- Institute of Pharmacy and Food Chemistry, University of Würzburg, University, Am Hubland, Würzburg DE-97074, Germany
| | - Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, University, Am Hubland, Würzburg DE-97074, Germany
| | - Lukas Hahn
- Institute of Pharmacy and Food Chemistry, University of Würzburg, University, Am Hubland, Würzburg DE-97074, Germany
| | - Joachim Diessner
- University of Würzburg, Department of Obstetrics and Gynecology, Josef-Schneider-Straße 14, Würzburg DE-97080, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, University, Am Hubland, Würzburg DE-97074, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, University, Am Hubland, Würzburg DE-97074, Germany
- Helmholtz Centre for Infection Research, Helmholtz-Institute for RNA-based Infection Research (HIRI), Josef-Schneider-Strasse 2/D15, Würzburg 97080, Germany
| |
Collapse
|
3
|
Rauniyar K, Akhondzadeh S, Gąciarz A, Künnapuu J, Jeltsch M. Bioactive VEGF-C from E. coli. Sci Rep 2022; 12:18157. [PMID: 36307539 PMCID: PMC9616921 DOI: 10.1038/s41598-022-22960-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/21/2022] [Indexed: 12/31/2022] Open
Abstract
Vascular endothelial growth factor-C (VEGF-C) stimulates lymphatic vessel growth in transgenic models, via viral gene delivery, and as a recombinant protein. Expressing eukaryotic proteins like VEGF-C in bacterial cells has limitations, as these cells lack specific posttranslational modifications and provisions for disulfide bond formation. However, given the cost and time savings associated with bacterial expression systems, there is considerable value in expressing VEGF-C using bacterial cells. We identified two approaches that result in biologically active Escherichia coli-derived VEGF-C. Expectedly, VEGF-C expressed from a truncated cDNA became bioactive after in vitro folding from inclusion bodies. Given that VEGF-C is one of the cysteine-richest growth factors in humans, it was unclear whether known methods to facilitate correct cysteine bond formation allow for the direct expression of bioactive VEGF-C in the cytoplasm. By fusing VEGF-C to maltose-binding protein and expressing these fusions in the redox-modified cytoplasm of the Origami (DE3) strain, we could recover biological activity for deletion mutants lacking the propeptides of VEGF-C. This is the first report of a bioactive VEGF growth factor obtained from E. coli cells circumventing in-vitro folding.
Collapse
Affiliation(s)
- Khushbu Rauniyar
- grid.7737.40000 0004 0410 2071Drug Research Program, Faculty of Pharmacy, Biocenter 2, University of Helsinki, P.O.B. 56 (Viikinkaari 5E), 00014 Helsinki, Finland
| | - Soheila Akhondzadeh
- grid.7737.40000 0004 0410 2071Drug Research Program, Faculty of Pharmacy, Biocenter 2, University of Helsinki, P.O.B. 56 (Viikinkaari 5E), 00014 Helsinki, Finland
| | - Anna Gąciarz
- grid.7737.40000 0004 0410 2071Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Jaana Künnapuu
- grid.7737.40000 0004 0410 2071Drug Research Program, Faculty of Pharmacy, Biocenter 2, University of Helsinki, P.O.B. 56 (Viikinkaari 5E), 00014 Helsinki, Finland
| | - Michael Jeltsch
- grid.7737.40000 0004 0410 2071Drug Research Program, Faculty of Pharmacy, Biocenter 2, University of Helsinki, P.O.B. 56 (Viikinkaari 5E), 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland ,grid.452042.50000 0004 0442 6391Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
4
|
Zalai D, Kopp J, Kozma B, Küchler M, Herwig C, Kager J. Microbial technologies for biotherapeutics production: Key tools for advanced biopharmaceutical process development and control. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:9-24. [PMID: 34895644 DOI: 10.1016/j.ddtec.2021.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/14/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022]
Abstract
Current trends in the biopharmaceutical market such as the diversification of therapies as well as the increasing time-to-market pressure will trigger the rethinking of bioprocess development and production approaches. Thereby, the importance of development time and manufacturing costs will increase, especially for microbial production. In the present review, we investigate three technological approaches which, to our opinion, will play a key role in the future of biopharmaceutical production. The first cornerstone of process development is the generation and effective utilization of platform knowledge. Building processes on well understood microbial and technological platforms allows to accelerate early-stage bioprocess development and to better condense this knowledge into multi-purpose technologies and applicable mathematical models. Second, the application of verified scale down systems and in silico models for process design and characterization will reduce the required number of large scale batches before dossier submission. Third, the broader availability of mathematical process models and the improvement of process analytical technologies will increase the applicability and acceptance of advanced control and process automation in the manufacturing scale. This will reduce process failure rates and subsequently cost of goods. Along these three aspects we give an overview of recently developed key tools and their potential integration into bioprocess development strategies.
Collapse
Affiliation(s)
- Denes Zalai
- Richter-Helm BioLogics GmbH & Co. KG, Suhrenkamp 59, 22335 Hamburg, Germany.
| | - Julian Kopp
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Bence Kozma
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Michael Küchler
- Richter-Helm BioLogics GmbH & Co. KG, Suhrenkamp 59, 22335 Hamburg, Germany
| | - Christoph Herwig
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria; Competence Center CHASE GmbH, Altenbergerstraße 69, 4040 Linz, Austria
| | - Julian Kager
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
5
|
Kuduğ Ceylan H, Erden Tayhan S, Gökçe İ. Secretory Expression of Human Vascular Endothelial Growth Factor (VEGF165) in Kluyveromyces lactis and Characterization of Its Biological Activity. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10227-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Expression and Characterization of Human Vascular Endothelial Growth Factor Produced in SiHa Cells Transduced with Adenoviral Vector. Protein J 2019; 38:693-703. [DOI: 10.1007/s10930-019-09867-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Mechanistic modeling based process development for monoclonal antibody monomer-aggregate separations in multimodal cation exchange chromatography. J Chromatogr A 2019; 1602:317-325. [DOI: 10.1016/j.chroma.2019.05.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 11/18/2022]
|
8
|
Arjmand S, Tavasoli Z, Ranaei Siadat SO, Saeidi B, Tavana H. Enhancing chimeric hydrophobin II-vascular endothelial growth factor A 165 expression in Pichia pastoris and its efficient purification using hydrophobin counterpart. Int J Biol Macromol 2019; 139:1028-1034. [PMID: 31404600 DOI: 10.1016/j.ijbiomac.2019.08.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/03/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
Abstract
We report cloning and expressing of recombinant human VEGF-A165, fused at the N-terminal with Hydrophobin II (HFBII) from Trichoderma reseei, in yeast Pichia pastoris. We validated the construct using SDS-PAGE and ELISA against VEGF-A165 and efficiently performed protein purification and enrichment based on HFBII counterpart and using an aqueous two-phase system (ATPS) with nonionic surfactant X-114. We studied the effects of various culture medium additives and interaction effects of positive factors to increase the recombinant HFBII-VEGF-A165 production. Supplementing the Pichia pastoris cell culture medium with Mg2+, Polysorbate 20 (PS 20), and 4-phenylbutyrate (PBA) improved the expression of the chimeric protein. Orthogonal experiments showed that the optimal condition to achieve maximal HFBII-VEGF-A165 production was with the addition of PBA, PS 20, and MgSO4. Under this condition, the production of the target protein was 4.5 times more than that in the medium without the additives. Overall, our approach to produce chimeric HFBII-VEGF-A165 and selectively capture it in ATPS is promising for large-scale protein production without laborious downstream processing.
Collapse
Affiliation(s)
- Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, G. C., Tehran, Iran.
| | - Zahra Tavasoli
- Protein Research Center, Shahid Beheshti University, G. C., Tehran, Iran
| | | | - Behanm Saeidi
- Protein Research Center, Shahid Beheshti University, G. C., Tehran, Iran
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
9
|
Arakawa T, Kita Y. Protein Solvent Interaction: Transition of Protein-solvent Interaction Concept from Basic Research into Solvent Manipulation of Chromatography. Curr Protein Pept Sci 2018; 20:34-39. [PMID: 29065832 DOI: 10.2174/1389203718666171024121529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/25/2017] [Accepted: 09/09/2017] [Indexed: 11/22/2022]
Abstract
Previously, we have reviewed in this journal (Arakawa, T., Kita, Y., Curr. Protein Pept. Sci., 15, 608-620, 2014) the interaction of arginine with proteins and various applications of this solvent additive in the area of protein formulations and downstream processes. In this special issue, we expand the concept of protein-solvent interaction into the analysis of the effects of solvent additives on various column chromatography, including mixed-mode chromatography. Earlier in our research, we have studied the interactions of such a variety of solvent additives as sugars, salts, amino acids, polymers and organic solvents with a variety of proteins, which resulted in mechanistic understanding on their protein stabilization and precipitation effects, the latter known as Hofmeister series. While such a study was then a pure academic research, rapid development of genetic engineering technologies and resultant biotechnologies made it a valuable knowledge in fully utilizing solvent additives in manipulation of protein solution, including column chromatography.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, A Division of KBI Biopharma, 6042 Cornerstone Court West, San Diego, CA 92121, United States
| | | |
Collapse
|
10
|
De Rosa L, Di Stasi R, D'Andrea LD. Pro-angiogenic peptides in biomedicine. Arch Biochem Biophys 2018; 660:72-86. [DOI: 10.1016/j.abb.2018.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022]
|
11
|
Arakawa T. Review on the Application of Mixed-mode Chromatography for Separation of Structure Isoforms. Curr Protein Pept Sci 2018; 20:56-60. [DOI: 10.2174/1389203718666171009111033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Abstract
Proteins often generate structure isoforms naturally or artificially due to, for example, different glycosylation, disulfide scrambling, partial structure rearrangement, oligomer formation or chemical modification. The isoform formations are normally accompanied by alterations in charged state or hydrophobicity. Thus, isoforms can be fractionated by reverse-phase, hydrophobic interaction or ion exchange chromatography. We have applied mixed-mode chromatography for fractionation of isoforms for several model proteins and observed that cation exchange Capto MMC and anion exchange Capto adhere columns are effective in separating conformational isoforms and self-associated oligomers.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, A Division of KBI Biophama, 6042 Cornerstone Court West, San Diego, CA 92121, United States
| |
Collapse
|
12
|
Halan V, Maity S, Bhambure R, Rathore AS. Multimodal Chromatography for Purification of Biotherapeutics – A Review. Curr Protein Pept Sci 2018; 20:4-13. [DOI: 10.2174/1389203718666171020103559] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/01/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
Abstract
Process chromatography forms the core of purification of biotherapeutics. The unparalleled
selectivity that it offers over other alternatives combined with the considerable robustness and scalability
make it the unit operation of choice in downstream processing. It is typical to have three to five chromatography
steps in a purification process for a biotherapeutic. Generally, these steps offer different modes
of separation such as ion-exchange, reversed phase, size exclusion, and hydrophobic interaction. In the
past decade, multimodal chromatography has emerged as an alternative to the traditional modes. It involves
use of more than one mode of separation and typically combines ion-exchange and hydrophobic
interactions to achieve selectivity and sensitivity. Over the last decade, numerous authors have demonstrated
the significant potential that multimode chromatography offers as a protein purification tool. This
review aims to present key recent developments that have occurred on this topic together with a perspective
on future applications of multimodal chromatography.
Collapse
Affiliation(s)
- Vivek Halan
- Zumutor Biologics Private Limited, Yeshwanthpur, Bangalore, India
| | - Sunit Maity
- Zumutor Biologics Private Limited, Yeshwanthpur, Bangalore, India
| | | | - Anurag S. Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, India
| |
Collapse
|
13
|
Bolten SN, Rinas U, Scheper T. Heparin: role in protein purification and substitution with animal-component free material. Appl Microbiol Biotechnol 2018; 102:8647-8660. [PMID: 30094590 PMCID: PMC6153649 DOI: 10.1007/s00253-018-9263-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 01/27/2023]
Abstract
Heparin is a highly sulfated polysaccharide which belongs to the family of glycosaminoglycans. It is involved in various important biological activities. The major biological purpose is the inhibition of the coagulation cascade to maintain the blood flow in the vasculature. These properties are employed in several therapeutic drugs. Heparin’s activities are associated with its interaction to various proteins. To date, the structural heparin-protein interactions are not completely understood. This review gives a general overview of specific patterns and functional groups which are involved in the heparin-protein binding. An understanding of the heparin-protein interactions at the molecular level is not only advantageous in the therapeutic application but also in biotechnological application of heparin for downstreaming. This review focuses on the heparin affinity chromatography. Diverse recombinant proteins can be successfully purified by this method. While effective, it is disadvantageous that heparin is an animal-derived material. Animal-based components carry the risk of contamination. Therefore, they are liable to strict quality controls and the validation of effective good manufacturing practice (GMP) implementation. Hence, adequate alternatives to animal-derived components are needed. This review examines strategies to avoid these disadvantages. Thereby, alternatives for the provision of heparin such as chemical synthesized heparin, chemoenzymatic heparin, and bioengineered heparin are discussed. Moreover, the usage of other chromatographic systems mimetic the heparin effect is reviewed.
Collapse
Affiliation(s)
- Svenja Nicolin Bolten
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Ursula Rinas
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, 30167, Hannover, Germany
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, 30167, Hannover, Germany.
| |
Collapse
|
14
|
Domain contributions to antibody retention in multimodal chromatography systems. J Chromatogr A 2018; 1563:89-98. [DOI: 10.1016/j.chroma.2018.05.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/16/2018] [Accepted: 05/27/2018] [Indexed: 11/17/2022]
|
15
|
Khaki M, Salmanian AH, Mosayebi G, Baazm M, Babaei S, Molaee N, Abtahi H. Heterologous expression of a truncated form of human recombinant vascular endothelial growth factor-A and its biological activity in wound healing. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:791-797. [PMID: 28852444 PMCID: PMC5569598 DOI: 10.22038/ijbms.2017.9011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Objective(s): Vascular endothelial growth factor (VEGF) is one of the most effective proteins in angiogenesis, mesenchymal stem cells (MSCs) differentiation and wound healing. These abilities are therapeutic potential of VEGF in diabetic retinopathy, nephropathy and other tissue damage circumstances. In this study, recombinant VEGF was produced in Escherichia coli (E. coli) system and then biological activity of this protein was evaluated in animal wound healing. Materials and Methods: E. coli BL21 (DE3) competent cells were transformed with pET32a-VEGF clone and induced by isopropyl-β-D-thio-galactoside (IPTG). The recombinant protein was purified by affinity chromatography. Recombinant VEGF-A-based ointment (VEGF/Vaseline 0.8 mg/100 w/w) was used for external wound (25×15mm thickness) healing in animal model. In vivo activity of ointment was evaluated by clinical evidences and cytological microscopic assessment. Results: The recombinant protein with molecular weight of 45 kilodaltons (kDa) and concentration of 0.8 mg/ml was produced. Immunoblotting data showed that the antigenic region of VEGF can be expressed in E. coli and the recombinant protein has similar epitopes with close antigenic properties to the natural form. Macroscopic findings and microscopic data showed that the recombinant VEGF-A ointment was effective on excisional wound healing. Conclusion: Recombinant VEGF-A produced by pET32a in E. coli, possesses acceptable structure and has wound healing capability.
Collapse
Affiliation(s)
- Mohsen Khaki
- Molecular and Medicine Research Center, Department of Immunology and Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Ghasem Mosayebi
- Molecular and Medicine Research Center, Department of Immunology and Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak. Iran
| | - Saeed Babaei
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak. Iran
| | - Neda Molaee
- Molecular and Medicine Research Center, Department of Immunology and Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Department of Immunology and Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
16
|
|
17
|
Kaplan O, Zárubová J, Mikulová B, Filová E, Bártová J, Bačáková L, Brynda E. Enhanced Mitogenic Activity of Recombinant Human Vascular Endothelial Growth Factor VEGF121 Expressed in E. coli Origami B (DE3) with Molecular Chaperones. PLoS One 2016; 11:e0163697. [PMID: 27716773 PMCID: PMC5055331 DOI: 10.1371/journal.pone.0163697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022] Open
Abstract
We describe the production of a highly-active mutant VEGF variant, α2-PI1-8-VEGF121, which contains a substrate sequence for factor XIIIa at the aminoterminus designed for incorporation into a fibrin gel. The α2-PI1-8-VEGF121 gene was synthesized, cloned into a pET-32a(+) vector and expressed in Escherichia coli Origami B (DE3) host cells. To increase the protein folding and the solubility, the resulting thioredoxin-α2-PI1-8-VEGF121 fusion protein was co-expressed with recombinant molecular chaperones GroES/EL encoded by independent plasmid pGro7. The fusion protein was purified from the soluble fraction of cytoplasmic proteins using affinity chromatography. After cleavage of the thioredoxin fusion part with thrombin, the target protein was purified by a second round of affinity chromatography. The yield of purified α2-PI1-8-VEGF121 was 1.4 mg per liter of the cell culture. The α2-PI1-8-VEGF121 expressed in this work increased the proliferation of endothelial cells 3.9-8.7 times in comparison with commercially-available recombinant VEGF121. This very high mitogenic activity may be caused by co-expression of the growth factor with molecular chaperones not previously used in VEGF production. At the same time, α2-PI1-8-VEGF121 did not elicit considerable inflammatory activation of human endothelial HUVEC cells and human monocyte-like THP-1 cells.
Collapse
Affiliation(s)
- Ondřej Kaplan
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, CZ-162 06, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, CZ-142 20, Prague, Czech Republic
- * E-mail:
| | - Jana Zárubová
- Institute of Physiology, Czech Academy of Sciences, CZ-142 20, Prague, Czech Republic
| | - Barbora Mikulová
- Institute of Physiology, Czech Academy of Sciences, CZ-142 20, Prague, Czech Republic
- Faculty of Science, Charles University in Prague, CZ-128 40, Prague, Czech Republic
| | - Elena Filová
- Institute of Physiology, Czech Academy of Sciences, CZ-142 20, Prague, Czech Republic
| | - Jiřina Bártová
- School of Dental Medicine, General University Hospital in Prague, CZ-128 08, Prague, Czech Republic
| | - Lucie Bačáková
- Institute of Physiology, Czech Academy of Sciences, CZ-142 20, Prague, Czech Republic
| | - Eduard Brynda
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, CZ-162 06, Prague, Czech Republic
| |
Collapse
|
18
|
Nguyen MT, Krupa M, Koo BK, Song JA, Vu TTT, Do BH, Nguyen AN, Seo T, Yoo J, Jeong B, Jin J, Lee KJ, Oh HB, Choe H. Prokaryotic Soluble Overexpression and Purification of Human VEGF165 by Fusion to a Maltose Binding Protein Tag. PLoS One 2016; 11:e0156296. [PMID: 27231876 PMCID: PMC4883780 DOI: 10.1371/journal.pone.0156296] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/12/2016] [Indexed: 01/04/2023] Open
Abstract
Human vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis and plays a central role in the process of tumor growth and metastatic dissemination. Escherichia coli is one of the most common expression systems used for the production of recombinant proteins; however, expression of human VEGF in E. coli has proven difficult because the E. coli-expressed VEGF tends to be misfolded and forms inclusion bodies, resulting in poor solubility. In this study, we successfully produced semi-preparative amounts of soluble bioactive human VEGF165 (hVEGF). We created seven N-terminal fusion tag constructs with hexahistidine (His6), thioredoxin (Trx), glutathione S-transferase (GST), maltose-binding protein (MBP), N-utilization substance protein A (NusA), human protein disulfide isomerase (PDI), and the b'a' domain of PDI (PDIb'a'), and tested each construct for soluble overexpression in E. coli. We found that at 18°C, 92.8% of the MBP-tagged hVEGF to be soluble and that this tag significantly increased the protein's solubility. We successfully purified 0.8 mg of pure hVEGF per 500 mL cell culture. The purified hVEGF is stable after tag cleavage, contains very low levels of endotoxin, and is 97.6% pure. Using an Flk1+ mesodermal precursor cell (MPC) differentiation assay, we show that the purified hVEGF is not only bioactive but has similar bioactivity to hVEGF produced in mammalian cells. Previous reports on producing hVEGF in E. coli have all been based on refolding of the protein from inclusion bodies. To our knowledge, this is the first report on successfully expressing and purifying soluble hVEGF in E. coli.
Collapse
Affiliation(s)
- Minh Tan Nguyen
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Martin Krupa
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Bon-Kyung Koo
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Jung-A Song
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Thu Trang Thi Vu
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Bich Hang Do
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Anh Ngoc Nguyen
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Taewook Seo
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Jiwon Yoo
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Boram Jeong
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Jonghwa Jin
- Osong Medical Innovation Foundation, New Drug Development Center, Division of Drug Screening and Evaluation, Chungbuk, 363–951, Korea
| | - Kyung Jin Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Heung-Bum Oh
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Korea
| | - Han Choe
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
- * E-mail:
| |
Collapse
|
19
|
Lönne M, Bolten S, Lavrentieva A, Stahl F, Scheper T, Walter JG. Development of an aptamer-based affinity purification method for vascular endothelial growth factor. ACTA ACUST UNITED AC 2015; 8:16-23. [PMID: 28352569 PMCID: PMC4980704 DOI: 10.1016/j.btre.2015.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 11/29/2022]
Abstract
Since aptamers bind their targets with high affinity and specificity, they are promising alternative ligands in protein affinity purification. As aptamers are chemically synthesized oligonucleotides, they can be easily produced in large quantities regarding GMP conditions allowing their application in protein production for therapeutic purposes. Several advantages of aptamers compared to antibodies are described in general within this paper. Here, an aptamer directed against the human Vascular Endothelial Growth Factor (VEGF) was used as affinity ligand for establishing a purification platform for VEGF in small scale. The aptamer was covalently immobilized on magnetic beads in a controlled orientation resulting in a functional active affinity matrix. Target binding was optimized by introduction of spacer molecules and variation of aptamer density. Further, salt-induced target elution was demonstrated as well as VEGF purification from a complex protein mixture proving the specificity of protein-aptamer binding.
Collapse
Affiliation(s)
- Maren Lönne
- Institut für Technische Chemie, Leibniz Universität Hannover, Callinstr. 5, D-30167 Hannover, Germany
| | - Svenja Bolten
- Institut für Technische Chemie, Leibniz Universität Hannover, Callinstr. 5, D-30167 Hannover, Germany
| | - Antonina Lavrentieva
- Institut für Technische Chemie, Leibniz Universität Hannover, Callinstr. 5, D-30167 Hannover, Germany
| | - Frank Stahl
- Institut für Technische Chemie, Leibniz Universität Hannover, Callinstr. 5, D-30167 Hannover, Germany
| | - Thomas Scheper
- Institut für Technische Chemie, Leibniz Universität Hannover, Callinstr. 5, D-30167 Hannover, Germany
| | - Johanna-Gabriela Walter
- Institut für Technische Chemie, Leibniz Universität Hannover, Callinstr. 5, D-30167 Hannover, Germany
| |
Collapse
|
20
|
Production of functional human vascular endothelial growth factor165 in transgenic rice cell suspension cultures. Enzyme Microb Technol 2014; 63:58-63. [DOI: 10.1016/j.enzmictec.2014.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 01/18/2023]
|
21
|
Bang SK, Kim YS, Chang BS, Park CB, Bang IS. Production and on-column re-folding of human vascular endothelial growth factor 165 in Escherichia coli. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0829-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Yang Y, Geng X. Mixed-mode chromatography and its applications to biopolymers. J Chromatogr A 2011; 1218:8813-25. [DOI: 10.1016/j.chroma.2011.10.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 10/06/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
|
23
|
Cothran A, John RJS, Schmelzer CH, Pizarro SA. High-pressure refolding of human vascular endothelial growth factor (VEGF) recombinantly expressed in bacterial inclusion bodies: Refolding optimization, and feasibility assessment. Biotechnol Prog 2011; 27:1273-81. [DOI: 10.1002/btpr.642] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/22/2011] [Indexed: 11/08/2022]
|