1
|
Villafañe L, Vaulet LG, Viere FM, Klepp LI, Forrellad MA, Bigi MM, Romano MI, Magistrelli G, Fermepin MR, Bigi F. Development and evaluation of a low cost IgG ELISA test based in RBD protein for COVID-19. J Immunol Methods 2022; 500:113182. [PMID: 34762914 PMCID: PMC8574101 DOI: 10.1016/j.jim.2021.113182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/08/2021] [Accepted: 11/03/2021] [Indexed: 01/24/2023]
Abstract
Serology tests for SARS-CoV-2 have proven to be important tools to fight against the COVID-19 pandemic. These serological tests can be used in low-income and remote areas for patient contact tracing, epidemiologic studies and vaccine efficacy evaluations. In this study, we used a semi-stable mammalian episomal expression system to produce high quantities of the receptor-binding domain-RBD of SARS-CoV-2 in a simple and very economical way. The recombinant antigen was tested in an in-house IgG ELISA for COVID-19 with a panel of human sera. A performance comparison of this serology test with a commercial test based on the full-length spike protein showed 100% of concordance between tests. Thus, this serological test can be an attractive and inexpensive option in scenarios of limited resources to face the COVID-19 pandemic.
Collapse
Affiliation(s)
- Luciana Villafañe
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, NationalInstitute of AgriculturalTechnology), Argentina.
| | - Lucía Gallo Vaulet
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Argentina; Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Argentina
| | | | - Laura I Klepp
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, NationalInstitute of AgriculturalTechnology), Argentina.
| | - Marina A Forrellad
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, NationalInstitute of AgriculturalTechnology), Argentina.
| | - María M Bigi
- Universidad de Buenos Aires, Instituto De Investigaciones Biomédicas (INBIOMED), Argentina.
| | - María I Romano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, NationalInstitute of AgriculturalTechnology), Argentina.
| | | | - Marcelo Rodríguez Fermepin
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Argentina; Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Argentina.
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, NationalInstitute of AgriculturalTechnology), Argentina.
| |
Collapse
|
2
|
Semi-stable Production of Bovine IL-4 and GM-CSF in The Mammalian Episomal Expression System. J Vet Res 2021; 65:315-321. [PMID: 34917844 PMCID: PMC8643090 DOI: 10.2478/jvetres-2021-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction Granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) are cytokines widely used in ex vivo monocyte differentiation experiments, vaccine formulations and disease treatment. The aim of this study was to produce recombinant bovine GM-CSF and IL-4 in an episomal expression system that conserves the postransductional modification of the native proteins and to use the products to differentiate bovine monocytes into dendritic cells. Material and Methods The recombinant proteins rGM-CSF and rIL-4 were expressed in PEAKrapid CRL-2828 human kidney cells, ATCC CRL-2828. The functional activity of the recombinant cytokines was monitored by registering morphological changes in bovine monocytes and assessing the expression of CD14 upon incubation with them. Results Both recombinant proteins were detected in the cell culture supernatant of transfected cells. Culture supernatants of transfected cells induced in bovine monocytes morphological changes that resemble macrophages or dendritic cells. In addition, bovine cells treated with rGM-CSF and rIL-4 showed reduced expression of the macrophage surface marker CD14 compared with untreated cells. This effect indicates the expected differentiation. The expression of the cytokines was stable after many successive cell passages and a freeze/thaw cycle. Conclusions The semi-stable mammalian episomal expression system used in this study allowed us to easily produce functional bovine rGM-CSF and rIL-4 without the need for protein purification steps.
Collapse
|
3
|
Gardnerella vaginalis Vaginolysin (VLY)-Derived MAP8 Peptide (VLY-MAP8) Induced the Production of Egg Yolk IgY Antibodies that Inhibit Erythrocytes Lysis. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-020-10099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Gueneau F, Ravn U, Fischer N. Round optimization for improved discovery of native bispecific antibodies. Methods 2019; 154:51-59. [PMID: 30448477 DOI: 10.1016/j.ymeth.2018.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 01/07/2023] Open
Abstract
The assembly of bispecific antibodies (bsAb) that retain the structure of a standard IgG can be challenging as the correct pairing of the different heavy and light chains has to be ensured while unwanted side products kept to a minimum. The use of antibodies sharing a common chain facilitates assembly of such bsAb formats but requires additional efforts during the initial discovery phase. We have developed a native bsAb format called κλ body based on antibodies that, while being specific for different antigens, share the same heavy chain. Such antibodies can readily be isolated from antibody libraries incorporating a single VH combined with light chain diversity. However, in order to improve the discovery process of such fixed VH antibodies, we developed a method to optimize populations of light chains by recovering and shuffling CDRL3 sequences that have been enriched for antigen binding by phage display selection. This approach allowed for the isolation of a more diverse and potent panel of antibodies blocking the interaction between PD-1 and PD-L1 when compared to our standard in vitro selection approach, thus providing better building blocks for subsequent bsAb generation.
Collapse
Affiliation(s)
- F Gueneau
- Novimmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Switzerland
| | - U Ravn
- Novimmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Switzerland
| | - N Fischer
- Novimmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Switzerland.
| |
Collapse
|
5
|
Hunter M, Yuan P, Vavilala D, Fox M. Optimization of Protein Expression in Mammalian Cells. ACTA ACUST UNITED AC 2018; 95:e77. [DOI: 10.1002/cpps.77] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Fagète S, Botas-Perez L, Rossito-Borlat I, Adea K, Gueneau F, Ravn U, Rousseau F, Kosco-Vilbois M, Fischer N, Hartley O. Dual display: phage selection driven by co-engagement of two targets by two different antibody fragments. Protein Eng Des Sel 2017; 30:575-582. [DOI: 10.1093/protein/gzx021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/13/2017] [Indexed: 01/03/2023] Open
|
7
|
Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG. Nat Commun 2015; 6:6113. [PMID: 25672245 PMCID: PMC4339886 DOI: 10.1038/ncomms7113] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/15/2014] [Indexed: 12/23/2022] Open
Abstract
Bispecific antibodies enable unique therapeutic approaches but it remains a challenge to produce them at the industrial scale, and the modifications introduced to achieve bispecificity often have an impact on stability and risk of immunogenicity. Here we describe a fully human bispecific IgG devoid of any modification, which can be produced at the industrial scale, using a platform process. This format, referred to as a κλ-body, is assembled by co-expressing one heavy chain and two different light chains, one κ and one λ. Using ten different targets, we demonstrate that light chains can play a dominant role in mediating specificity and high affinity. The κλ-bodies support multiple modes of action, and their stability and pharmacokinetic properties are indistinguishable from therapeutic antibodies. Thus, the κλ-body represents a unique, fully human format that exploits light-chain variable domains for antigen binding and light-chain constant domains for robust downstream processing, to realize the potential of bispecific antibodies. Bispecific antibodies allow for novel therapeutic approaches but industrial-scale production and immunogenicity represent significant challenges. Here Fischer et al. describe a unique human bispecific antibody format that exploits differing light chains to overcome these obstacles.
Collapse
|
8
|
Salleron L, Magistrelli G, Mary C, Fischer N, Bairoch A, Lane L. DERA is the human deoxyribose phosphate aldolase and is involved in stress response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2913-25. [PMID: 25229427 DOI: 10.1016/j.bbamcr.2014.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/13/2014] [Accepted: 09/07/2014] [Indexed: 10/24/2022]
Abstract
Deoxyribose-phosphate aldolase (EC 4.1.2.4), which converts 2-deoxy-d-ribose-5-phosphate into glyceraldehyde-3-phosphate and acetaldehyde, belongs to the core metabolism of living organisms. It was previously shown that human cells harbor deoxyribose phosphate aldolase activity but the protein responsible of this activity has never been formally identified. This study provides the first experimental evidence that DERA, which is mainly expressed in lung, liver and colon, is the human deoxyribose phosphate aldolase. Among human cell lines, the highest DERA mRNA level and deoxyribose phosphate aldolase activity were observed in liver-derived Huh-7 cells. DERA was shown to interact with the known stress granule component YBX1 and to be recruited to stress granules after oxidative or mitochondrial stress. In addition, cells in which DERA expression was down-regulated using shRNA formed fewer stress granules and were more prone to apoptosis after clotrimazole stress, suggesting the importance of DERA for stress granule formation. Furthermore, the expression of DERA was shown to permit cells in which mitochondrial ATP production was abolished to make use of extracellular deoxyinosine to maintain ATP levels. This study unraveled a previously undescribed pathway which may allow cells with high deoxyribose-phosphate aldolase activity, such as liver cells, to minimize or delay stress-induced damage by producing energy through deoxynucleoside degradation.
Collapse
Affiliation(s)
- Lisa Salleron
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | | | - Camille Mary
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Amos Bairoch
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland; CALIPHO GroupSIB-Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Lydie Lane
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland; CALIPHO GroupSIB-Swiss Institute of Bioinformatics, Geneva, Switzerland.
| |
Collapse
|
9
|
Magistrelli G, Malinge P. Antigen production for monoclonal antibody generation. Methods Mol Biol 2014; 1131:3-20. [PMID: 24515456 DOI: 10.1007/978-1-62703-992-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The quality of the target antigen is very important in order to generate a good antibody, in particular when binding to a conformational epitope is desired. The use of mammalian cells for recombinant protein expression provides an efficient machinery for the correct folding and posttranslational modification of proteins. In this chapter, we describe a process to rapidly generate semi-stable human cell lines secreting a recombinant protein of interest into the culture medium. Simple disposable bioreactors that can be used in any standard cell culture laboratory enable the production of recombinant protein in the multi-milligram range. The protein can be readily purified from the culture supernatant by immobilized metal affinity chromatography. In addition, by inserting a tag recognized by a co-expressed biotin ligase, the protein can be biotinylated during the secretion process. This greatly facilitates the immobilization of the protein for assay development or for antibody isolation using in vitro selection technologies.
Collapse
|
10
|
Klatt S, Hartl D, Fauler B, Gagoski D, Castro-Obregón S, Konthur Z. Generation and characterization of a Leishmania tarentolae strain for site-directed in vivo biotinylation of recombinant proteins. J Proteome Res 2013; 12:5512-9. [PMID: 24093329 DOI: 10.1021/pr400406c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Leishmania tarentolae is a non-human-pathogenic Leishmania species of growing interest in biotechnology, as it is well-suited for the expression of human recombinant proteins. For many applications it is desirable to express recombinant proteins with a tag allowing easy purification and detection. Hence, we adopted a scheme to express recombinant proteins with a His6-tag and, additionally, to site-specifically in vivo biotinylate them for detection. Biotinylation is a relatively rare modification of endogenous proteins that allows easy detection with negligible cross-reactivity. Here, we established a genetically engineered L. tarentolae strain constitutively expressing the codon-optimized biotin-protein ligase from Escherichia coli (BirA). We thoroughly analyzed the strain for functionality using 2-D polyacrylamide-gel electrophoresis (PAGE), mass spectrometry, and transmission electron microscopy (TEM). We could demonstrate that neither metabolic changes (growth rate) nor structural abnormalities (TEM) occurred. To our knowledge, we show the first 2-D PAGE analyses of L. tarentolae. Our results demonstrate the great benefit of the established L. tarentolae in vivo biotinylation strain for production of dual-tagged recombinant proteins. Additionally, 2-D PAGE and TEM results give insights into the biology of L. tarentolae, helping to better understand Leishmania species. Finally, we envisage that the system is transferable to human-pathogenic species.
Collapse
Affiliation(s)
- Stephan Klatt
- Max Planck Institute for Molecular Genetics , Ihnestr. 63-73, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Contie M, Leger O, Fouque N, Poitevin Y, Kosco-Vilbois M, Mermod N, Elson G. IL-17F co- ;expression improves cell growth characteristics and enhances recombinant protein production during CHO cell line engineering. Biotechnol Bioeng 2012; 110:1153-63. [DOI: 10.1002/bit.24763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/17/2012] [Accepted: 10/08/2012] [Indexed: 12/21/2022]
|
12
|
Fischer S, Charara N, Gerber A, Wölfel J, Schiedner G, Voedisch B, Geisse S. Transient recombinant protein expression in a human amniocyte cell line: The CAP-T® cell system. Biotechnol Bioeng 2012; 109:2250-61. [DOI: 10.1002/bit.24514] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/28/2012] [Accepted: 03/19/2012] [Indexed: 11/10/2022]
|
13
|
Magistrelli G, Malinge P, Anceriz N, Desmurs M, Venet S, Calloud S, Daubeuf B, Kosco-Vilbois M, Fischer N. Robust recombinant FcRn production in mammalian cells enabling oriented immobilization for IgG binding studies. J Immunol Methods 2011; 375:20-9. [PMID: 21939661 DOI: 10.1016/j.jim.2011.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/01/2011] [Accepted: 09/01/2011] [Indexed: 12/28/2022]
Abstract
The MHC class-I related receptor or neonatal Fc receptor (FcRn) protects IgG and albumin from degradation by rescuing them in endothelial cells in a pH dependent fashion and consequently increases their respective half-lives. Monoclonal antibody-based therapies are of increasing interest and characterizing the interaction with FcRn is important for the development of an antibody candidate. In order to facilitate the production of soluble FcRn suitable for interaction studies, we generated semi-stable pools co-expressing FcRn α-chain, β2-microglobulin, biotin ligase and EGFP using a dual promoter, multi-cistronic vector. Human and mouse FcRn were purified in the mg/L range of culture medium and a single purification step was sufficient to reach a high level of purity. The receptors were characterized by ELISA, flow cytometry and surface plasmon resonance and shown to be functional. The single site biotinylation facilitated the directional immobilization of FcRn on the sensor chip and significantly increased the response level of the surface compared to amine coupling used in previous studies. Using this system, the affinity constants of seven IgGs, from various species and isotypes, were determined for human and mouse FcRn, including two hamster isotypes. These results confirm the higher selectivity of the human receptor and the promiscuous binding of mFcRn to IgGs from different species.
Collapse
|