1
|
Visagie JL, Aruwajoye GS, van der Sluis R. Pharmacokinetics of aspirin: evaluating shortcomings in the literature. Expert Opin Drug Metab Toxicol 2024:1-14. [PMID: 39092921 DOI: 10.1080/17425255.2024.2386368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Aspirin is known for its therapeutic benefits in preventing strokes and relieving pain. However, it is toxic to some individuals, and the biological mechanisms causing toxicity are unknown. Limited literature is available on the role of glycine conjugation as the principal pathway in aspirin detoxification. Previous studies have quantified this two-step enzyme reaction as a singular enzymatic process. Consequently, the individual contributions of these enzymes to the kinetics remain unclear. AREAS COVERED This review summarized the available information on the pharmacokinetics and detoxification of aspirin by the glycine conjugation pathway. Literature searches were conducted using Google Scholar and the academic journal databases accessible through the North-West University Library. Furthermore, the factors affecting interindividual variation in aspirin metabolism and what is known regarding aspirin toxicity were discussed. EXPERT OPINION The greatest drawback in understanding the pharmacokinetics of aspirin is the limited information available on the substrate preference of the xenobiotic ligase (ACSM) responsible for activating salicylate to salicyl-CoA. Furthermore, previous pharmacokinetic studies did not consider the contribution of other substrates from the diet or genetic variants, to the detoxification rate of glycine conjugation. Impaired glycine conjugation might contribute to adverse health effects seen in Reye's syndrome and cancer.
Collapse
Affiliation(s)
- Jacobus Lukas Visagie
- Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | | - Rencia van der Sluis
- Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Kühn S, Williams ME, Dercksen M, Sass JO, van der Sluis R. The glycine N-acyltransferases, GLYAT and GLYATL1, contribute to the detoxification of isovaleryl-CoA - an in-silico and in vitro validation. Comput Struct Biotechnol J 2023; 21:1236-1248. [PMID: 36817957 PMCID: PMC9932296 DOI: 10.1016/j.csbj.2023.01.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
Isovaleric acidemia (IVA), due to isovaleryl-CoA dehydrogenase (IVD) deficiency, results in the accumulation of isovaleryl-CoA, isovaleric acid and secondary metabolites. The increase in these metabolites decreases mitochondrial energy production and increases oxidative stress. This contributes to the neuropathological features of IVA. A general assumption in the literature exists that glycine N-acyltransferase (GLYAT) plays a role in alleviating the symptoms experienced by IVA patients through the formation of N-isovalerylglycine. GLYAT forms part of the phase II glycine conjugation pathway in the liver and detoxifies excess acyl-CoA's namely benzoyl-CoA. However, very few studies support GLYAT as the enzyme that conjugates isovaleryl-CoA to glycine. Furthermore, GLYATL1, a paralogue of GLYAT, conjugates phenylacetyl-CoA to glutamine. Therefore, GLYATL1 might also be a candidate for the formation of N-isovalerylglycine. Based on the findings from the literature review, we proposed that GLYAT or GLYATL1 can form N-isovalerylglycine in IVA patients. To test this hypothesis, we performed an in-silico analysis to determine which enzyme is more likely to conjugate isovaleryl-CoA with glycine using AutoDock Vina. Thereafter, we performed in vitro validation using purified enzyme preparations. The in-silico and in vitro findings suggested that both enzymes could form N-isovaleryglycine albeit at lower affinities than their preferred substrates. Furthermore, an increase in glycine concentration does not result in an increase in N-isovalerylglycine formation. The results from the critical literature appraisal, in-silico, and in vitro validation, suggest the importance of further investigating the reaction kinetics and binding behaviors between these substrates and enzymes in understanding the pathophysiology of IVA.
Collapse
Affiliation(s)
- Stefan Kühn
- Focus Area for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Monray E. Williams
- Focus Area for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Marli Dercksen
- Focus Area for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Jörn Oliver Sass
- Research Group Inborn Errors of Metabolism, Institute for Functional Gene Analytics, Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany
| | - Rencia van der Sluis
- Focus Area for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa,Corresponding author.
| |
Collapse
|
3
|
Ni R, Bhandari S, Mitchell PR, Suarez G, Patel NB, Lamb K, Bisht KS, Merkler DJ. Synthesis, Quantification, and Characterization of Fatty Acid Amides from In Vitro and In Vivo Sources. Molecules 2021; 26:molecules26092543. [PMID: 33925418 PMCID: PMC8123904 DOI: 10.3390/molecules26092543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 01/01/2023] Open
Abstract
Fatty acid amides are a diverse family of underappreciated, biologically occurring lipids. Herein, the methods for the chemical synthesis and subsequent characterization of specific members of the fatty acid amide family are described. The synthetically prepared fatty acid amides and those obtained commercially are used as standards for the characterization and quantification of the fatty acid amides produced by biological systems, a fatty acid amidome. The fatty acid amidomes from mouse N18TG2 cells, sheep choroid plexus cells, Drosophila melanogaster, Bombyx mori, Apis mellifera, and Tribolium castaneum are presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kirpal S. Bisht
- Correspondence: (K.S.B.); (D.J.M.); Tel.: +1-813-974-0350 (K.S.B.); +1-813-974-3579 (D.J.M.)
| | - David J. Merkler
- Correspondence: (K.S.B.); (D.J.M.); Tel.: +1-813-974-0350 (K.S.B.); +1-813-974-3579 (D.J.M.)
| |
Collapse
|
4
|
Tian X, Wu L, Jiang M, Zhang Z, Wu R, Miao J, Liu C, Gao S. Downregulation of GLYAT Facilitates Tumor Growth and Metastasis and Poor Clinical Outcomes Through the PI3K/AKT/Snail Pathway in Human Breast Cancer. Front Oncol 2021; 11:641399. [PMID: 33968740 PMCID: PMC8100313 DOI: 10.3389/fonc.2021.641399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background The Glycine N-acyltransferase (GLYAT) gene encodes a protein that catalyzes the transfer of acyl groups from acyl CoA to glycine, resulting in acyl glycine and coenzyme A. Aberrant GLYAT expression is associated with several malignant tumors, but its clinical importance in human breast cancer (BC), has yet to be fully addressed. This study aims to evaluate the clinical function of GLYAT in BC patients. Methods GLYAT expression was determined by immune blot and immunohistochemistry in three BC cell lines and primary cancer tissues. The MDA-MB 231 cell line was used for GLYAT gene knockdown experiments while the MCF7 cell line for overexpression experiments. Colony formation experiments, soft agar experiments, and transwell assays were utilized for further inspection of cell proliferation and migration capabilities. Immunofluorescence and western blot were used to detect markers of the epithelial-mesenchymal transition (EMT) and changes in the PI3K/AKT/Snail pathway. The role of GLYAT in tumor growth and metastasis was also assessed in nude mice in vivo. Also, a correlation analysis was performed between clinicopathological features and GLYAT expression in BC patients. Results GLYAT was decreased in human BC tissues and cell lines. Functional analysis showed that knockdown of GLYAT augmented BC cell proliferation in vitro and in vivo. However, this phenomenon was reversed when GLYAT was overexpressed in the transfected cells. Moreover, downregulation of GLYAT promoted the migratory properties of BC cells, likely through the activation of PI3K/AKT/Snail signaling, which subsequently induced the EMT. IHC analysis indicated that GLYAT was decreased in human BC tissues and lower GLYAT expression was correlated with histological grade, tumor TNM stage, Ki-67 status, and poorer survival in BC patients. Furthermore, lower GLYAT expression seemed as an independent risk factor related to poor prognosis in BC patients based on Cox regression analyses. Conclusion Our findings demonstrate that downregulation of GLYAT expression in human breast cancer is correlated with EMT via the PI3K/AKT/Snail pathway and is also associated with histological grade, tumor TNM stage, Ki-67 status, and poor survival in breast cancer patients.
Collapse
Affiliation(s)
- Xin Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lina Wu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rong Wu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianing Miao
- Key Laboratory of Shengjing Hospital, China Medical University, Shenyang, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Battistini MR, O'Flynn BG, Shoji C, Suarez G, Galloway LC, Merkler DJ. Bm-iAANAT3: Expression and characterization of a novel arylalkylamine N-acyltransferase from Bombyx mori. Arch Biochem Biophys 2018; 661:107-116. [PMID: 30452894 DOI: 10.1016/j.abb.2018.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 01/10/2023]
Abstract
The arylalkylamine N-acyltransferases (AANATs) are enzymes that catalyze the acyl-CoA-dependent formation of N-acylarylalkylamides: acyl-CoA + arylalkylamine → N-acylarylalkylamides + CoA-SH. Herein, we describe our study of a previously uncharacterized AANAT from Bombyx mori: Bm-iAANAT3. Bm-iAANAT3 catalyzes the direct formation of N-acylarylalkylamides and accepts a broad range of short-chain acyl-CoA thioesters and amines as substrates. Acyl-CoA thioesters possessing an acyl chain length >10 carbon atoms are not substrates for Bm-iAANAT3. We report that Bm-iAANAT3 is a "versatile generalist", most likely, functioning in amine acetylation - a reaction in amine inactivation/excretion, cuticle sclerotization, and melanism. We propose a kinetic and chemical mechanism for Bm-iAANAT3 that is consistent with our steady-state kinetic analysis, dead-end inhibition studies, determination of the pH-rate profiles, and site-directed mutagenesis of a catalytically important amino acid in Bm-iAANAT3. These mechanistic studies of Bm-iAANAT3 will foster the development of novel compounds targeted against this enzyme and other insect AANATs for the control of insect pests.
Collapse
Affiliation(s)
| | - Brian G O'Flynn
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Christopher Shoji
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Gabriela Suarez
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Lamar C Galloway
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
6
|
Anderson RL, Battistini MR, Wallis DJ, Shoji C, O'Flynn BG, Dillashaw JE, Merkler DJ. Bm-iAANAT and its potential role in fatty acid amide biosynthesis in Bombyx mori. Prostaglandins Leukot Essent Fatty Acids 2018; 135:10-17. [PMID: 30103920 PMCID: PMC6093294 DOI: 10.1016/j.plefa.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 10/28/2022]
Abstract
The purpose of this research is to unravel the substrate specificity and kinetic properties of an insect arylalkylamine N-acyltransferase from Bombyx mori (Bm-iAANAT) and to determine if this enzyme will catalyze the formation of long chain N-acylarylalkylamides in vitro. However, the determination of substrates and products for Bm-iAANAT in vitro is no guarantee that these same molecules are substrates and products for the enzyme in the organism. Therefore, RT-PCR was performed to detect the Bm-iAANAT transcripts and liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) analysis was performed on purified lipid extracts from B. mori larvae (fourth instar, Bmi4) to determine if long chain fatty acid amides are produced in B. mori. Ultimately, we found that recombinant Bm-iAANAT will utilize long-chain acyl-CoA thioesters as substrates and identified Bm-iAANAT transcripts and long-chain fatty acid amides in Bmi4. Together, these data show Bm-iAANAT will catalyze the formation of long-chain N-acylarylalkylamides in vitro and provide evidence demonstrating that Bm-iAANAT has a role in fatty acid amide biosynthesis in B. mori, as well.
Collapse
Affiliation(s)
- Ryan L Anderson
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | | | - Dylan J Wallis
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Christopher Shoji
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Brian G O'Flynn
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - John E Dillashaw
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
7
|
Jeffries KA, Dempsey DR, Farrell EK, Anderson RL, Garbade GJ, Gurina TS, Gruhonjic I, Gunderson CA, Merkler DJ. Glycine N-acyltransferase-like 3 is responsible for long-chain N-acylglycine formation in N18TG2 cells. J Lipid Res 2016; 57:781-90. [PMID: 27016726 DOI: 10.1194/jlr.m062042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 11/20/2022] Open
Abstract
Long-chain fatty acid amides are signaling lipids found in mammals and other organisms; however, details of the metabolic pathways for the N-acylglycines and primary fatty acid amides (PFAMs) have remained elusive. Heavy-labeled precursor and subtraction lipidomic experiments in mouse neuroblastoma N18TG2 cells, a model cell line for the study of fatty acid amide metabolism, establish the biosynthetic pathways for the N-acylglycines and the PFAMs. We provide evidence that the N-acylglycines are formed by a long-chain specific glycine-conjugating enzyme, glycine N-acyltransferase-like 3 (GLYATL3). siRNA knockdown of GLYATL3 in the N18TG2 cells resulted in a decrease in the levels of the N-acylglycines and the PFAMs. This is the first report of an enzyme responsible for long-chain N-acylglycine production in cellula. The production of the PFAMs in N18TG2 cells was reported to occur by the oxidative cleavage of the N-acylglycines, as catalyzed by peptidylglycine α-amidating monooxygenase (PAM). siRNA knockdown of PAM resulted in an accumulation of [(13)C18]N-oleoylglycine and decreased levels of [(13)C18]oleamide when the N18TG2 cells were grown in the presence of [(13)C18]oleic acid. The addition of [1-(13)C]palmitate to the N18TG2 cell growth media led to the production of a family of [1-(13)C]palmitoylated fatty acid amides, consistent with the biosynthetic pathways detailed herein.
Collapse
Affiliation(s)
| | - Daniel R Dempsey
- Department of Chemistry, University of South Florida, Tampa, FL 33620
| | - Emma K Farrell
- Department of Chemistry, University of South Florida, Tampa, FL 33620
| | - Ryan L Anderson
- Department of Chemistry, University of South Florida, Tampa, FL 33620
| | | | - Tatyana S Gurina
- Department of Chemistry, University of South Florida, Tampa, FL 33620
| | - Imran Gruhonjic
- Department of Chemistry, University of South Florida, Tampa, FL 33620
| | - Carly A Gunderson
- Department of Chemistry, University of South Florida, Tampa, FL 33620
| | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, FL 33620
| |
Collapse
|
8
|
Metabolomic profiles of arsenic (+3 oxidation state) methyltransferase knockout mice: effect of sex and arsenic exposure. Arch Toxicol 2016; 91:189-202. [PMID: 26883664 DOI: 10.1007/s00204-016-1676-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
Arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in the pathway for methylation of inorganic arsenic (iAs). Altered As3mt expression and AS3MT polymorphism have been linked to changes in iAs metabolism and in susceptibility to iAs toxicity in laboratory models and in humans. As3mt-knockout mice have been used to study the association between iAs metabolism and adverse effects of iAs exposure. However, little is known about systemic changes in metabolism of these mice and how these changes lead to their increased susceptibility to iAs toxicity. Here, we compared plasma and urinary metabolomes of male and female wild-type (WT) and As3mt-KO (KO) C57BL/6 mice and examined metabolomic shifts associated with iAs exposure in drinking water. Surprisingly, exposure to 1 ppm As elicited only small changes in the metabolite profiles of either WT or KO mice. In contrast, comparisons of KO mice with WT mice revealed significant differences in plasma and urinary metabolites associated with lipid (phosphatidylcholines, cytidine, acyl-carnitine), amino acid (hippuric acid, acetylglycine, urea), and carbohydrate (L-sorbose, galactonic acid, gluconic acid) metabolism. Notably, most of these differences were sex specific. Sex-specific differences were also found between WT and KO mice in plasma triglyceride and lipoprotein cholesterol levels. Some of the differentially changed metabolites (phosphatidylcholines, carnosine, and sarcosine) are substrates or products of reactions catalyzed by other methyltransferases. These results suggest that As3mt KO alters major metabolic pathways in a sex-specific manner, independent of iAs treatment, and that As3mt may be involved in other cellular processes beyond iAs methylation.
Collapse
|
9
|
Dempsey DR, Carpenter AM, Ospina SR, Merkler DJ. Probing the chemical mechanism and critical regulatory amino acid residues of Drosophila melanogaster arylalkylamine N-acyltransferase like 2. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:1-12. [PMID: 26476413 PMCID: PMC4663176 DOI: 10.1016/j.ibmb.2015.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/04/2015] [Accepted: 10/04/2015] [Indexed: 06/05/2023]
Abstract
Arylalkylamine N-acyltransferase like 2 (AANATL2) catalyzes the formation of N-acylarylalkylamides from the corresponding acyl-CoA and arylalkylamine. The N-acylation of biogenic amines in Drosophila melanogaster is a critical step for the inactivation of neurotransmitters, cuticle sclerotization, and melatonin biosynthesis. In addition, D. melanogaster has been used as a model system to evaluate the biosynthesis of fatty acid amides: a family of potent cell signaling lipids. We have previously showed that AANATL2 catalyzes the formation of N-acylarylakylamides, including long-chain N-acylserotonins and N-acyldopamines. Herein, we define the kinetic mechanism for AANATL2 as an ordered sequential mechanism with acetyl-CoA binding first followed by tyramine to generate the ternary complex prior to catalysis. Bell shaped kcat,app - acetyl-CoA and (kcat/Km)app - acetyl-CoA pH-rate profiles identified two apparent pKa,app values of ∼7.4 and ∼8.9 that are critical to catalysis, suggesting the AANATL2-catalyzed formation of N-acetyltyramine occurs through an acid/base chemical mechanism. Site-directed mutagenesis of a conserved glutamate that corresponds to the catalytic base for other D. melanogaster AANATL enzymes did not produce a substantial depression in the kcat,app value nor did it abolish the pKa,app value attributed to the general base in catalysis (pKa ∼7.4). These data suggest that AANATL2 catalyzes the formation of N-acylarylalkylamides using either different catalytic residues or a different chemical mechanism relative to other D. melanogaster AANATL enzymes. In addition, we constructed other site-directed mutants of AANATL2 to help define the role of targeted amino acids in substrate binding and/or enzyme catalysis.
Collapse
Affiliation(s)
- Daniel R Dempsey
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | | | | | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
10
|
Taylor MS, Dempsey DR, Hwang Y, Chen Z, Chu N, Boeke JD, Cole PA. Mechanistic analysis of ghrelin-O-acyltransferase using substrate analogs. Bioorg Chem 2015; 62:64-73. [PMID: 26246082 DOI: 10.1016/j.bioorg.2015.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 11/15/2022]
Abstract
Ghrelin-O-Acyltransferase (GOAT) is an 11-transmembrane integral membrane protein that octanoylates the metabolism-regulating peptide hormone ghrelin at Ser3 and may represent an attractive target for the treatment of type II diabetes and the metabolic syndrome. Protein octanoylation is unique to ghrelin in humans, and little is known about the mechanism of GOAT or of related protein-O-acyltransferases HHAT or PORC. In this study, we explored an in vitro microsomal ghrelin octanoylation assay to analyze its enzymologic features. Measurement of Km for 10-mer, 27-mer, and synthetic Tat-peptide-containing ghrelin substrates provided evidence for a role of charge interactions in substrate binding. Ghrelin substrates with amino-alanine in place of Ser3 demonstrated that GOAT can catalyze the formation of an octanoyl-amide bond at a similar rate compared with the natural reaction. A pH-rate comparison of these substrates revealed minimal differences in acyltransferase activity across pH 6.0-9.0, providing evidence that these reactions may be relatively insensitive to the basicity of the substrate nucleophile. The conserved His338 residue was required both for Ser3 and amino-Ala3 ghrelin substrates, suggesting that His338 may have a key catalytic role beyond that of a general base.
Collapse
Affiliation(s)
- Martin S Taylor
- Department of Pharmacology & Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Molecular Biology & Genetics and High Throughput Biology Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Dempsey
- Department of Pharmacology & Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yousang Hwang
- Department of Pharmacology & Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zan Chen
- Department of Pharmacology & Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nam Chu
- Department of Pharmacology & Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jef D Boeke
- Department of Molecular Biology & Genetics and High Throughput Biology Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philip A Cole
- Department of Pharmacology & Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Dempsey DR, Jeffries KA, Bond JD, Carpenter AM, Rodriguez-Ospina S, Breydo L, Caswell KK, Merkler DJ. Mechanistic and structural analysis of Drosophila melanogaster arylalkylamine N-acetyltransferases. Biochemistry 2014; 53:7777-93. [PMID: 25406072 PMCID: PMC4270386 DOI: 10.1021/bi5006078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Arylalkylamine N-acetyltransferase (AANAT) catalyzes the penultimate step in the
biosynthesis of melatonin and other N-acetylarylalkylamides
from the corresponding arylalkylamine and acetyl-CoA. The N-acetylation
of arylalkylamines is a critical step in Drosophila melanogaster for the inactivation of the bioactive amines and the sclerotization
of the cuticle. Two AANAT variants (AANATA and AANATB) have been identified
in D. melanogaster, in which AANATA differs from
AANATB by the truncation of 35 amino acids from the N-terminus. We
have expressed and purified both D. melanogaster AANAT
variants (AANATA and AANATB) in Escherichia coli and
used the purified enzymes to demonstrate that this N-terminal truncation
does not affect the activity of the enzyme. Subsequent characterization
of the kinetic and chemical mechanism of AANATA identified an ordered
sequential mechanism, with acetyl-CoA binding first, followed by tyramine.
We used a combination of pH–activity profiling and site-directed
mutagenesis to study prospective residues believed to function in
AANATA catalysis. These data led to an assignment of Glu-47 as the
general base in catalysis with an apparent pKa of 7.0. Using the data generated for the kinetic mechanism,
structure–function relationships, pH–rate profiles,
and site-directed mutagenesis, we propose a chemical mechanism for
AANATA.
Collapse
Affiliation(s)
- Daniel R Dempsey
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | | | | | | | | | | | | | | |
Collapse
|