1
|
Tan K, Jäger C, Geissler S, Schlenzig D, Buchholz M, Ramsbeck D. Synthesis and structure-activity relationships of pyrazole-based inhibitors of meprin α and β. J Enzyme Inhib Med Chem 2023; 38:2165648. [PMID: 36661029 PMCID: PMC9870012 DOI: 10.1080/14756366.2023.2165648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Targeting metalloproteinases has been in the focus of drug design for a long time. However, meprin α and β emerged as potential drug targets just recently and are linked to several diseases with different pathological background. Nevertheless, the validation of meprins as suitable drug targets still requires highly potent and selective inhibitors as chemical probes to elucidate their role in pathophysiology. Albeit highly selective inhibitors of meprin β have already been reported, only inhibitors of meprin α with modest activity or selectivity are known. Starting from recently reported heteroaromatic scaffolds, the aim of this study was the optimisation of meprin α and/or meprin β inhibition while keeping the favourable off-target inhibition profile over other metalloproteases. We report potent pan-meprin inhibitors as well as highly active inhibitors of meprin α with superior selectivity over meprin β. The latter are suitable to serve as chemical probes and enable further target validation.
Collapse
Affiliation(s)
- Kathrin Tan
- Department of Drug Design and Target Validation MWT, Fraunhofer Institute for Cell Therapy and Immunology IZI, Biocenter, Halle (Saale), Germany
| | | | - Stefanie Geissler
- Department of Drug Design and Target Validation MWT, Fraunhofer Institute for Cell Therapy and Immunology IZI, Biocenter, Halle (Saale), Germany
| | - Dagmar Schlenzig
- Department of Drug Design and Target Validation MWT, Fraunhofer Institute for Cell Therapy and Immunology IZI, Biocenter, Halle (Saale), Germany
| | - Mirko Buchholz
- Department of Drug Design and Target Validation MWT, Fraunhofer Institute for Cell Therapy and Immunology IZI, Biocenter, Halle (Saale), Germany
| | - Daniel Ramsbeck
- Department of Drug Design and Target Validation MWT, Fraunhofer Institute for Cell Therapy and Immunology IZI, Biocenter, Halle (Saale), Germany,CONTACT Daniel Ramsbeck Department of Drug Design and Target Validation MWT, Fraunhofer Institute for Cell Therapy and Immunology IZI, Biocenter, Weinbergweg 22, Halle (Saale), 06120, Germany
| |
Collapse
|
2
|
Wang K, Huai S, Tan Z, Ngea GLN, Godana EA, Shi J, Yang Q, Zhang X, Zhao L, Zhang H. A First Expression, Purification and Characterization of Endo-β-1,3-Glucanase from Penicillium expansum. J Fungi (Basel) 2023; 9:961. [PMID: 37888217 PMCID: PMC10608044 DOI: 10.3390/jof9100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
β-1,3-glucanase plays an important role in the biodegradation, reconstruction, and development of β-1,3-glucan. An endo-β-1,3-glucanase which was encoded by PeBgl1 was expressed, purified and characterized from Penicillium expansum for the first time. The PeBgl1 gene was amplified and transformed into the competent cells of E. coli Rosetta strain with the help of the pET-30a cloning vector. The recombinant protein PeBgl1 was expressed successfully at the induction conditions of 0.8 mmol/L IPTG at 16 °C for 16 h and then was purified by nickel ion affinity chromatography. The optimum reaction temperature of PeBgl1 was 55 °C and it had maximal activity at pH 6.0 according to the enzymatic analysis. Na2HPO4-NaH2PO4 buffer (pH 6.0) and NaCl have inhibitory and enhancing effects on the enzyme activities, respectively. SDS, TritonX-100 and some metal ions (Mg2+, Ca2+, Ba2+, Cu2+, and Zn2+) have an inhibitory effect on the enzyme activity. The results showed that PeBgl1 protein has good enzyme activity at 50-60 °C and at pH 5.0-9.0, and it is not a metal dependent enzyme, which makes it robust for storage and transportation, ultimately holding great promise in green biotechnology and biorefining.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (K.W.); (S.H.); (Z.T.); (G.L.N.N.); (E.A.G.); (J.S.); (Q.Y.); (X.Z.); (L.Z.)
| |
Collapse
|
3
|
Song P, Zhang X, Wang S, Xu W, Wang F, Fu R, Wei F. Microbial proteases and their applications. Front Microbiol 2023; 14:1236368. [PMID: 37779686 PMCID: PMC10537240 DOI: 10.3389/fmicb.2023.1236368] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Proteases (proteinases or peptidases) are a class of hydrolases that cleave peptide chains in proteins. Endopeptidases are a type of protease that hydrolyze the internal peptide bonds of proteins, forming shorter peptides; exopeptidases hydrolyze the terminal peptide bonds from the C-terminal or N-terminal, forming free amino acids. Microbial proteases are a popular instrument in many industrial applications. In this review, the classification, detection, identification, and sources of microbial proteases are systematically introduced, as well as their applications in food, detergents, waste treatment, and biotechnology processes in the industry fields. In addition, recent studies on techniques used to express heterologous microbial proteases are summarized to describe the process of studying proteases. Finally, future developmental trends for microbial proteases are discussed.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shuhua Wang
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Wang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Feng Wei
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
4
|
Ziegler B, Yiallouros I, Trageser B, Kumar S, Mercker M, Kling S, Fath M, Warnken U, Schnölzer M, Holstein TW, Hartl M, Marciniak-Czochra A, Stetefeld J, Stöcker W, Özbek S. The Wnt-specific astacin proteinase HAS-7 restricts head organizer formation in Hydra. BMC Biol 2021; 19:120. [PMID: 34107975 PMCID: PMC8191133 DOI: 10.1186/s12915-021-01046-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background The Hydra head organizer acts as a signaling center that initiates and maintains the primary body axis in steady state polyps and during budding or regeneration. Wnt/beta-Catenin signaling functions as a primary cue controlling this process, but how Wnt ligand activity is locally restricted at the protein level is poorly understood. Here we report a proteomic analysis of Hydra head tissue leading to the identification of an astacin family proteinase as a Wnt processing factor. Results Hydra astacin-7 (HAS-7) is expressed from gland cells as an apical-distal gradient in the body column, peaking close beneath the tentacle zone. HAS-7 siRNA knockdown abrogates HyWnt3 proteolysis in the head tissue and induces a robust double axis phenotype, which is rescued by simultaneous HyWnt3 knockdown. Accordingly, double axes are also observed in conditions of increased Wnt activity as in transgenic actin::HyWnt3 and HyDkk1/2/4 siRNA treated animals. HyWnt3-induced double axes in Xenopus embryos could be rescued by coinjection of HAS-7 mRNA. Mathematical modelling combined with experimental promotor analysis indicate an indirect regulation of HAS-7 by beta-Catenin, expanding the classical Turing-type activator-inhibitor model. Conclusions We show the astacin family protease HAS-7 maintains a single head organizer through proteolysis of HyWnt3. Our data suggest a negative regulatory function of Wnt processing astacin proteinases in the global patterning of the oral-aboral axis in Hydra. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01046-9.
Collapse
Affiliation(s)
- Berenice Ziegler
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Irene Yiallouros
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Benjamin Trageser
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Sumit Kumar
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Moritz Mercker
- Institute for Applied Mathematics, Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Svenja Kling
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Maike Fath
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas W Holstein
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Markus Hartl
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Anna Marciniak-Czochra
- Institute for Applied Mathematics, Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2 N2, Canada
| | - Walter Stöcker
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Suat Özbek
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Structure and Dynamics of Meprin β in Complex with a Hydroxamate-Based Inhibitor. Int J Mol Sci 2021; 22:ijms22115651. [PMID: 34073350 PMCID: PMC8197800 DOI: 10.3390/ijms22115651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
The astacin protease Meprin β represents an emerging target for drug development due to its potential involvement in disorders such as acute and chronic kidney injury and fibrosis. Here, we elaborate on the structural basis of inhibition by a specific Meprin β inhibitor. Our analysis of the crystal structure suggests different binding modes of the inhibitor to the active site. This flexibility is caused, at least in part, by movement of the C-terminal region of the protease domain (CTD). The CTD movement narrows the active site cleft upon inhibitor binding. Compared with other astacin proteases, among these the highly homologous isoenzyme Meprin α, differences in the subsites account for the unique selectivity of the inhibitor. Although the inhibitor shows substantial flexibility in orientation within the active site, the structural data as well as binding analyses, including molecular dynamics simulations, support a contribution of electrostatic interactions, presumably by arginine residues, to binding and specificity. Collectively, the results presented here and previously support an induced fit and substantial movement of the CTD upon ligand binding and, possibly, during catalysis. To the best of our knowledge, we here present the first structure of a Meprin β holoenzyme containing a zinc ion and a specific inhibitor bound to the active site. The structural data will guide rational drug design and the discovery of highly potent Meprin inhibitors.
Collapse
|
6
|
Tan K, Jäger C, Körschgen H, Geissler S, Schlenzig D, Buchholz M, Stöcker W, Ramsbeck D. Heteroaromatic Inhibitors of the Astacin Proteinases Meprin α, Meprin β and Ovastacin Discovered by a Scaffold-Hopping Approach. ChemMedChem 2021; 16:976-988. [PMID: 33369214 PMCID: PMC8048867 DOI: 10.1002/cmdc.202000822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Astacin metalloproteinases, in particular meprins α and β, as well as ovastacin, are emerging drug targets. Drug-discovery efforts have led to the development of the first potent and selective inhibitors in the last few years. However, the most recent compounds are based on a highly flexible tertiary amine scaffold that could cause metabolic liabilities or decreased potency due to the entropic penalty upon binding to the target. Thus, the aim of this study was to discover novel conformationally constrained scaffolds as starting points for further inhibitor optimization. Shifting from flexible tertiary amines to rigid heteroaromatic cores resulted in a boost in inhibitory activity. Moreover, some compounds already exhibited higher activity against individual astacin proteinases compared to recently reported inhibitors and also a favorable off-target selectivity profile, thus qualifying them as very suitable chemical probes for target validation.
Collapse
Affiliation(s)
- Kathrin Tan
- Department of Drug Design and Target Validation MWTFraunhofer Institute for Cell Therapy and Immunology IZIBiocenter, Weinbergweg 2206120Halle (Saale)Germany
| | - Christian Jäger
- Department of Drug Design and Target Validation MWTFraunhofer Institute for Cell Therapy and Immunology IZIBiocenter, Weinbergweg 2206120Halle (Saale)Germany
- present address: Vivoryon Therapeutics N.V.Weinbergweg 2206120Halle (Saale)Germany
| | - Hagen Körschgen
- Institute of Molecular PhysiologyCell and Matrix BiologyJohannes Gutenberg-University MainzJohann-Joachim-Becher-Weg 755128MainzGermany
| | - Stefanie Geissler
- Department of Drug Design and Target Validation MWTFraunhofer Institute for Cell Therapy and Immunology IZIBiocenter, Weinbergweg 2206120Halle (Saale)Germany
| | - Dagmar Schlenzig
- Department of Drug Design and Target Validation MWTFraunhofer Institute for Cell Therapy and Immunology IZIBiocenter, Weinbergweg 2206120Halle (Saale)Germany
| | - Mirko Buchholz
- Department of Drug Design and Target Validation MWTFraunhofer Institute for Cell Therapy and Immunology IZIBiocenter, Weinbergweg 2206120Halle (Saale)Germany
| | - Walter Stöcker
- Institute of Molecular PhysiologyCell and Matrix BiologyJohannes Gutenberg-University MainzJohann-Joachim-Becher-Weg 755128MainzGermany
| | - Daniel Ramsbeck
- Department of Drug Design and Target Validation MWTFraunhofer Institute for Cell Therapy and Immunology IZIBiocenter, Weinbergweg 2206120Halle (Saale)Germany
| |
Collapse
|
7
|
Schulze A, Wermann M, Demuth HU, Yoshimoto T, Ramsbeck D, Schlenzig D, Schilling S. Continuous assays for meprin alpha and beta using prolyl tripeptidyl aminopeptidase (PtP) from Porphyromonas gingivalis. Anal Biochem 2018; 559:11-16. [PMID: 30098994 DOI: 10.1016/j.ab.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 01/17/2023]
Abstract
Common assays for endoprotease activity of meprin α and β are based on cleavage of internally quenched substrates. Although direct and convenient, for meprins these assays bear disadvantages such as, e.g., significant substrate inhibition or potential fluorescence quenching by compounds applied in inhibitor analysis. Here, we present a novel continuous assay by introducing an auxiliary enzyme, prolyl tripeptidyl aminopeptidase (PtP) and the chromogenic substrate KKGYVADAP-p-nitroanilide. We provide a quick strategy for expression and one-step-purification of the auxiliary enzyme. The enzyme kinetic data for meprin α and β suggest hyperbolic v/S-characteristics, the kinetic parameters of substrate conversion by meprin β were Km = 184 ± 32 μM and kcat = 20 ± 4 s-1. We also present conditions for the use of the fluorogenic substrate KKGYVADAP-AMC to assess meprin β activity. The assays were applied for determination of inhibitory parameters of the natural inhibitor actinonin and two recently published hydroxamates. Hence, we present two novel methods, which can be applied to assess inhibitory mechanism and potency with the attractive current drug targets meprin α and β. Furthermore, the assay might also provide implications for analysis of other endoproteases as well as their inhibitors.
Collapse
Affiliation(s)
- Anja Schulze
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation (IZI-MWT), Halle (Saale), Germany
| | - Michael Wermann
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation (IZI-MWT), Halle (Saale), Germany
| | - Hans-Ulrich Demuth
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation (IZI-MWT), Halle (Saale), Germany
| | | | - Daniel Ramsbeck
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation (IZI-MWT), Halle (Saale), Germany
| | - Dagmar Schlenzig
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation (IZI-MWT), Halle (Saale), Germany
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation (IZI-MWT), Halle (Saale), Germany.
| |
Collapse
|
8
|
Ramsbeck D, Hamann A, Richter G, Schlenzig D, Geissler S, Nykiel V, Cynis H, Schilling S, Buchholz M. Structure-Guided Design, Synthesis, and Characterization of Next-Generation Meprin β Inhibitors. J Med Chem 2018; 61:4578-4592. [PMID: 29694039 DOI: 10.1021/acs.jmedchem.8b00330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The metalloproteinase meprin β emerged as a current drug target for the treatment of a number of disorders, among those fibrosis, inflammatory bowel disease and Morbus Alzheimer. A major obstacle in the development of metalloprotease inhibitors is target selectivity to avoid side effects by blocking related enzymes with physiological functions. Here, we describe the structure-guided design of a novel series of compounds, based on previously reported highly active meprin β inhibitors. The bioisosteric replacement of the sulfonamide scaffold gave rise to a next generation of meprin inhibitors. Selected compounds based on this novel amine scaffold exhibit high activity against meprin β and also remarkable selectivity over related metalloproteases, i.e., matrix metalloproteases and A disintegrin and metalloproteinases.
Collapse
Affiliation(s)
- Daniel Ramsbeck
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Department of Drug Design and Target Validation MWT , Biocenter, Weinbergweg 22 , 06120 Halle (Saale) , Germany
| | - Antje Hamann
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Department of Drug Design and Target Validation MWT , Biocenter, Weinbergweg 22 , 06120 Halle (Saale) , Germany
| | - Georg Richter
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Department of Drug Design and Target Validation MWT , Biocenter, Weinbergweg 22 , 06120 Halle (Saale) , Germany
| | - Dagmar Schlenzig
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Department of Drug Design and Target Validation MWT , Biocenter, Weinbergweg 22 , 06120 Halle (Saale) , Germany
| | - Stefanie Geissler
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Department of Drug Design and Target Validation MWT , Biocenter, Weinbergweg 22 , 06120 Halle (Saale) , Germany
| | - Vera Nykiel
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Department of Drug Design and Target Validation MWT , Biocenter, Weinbergweg 22 , 06120 Halle (Saale) , Germany
| | - Holger Cynis
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Department of Drug Design and Target Validation MWT , Biocenter, Weinbergweg 22 , 06120 Halle (Saale) , Germany
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Department of Drug Design and Target Validation MWT , Biocenter, Weinbergweg 22 , 06120 Halle (Saale) , Germany
| | - Mirko Buchholz
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Department of Drug Design and Target Validation MWT , Biocenter, Weinbergweg 22 , 06120 Halle (Saale) , Germany
| |
Collapse
|
9
|
Schlenzig D, Schilling S. Heterologous Expression of the Astacin Protease Meprin β in Pichia pastoris. Methods Mol Biol 2017; 1579:35-45. [PMID: 28299731 DOI: 10.1007/978-1-4939-6863-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Meprins are zinc-dependent proteases of the metzincin superfamily of metalloproteases. The enzymes are extracellular multi-domain proteins which are stabilized by disulfide bridges, dimerization, and glycosylation. Due to their complex structure, recombinant expression was first established in mammalian and insect cells. However, these methods have several disadvantages such as high costs and the low yields. For this reason, yeast is often considered a preferable expression system. Here, we describe the manipulation and secretory expression of human meprin β in the methylotrophic yeast P. pastoris. We show that the position of the affinity tag strongly influences the yield of expression, favoring fusion of the affinity tag at the C-terminus.
Collapse
Affiliation(s)
- Dagmar Schlenzig
- Department of Drug Design and Target Validation (IZI-IMWT), Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120, Halle/Saale, Germany
| | - Stephan Schilling
- Department of Drug Design and Target Validation (IZI-IMWT), Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120, Halle/Saale, Germany.
| |
Collapse
|
10
|
Zhang T, Liang J, Wang P, Xu Y, Wang Y, Wei X, Fan M. Purification and characterization of a novel phloretin-2'-O-glycosyltransferase favoring phloridzin biosynthesis. Sci Rep 2016; 6:35274. [PMID: 27731384 PMCID: PMC5059724 DOI: 10.1038/srep35274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/28/2016] [Indexed: 01/20/2023] Open
Abstract
Phloretin-2'-O-glycosyltransferase (P2'GT) catalyzes the last glycosylation step in the biosynthesis of phloridzin that contributes to the flavor, color and health benefits of apples and processed apple products. In this work, a novel P2'GT of Malus x domestica (MdP2'GT) with a specific activity of 46.82 μkat/Kg protein toward phloretin and uridine diphosphate glucose (UDPG) at an optimal temperature of 30 °C and pH 8.0 was purified from the engineered Pichia pastoris broth to homogeneity by anion exchange chromatography, His-Trap affinity chromatography and gel filtration. The purified MdP2'GT was low N-glycosylated and secreted as a stable dimer with a molecular mass of 70.7 kDa in its native form. Importantly, MdP2'GT also exhibited activity towards quercetin and adenosine diphosphate glucose (ADPG), kaempferol and UDPG, quercetin and UDP-galactose, isoliquiritigenin and UDPG, and luteolin and UDPG, producing only one isoquercitrin, astragalin, hyperoside, isoliquiritin, or cynaroside, respectively. This broad spectrum of activities make MdP2'GT a promising biocatalyst for the industrial preparation of the corresponding polyphenol glycosides, preferably for their subsequent isolation and purification. Besides, MdP2'GT displayed the lowest Km and the highest kcat/Km for phloretin and UDPG compared to all previously reported P2'GTs, making MdP2'GT favor phloridzin synthesis the most.
Collapse
Affiliation(s)
- Tingjing Zhang
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, 712100, China
| | - Jianqiang Liang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Panxue Wang
- Department of Food Science, University of Massachusetts, Amherst, MA01003, USA
| | - Ying Xu
- College of Life Science and Engineering, Shaanxi University of Science &Technology, Xi'an, Shaanxi, 710021, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, 712100, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, 712100, China
| |
Collapse
|