1
|
Buyel JF. Towards a seamless product and process development workflow for recombinant proteins produced by plant molecular farming. Biotechnol Adv 2024; 75:108403. [PMID: 38986726 DOI: 10.1016/j.biotechadv.2024.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Plant molecular farming (PMF) has been promoted as a fast, efficient and cost-effective alternative to bacteria and animal cells for the production of biopharmaceutical proteins. Numerous plant species have been tested to produce a wide range of drug candidates. However, PMF generally lacks a systematic, streamlined and seamless workflow to continuously fill the product pipeline. Therefore, it is currently unable to compete with established platforms in terms of routine, throughput and horizontal integration (the rapid translation of product candidates to preclinical and clinical development). Individual management decisions, limited funding and a lack of qualified production capacity can hinder the execution of such projects, but we also lack suitable technologies for sample handling and data management. This perspectives article will highlight current bottlenecks in PMF and offer potential solutions that combine PMF with existing technologies to build an integrated facility of the future for product development, testing, manufacturing and clinical translation. Ten major bottlenecks have been identified and are discussed in turn: automated cloning and simplified transformation options, reproducibility of bacterial cultivation, bioreactor integration with automated cell handling, options for rapid mid-scale candidate and product manufacturing, interconnection with (group-specific or personalized) clinical trials, diversity of (post-)infiltration conditions, development of downstream processing platforms, continuous process operation, compliance of manufacturing conditions with biosafety regulations, scaling requirements for cascading biomass.
Collapse
Affiliation(s)
- J F Buyel
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
2
|
Gruchow HM, Opdensteinen P, Buyel JF. Membrane-based inverse-transition purification facilitates a rapid isolation of various spider-silk elastin-like polypeptide fusion proteins from extracts of transgenic tobacco. Transgenic Res 2024; 33:21-33. [PMID: 38573429 PMCID: PMC11021290 DOI: 10.1007/s11248-024-00375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
Plants can produce complex pharmaceutical and technical proteins. Spider silk proteins are one example of the latter and can be used, for example, as compounds for high-performance textiles or wound dressings. If genetically fused to elastin-like polypeptides (ELPs), the silk proteins can be reversibly precipitated from clarified plant extracts at moderate temperatures of ~ 30 °C together with salt concentrations > 1.5 M, which simplifies purification and thus reduces costs. However, the technologies developed around this mechanism rely on a repeated cycling between soluble and aggregated state to remove plant host cell impurities, which increase process time and buffer consumption. Additionally, ELPs are difficult to detect using conventional staining methods, which hinders the analysis of unit operation performance and process development. Here, we have first developed a surface plasmon resonance (SPR) spectroscopy-based assay to quantity ELP fusion proteins. Then we tested different filters to prepare clarified plant extract with > 50% recovery of spider silk ELP fusion proteins. Finally, we established a membrane-based purification method that does not require cycling between soluble and aggregated ELP state but operates similar to an ultrafiltration/diafiltration device. Using a data-driven design of experiments (DoE) approach to characterize the system of reversible ELP precipitation we found that membranes with pore sizes up to 1.2 µm and concentrations of 2-3 M sodium chloride facilitate step a recovery close to 100% and purities of > 90%. The system can thus be useful for the purification of ELP-tagged proteins produced in plants and other hosts.
Collapse
Affiliation(s)
- H M Gruchow
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - P Opdensteinen
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - J F Buyel
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
- Institute of Bioprocess Science and Engineering (IBSE), Department of Biotechnology (DBT), University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
3
|
Knödler M, Opdensteinen P, Sankaranarayanan RA, Morgenroth A, Buhl EM, Mottaghy FM, Buyel JF. Simple plant-based production and purification of the assembled human ferritin heavy chain as a nanocarrier for tumor-targeted drug delivery and bioimaging in cancer therapy. Biotechnol Bioeng 2023; 120:1038-1054. [PMID: 36539373 DOI: 10.1002/bit.28312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Nanoparticles are used as carriers for the delivery of drugs and imaging agents. Proteins are safer than synthetic nanocarriers due to their greater biocompatibility and the absence of toxic degradation products. In this context, ferritin has the additional benefit of inherently targeting the membrane receptor transferrin 1, which is overexpressed by most cancer cells. Furthermore, this self-assembling multimeric protein can be loaded with more than 2000 iron atoms, as well as drugs, contrast agents, and other cargos. However, recombinant ferritin currently costs ~3.5 million € g-1 , presumably because the limited number of producers cannot meet demand, making it generally unaffordable as a nanocarrier. Because plants can produce proteins at very-large-scale, we developed a simple, proof-of-concept process for the production of the human ferritin heavy chain by transient expression in Nicotiana benthamiana. We optimized the protein yields by screening different compartments and 5'-untranslated regions in PCPs, and selected the best-performing construct for production in differentiated plants. We then established a rapid and scalable purification protocol by combining pH and heat treatment before extraction, followed by an ultrafiltration/diafiltration size-based separation process. The optimized process achieved ferritin levels of ~40 mg kg-1 fresh biomass although depth filtration limited product recovery to ~7%. The purity of the recombinant product was >90% at costs ~3% of the current sales price. Our method therefore allows the production of affordable ferritin heavy chain as a carrier for therapeutic and diagnostic agents, which is suitable for further stability and functionality testing in vitro and in vivo.
Collapse
Affiliation(s)
- Matthias Knödler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Patrick Opdensteinen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | | | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute for Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Johannes Felix Buyel
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| |
Collapse
|
4
|
Opdensteinen P, Sperl LE, Mohamadi M, Kündgen‐Redding N, Hagn F, Buyel JF. The transient expression of recombinant proteins in plant cell packs facilitates stable isotope labelling for NMR spectroscopy. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1928-1939. [PMID: 35702941 PMCID: PMC9491462 DOI: 10.1111/pbi.13873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/05/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy can be used to determine the structure, dynamics and interactions of proteins. However, protein NMR requires stable isotope labelling for signal detection. The cells used for the production of recombinant proteins must therefore be grown in medium containing isotopically labelled substrates. Stable isotope labelling is well established in Escherichia coli, but bacteria are only suitable for the production of simple proteins without post-translational modifications. More complex proteins require eukaryotic production hosts, but their growth can be impaired by labelled media, thus reducing product yields and increasing costs. To address this limitation, we used media supplemented with isotope-labelled substrates to cultivate the tobacco-derived cell line BY-2, which was then cast into plant cell packs (PCPs) for the transient expression of a labelled version of the model protein GB1. Mass spectrometry confirmed the feasibility of isotope labelling with 15 N and 2 H using this approach. The resulting NMR spectrum featured a signal dispersion comparable to recombinant GB1 produced in E. coli. PCPs therefore offer a rapid and cost-efficient alternative for the production of isotope-labelled proteins for NMR analysis, especially suitable for complex proteins that cannot be produced in microbial systems.
Collapse
Affiliation(s)
- Patrick Opdensteinen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Laura E. Sperl
- Bavarian NMR Center (BNMRZ) at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Mariam Mohamadi
- Bavarian NMR Center (BNMRZ) at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | | | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Johannes Felix Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
5
|
Huebbers JW, Buyel JF. On the verge of the market - Plant factories for the automated and standardized production of biopharmaceuticals. Biotechnol Adv 2020; 46:107681. [PMID: 33326816 DOI: 10.1016/j.biotechadv.2020.107681] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/19/2020] [Accepted: 12/08/2020] [Indexed: 12/28/2022]
Abstract
The market for biopharmaceuticals is dominated by recombinant proteins and is driven mainly by the development of vaccines and antibodies. Manufacturing predominantly relies on fermentation-based production platforms, which have limited scalability and suffer from high upstream process costs. As an alternative, the production of recombinant proteins in whole plants (plant molecular farming) provides a scalable and cost efficient upstream process because each plant functions as a self-contained bioreactor, avoiding costs associated with single-use devices and cleaning-in-place. Despite many proof-of-concept studies and the approval of a few products as medical devices, the only approved pharmaceutical proteins manufactured in whole plants have been authorized under emergency protocols. The absence of approvals under standard clinical development pathways in part reflects the lack of standardized process equipment and unit operations, leading to industry inertia based on familiarity with fermenter systems. Here we discuss the upstream production steps of plant molecular farming by transient expression in intact plants, including seeding, plant cultivation, infiltration with Agrobacterium tumefaciens, post-infiltration incubation, and harvesting. We focus on cultivation techniques because they strongly affect the subsequent steps and overall process design. We compare the benefits and drawbacks of open field, greenhouse and vertical farm strategies in terms of upfront investment costs, batch reproducibility, and decoupling from environmental impacts. We consider process automation, monitoring and adaptive process design in the context of Industry 4.0, which can boost process efficiency and batch-to-batch uniformity to improve regulatory compliance. Finally, we discuss the costs-benefit aspects of the different cultivation systems.
Collapse
Affiliation(s)
- J W Huebbers
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany.
| | - J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
6
|
Poborilova Z, Plchova H, Cerovska N, Gunter CJ, Hitzeroth II, Rybicki EP, Moravec T. Transient protein expression in tobacco BY-2 plant cell packs using single and multi-cassette replicating vectors. PLANT CELL REPORTS 2020; 39:1115-1127. [PMID: 32333151 PMCID: PMC7223956 DOI: 10.1007/s00299-020-02544-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/08/2020] [Indexed: 05/23/2023]
Abstract
KEY MESSAGE This is the first evidence that replicating vectors can be successfully used for transient protein expression in BY-2 plant cell packs. Transient recombinant protein expression in plants and recently also plant cell cultures are of increasing interest due to the speed, safety and scalability of the process. Currently, studies are focussing on the design of plant virus-derived vectors to achieve higher amounts of transiently expressed proteins in these systems. Here we designed and tested replicating single and multi-cassette vectors that combine elements for enhanced replication and hypertranslation, and assessed their ability to express and particularly co-express proteins by Agrobacterium-mediated transient expression in tobacco BY-2 plant cell packs. Substantial yields of green and red fluorescent proteins of up to ~ 700 ng/g fresh mass were detected in the plant cells along with position-dependent expression. This is the first evidence of the ability of replicating vectors to transiently express proteins in BY-2 plant cell packs.
Collapse
Affiliation(s)
- Zuzana Poborilova
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Helena Plchova
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Noemi Cerovska
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Cornelius J Gunter
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Tomas Moravec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Diamos AG, Hunter JGL, Pardhe MD, Rosenthal SH, Sun H, Foster BC, DiPalma MP, Chen Q, Mason HS. High Level Production of Monoclonal Antibodies Using an Optimized Plant Expression System. Front Bioeng Biotechnol 2020; 7:472. [PMID: 32010680 PMCID: PMC6978629 DOI: 10.3389/fbioe.2019.00472] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/23/2019] [Indexed: 12/04/2022] Open
Abstract
Biopharmaceuticals are a large and fast-growing sector of the total pharmaceutical market with antibody-based therapeutics accounting for over 100 billion USD in sales yearly. Mammalian cells are traditionally used for monoclonal antibody production, however plant-based expression systems have significant advantages. In this work, we showcase recent advances made in plant transient expression systems using optimized geminiviral vectors that can efficiently produce heteromultimeric proteins. Two, three, or four fluorescent proteins were coexpressed simultaneously, reaching high yields of 3–5 g/kg leaf fresh weight or ~50% total soluble protein. As a proof-of-concept for this system, various antibodies were produced using the optimized vectors with special focus given to the creation and production of a chimeric broadly neutralizing anti-flavivirus antibody. The variable regions of this murine antibody, 2A10G6, were codon optimized and fused to a human IgG1. Analysis of the chimeric antibody showed that it was efficiently expressed in plants at 1.5 g of antibody/kilogram of leaf tissue, can be purified to near homogeneity by a simple one-step purification process, retains its ability to recognize the Zika virus envelope protein, and potently neutralizes Zika virus. Two other monoclonal antibodies were produced at similar levels (1.2–1.4 g/kg). This technology will be a versatile tool for the production of a wide spectrum of pharmaceutical multi-protein complexes in a fast, powerful, and cost-effective way.
Collapse
Affiliation(s)
- Andrew G Diamos
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Joseph G L Hunter
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Mary D Pardhe
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Sun H Rosenthal
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Haiyan Sun
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Bonnie C Foster
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Michelle P DiPalma
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Qiang Chen
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Hugh S Mason
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
8
|
Gengenbach BB, Keil LL, Opdensteinen P, Müschen CR, Melmer G, Lentzen H, Bührmann J, Buyel JF. Comparison of microbial and transient expression (tobacco plants and plant-cell packs) for the production and purification of the anticancer mistletoe lectin viscumin. Biotechnol Bioeng 2019; 116:2236-2249. [PMID: 31140580 PMCID: PMC6772165 DOI: 10.1002/bit.27076] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 01/02/2023]
Abstract
Cancer is the leading cause of death in industrialized countries. Cancer therapy often involves monoclonal antibodies or small-molecule drugs, but carbohydrate-binding lectins such as mistletoe (Viscum album) viscumin offer a potential alternative treatment strategy. Viscumin is toxic in mammalian cells, ruling them out as an efficient production system, and it forms inclusion bodies in Escherichia coli such that purification requires complex and lengthy refolding steps. We therefore investigated the transient expression of viscumin in intact Nicotiana benthamiana plants and Nicotiana tabacum Bright Yellow 2 plant-cell packs (PCPs), comparing a full-length viscumin gene construct to separate constructs for the A and B chains. As determined by capillary electrophoresis the maximum yield of purified heterodimeric viscumin in N. benthamiana was ~7 mg/kg fresh biomass with the full-length construct. The yield was about 50% higher in PCPs but reduced 10-fold when coexpressing A and B chains as individual polypeptides. Using a single-step lactosyl-Sepharose affinity resin, we purified viscumin to ~54%. The absence of refolding steps resulted in estimated cost savings of more than 80% when transient expression in tobacco was compared with E. coli. Furthermore, the plant-derived product was ~3-fold more toxic than the bacterially produced counterpart. We conclude that plants offer a suitable alternative for the production of complex biopharmaceutical proteins that are toxic to mammalian cells and that form inclusion bodies in bacteria.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/biosynthesis
- Antineoplastic Agents, Phytogenic/isolation & purification
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Plant Cells/metabolism
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- Plant Proteins/isolation & purification
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/genetics
- Recombinant Proteins/isolation & purification
- Ribosome Inactivating Proteins, Type 2/biosynthesis
- Ribosome Inactivating Proteins, Type 2/genetics
- Ribosome Inactivating Proteins, Type 2/isolation & purification
- Nicotiana/genetics
- Nicotiana/metabolism
- Toxins, Biological/biosynthesis
- Toxins, Biological/genetics
- Toxins, Biological/isolation & purification
Collapse
Affiliation(s)
- Benjamin B. Gengenbach
- Integrated Production PlatformsFraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Linda L. Keil
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Patrick Opdensteinen
- Integrated Production PlatformsFraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Catherine R. Müschen
- Integrated Production PlatformsFraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | | | | | | | - Johannes F. Buyel
- Integrated Production PlatformsFraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
9
|
Buyel JF. Plant Molecular Farming - Integration and Exploitation of Side Streams to Achieve Sustainable Biomanufacturing. FRONTIERS IN PLANT SCIENCE 2019; 9:1893. [PMID: 30713542 PMCID: PMC6345721 DOI: 10.3389/fpls.2018.01893] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/06/2018] [Indexed: 05/22/2023]
Abstract
Plants have unique advantages over other systems such as mammalian cells for the production of valuable small molecules and proteins. The benefits cited most often include safety due to the absence of replicating human pathogens, simplicity because sterility is not required during production, scalability due to the potential for open-field cultivation with transgenic plants, and the speed of transient expression potentially providing gram quantities of product in less than 4 weeks. Initially there were also significant drawbacks, such as the need to clarify feed streams with a high particle burden and the large quantities of host cell proteins, but efficient clarification is now readily achieved. Several additional advantages have also emerged reflecting the fact that plants are essentially biodegradable, single-use bioreactors. This article will focus on the exploitation of this concept for the production of biopharmaceutical proteins, thus improving overall process economics. Specifically, we will discuss the single-use properties of plants, the sustainability of the production platform, and the commercial potential of different biomass side streams. We find that incorporating these side streams through rational process integration has the potential to more than double the revenue that can currently be achieved using plant-based production systems.
Collapse
Affiliation(s)
- Johannes F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Knödler M, Rühl C, Emonts J, Buyel JF. Seasonal Weather Changes Affect the Yield and Quality of Recombinant Proteins Produced in Transgenic Tobacco Plants in a Greenhouse Setting. FRONTIERS IN PLANT SCIENCE 2019; 10:1245. [PMID: 31649707 PMCID: PMC6791924 DOI: 10.3389/fpls.2019.01245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/06/2019] [Indexed: 05/07/2023]
Abstract
Transgenic plants have the potential to produce recombinant proteins on an agricultural scale, with yields of several tons per year. The cost-effectiveness of transgenic plants increases if simple cultivation facilities such as greenhouses can be used for production. In such a setting, we expressed a novel affinity ligand based on the fluorescent protein DsRed, which we used as a carrier for the linear epitope ELDKWA from the HIV-neutralizing antibody 2F5. The DsRed-2F5-epitope (DFE) fusion protein was produced in 12 consecutive batches of transgenic tobacco (Nicotiana tabacum) plants over the course of 2 years and was purified using a combination of blanching and immobilized metal-ion affinity chromatography (IMAC). The average purity after IMAC was 57 ± 26% (n = 24) in terms of total soluble protein, but the average yield of pure DFE (12 mg kg-1) showed substantial variation (± 97 mg kg-1, n = 24) which correlated with seasonal changes. Specifically, we found that temperature peaks (>28°C) and intense illuminance (>45 klx h-1) were associated with lower DFE yields after purification, reflecting the loss of the epitope-containing C-terminus in up to 90% of the product. Whereas the weather factors were of limited use to predict product yields of individual harvests conducted for each batch (spaced by 1 week), the average batch yields were well approximated by simple linear regression models using two independent variables for prediction (illuminance and plant age). Interestingly, accumulation levels determined by fluorescence analysis were not affected by weather conditions but positively correlated with plant age, suggesting that the product was still expressed at high levels, but the extreme conditions affected its stability, albeit still preserving the fluorophore function. The efficient production of intact recombinant proteins in plants may therefore require adequate climate control and shading in greenhouses or even cultivation in fully controlled indoor farms.
Collapse
Affiliation(s)
- Matthias Knödler
- Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Clemens Rühl
- Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Jessica Emonts
- Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Johannes Felix Buyel
- Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- *Correspondence: Johannes Felix Buyel, ;
| |
Collapse
|
11
|
Rühl C, Knödler M, Opdensteinen P, Buyel JF. A linear epitope coupled to DsRed provides an affinity ligand for the capture of monoclonal antibodies. J Chromatogr A 2018; 1571:55-64. [PMID: 30104060 DOI: 10.1016/j.chroma.2018.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/19/2018] [Accepted: 08/05/2018] [Indexed: 12/16/2022]
Abstract
Monoclonal antibodies (mAbs) dominate the market for biopharmaceutical proteins because they provide active and passive immunotherapies for many different diseases. However, for most mAbs, two expensive manufacturing platforms are required. These are mammalian cell cultures for upstream production and Protein A chromatography for product capture during downstream processing. Here we describe a novel affinity ligand based on the fluorescent protein DsRed as a carrier for the linear epitope ELDKWA, which can capture the HIV-neutralizing antibody 2F5. We produced the DsRed-2F5-Epitope (DFE) in transgenic tobacco (Nicotiana tabacum) plants and purified it using a combination of heat treatment and immobilized metal-ion affinity chromatography, resulting in a yield of 24 mg kg-1 at 90% purity. Using a design-of-experiments approach, we coupled up to 15 mg DFE per mL Sepharose. The resulting affinity resin was able to capture 2F5 from the clarified extract of N. benthamiana plants, achieving a purity of 97%, a recovery of >95% and an initial dynamic binding capacity at 10% product breakthrough of 4 mg mL-1 after a contact time of 2 min. The resin capacity declined to 15% of the starting value within 25 cycles when 1.25 M magnesium chloride was used for elution. We confirmed the binding activity of the 2F5 product by surface plasmon resonance spectroscopy. DFE is not yet optimized, and a cost analysis revealed that boosting DFE expression and increasing its capacity by fourfold will make the resin cost-competitive with some Protein A counterparts. The affinity resin can also be exploited to purify idiotype-specific mAbs.
Collapse
Affiliation(s)
- C Rühl
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany.
| | - M Knödler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany.
| | - P Opdensteinen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany.
| | - J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany; Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|