1
|
Reininghaus N, Paisdzior S, Höpfner F, Jyrch S, Cetindag C, Scheerer P, Kühnen P, Biebermann H. A Setmelanotide-like Effect at MC4R Is Achieved by MC4R Dimer Separation. Biomolecules 2022; 12:biom12081119. [PMID: 36009013 PMCID: PMC9405727 DOI: 10.3390/biom12081119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 01/22/2023] Open
Abstract
Melanocortin 4 receptor (MC4R) is part of the leptin-melanocortin pathway and plays an essential role in mediating energy homeostasis. Mutations in the MC4R are the most frequent monogenic cause for obesity. Due to increasing numbers of people with excess body weight, the MC4R has become a target of interest in the search of treatment options. We have previously reported that the MC4R forms homodimers, affecting receptor Gs signaling properties. Recent studies introducing setmelanotide, a novel synthetic MC4R agonist, suggest a predominant role of the Gq/11 pathway regarding weight regulation. In this study, we analyzed effects of inhibiting homodimerization on Gq/11 signaling using previously reported MC4R/CB1R chimeras. NanoBRETTM studies to determine protein–protein interaction were conducted, confirming decreased homodimerization capacities of chimeric receptors in HEK293 cells. Gq/11 signaling of chimeric receptors was analyzed using luciferase-based reporter gene (NFAT) assays. Results demonstrate an improvement of alpha-MSH-induced NFAT signaling of chimeras, reaching the level of setmelanotide signaling at wild-type MC4R (MC4R-WT). In summary, our study shows that inhibiting homodimerization has a setmelanotide-like effect on Gq/11 signaling, with chimeric receptors presenting increased potency compared to MC4R-WT. These findings indicate the potential of inhibiting MC4R homodimerization as a therapeutic target to treat obesity.
Collapse
Affiliation(s)
- Nanina Reininghaus
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sarah Paisdzior
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Friederike Höpfner
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sabine Jyrch
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Cigdem Cetindag
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Patrick Scheerer
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13353 Berlin, Germany
| | - Peter Kühnen
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Heike Biebermann
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Pediatric Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany
- Correspondence:
| |
Collapse
|
2
|
Differential Signaling Profiles of MC4R Mutations with Three Different Ligands. Int J Mol Sci 2020; 21:ijms21041224. [PMID: 32059383 PMCID: PMC7072973 DOI: 10.3390/ijms21041224] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/21/2022] Open
Abstract
The melanocortin 4 receptor (MC4R) is a key player in hypothalamic weight regulation and energy expenditure as part of the leptin–melanocortin pathway. Mutations in this G protein coupled receptor (GPCR) are the most common cause for monogenetic obesity, which appears to be mediated by changes in the anorectic action of MC4R via GS-dependent cyclic adenosine-monophosphate (cAMP) signaling as well as other signaling pathways. To study potential bias in the effects of MC4R mutations between the different signaling pathways, we investigated three major MC4R mutations: a GS loss-of-function (S127L) and a GS gain-of-function mutant (H158R), as well as the most common European single nucleotide polymorphism (V103I). We tested signaling of all four major G protein families plus extracellular regulated kinase (ERK) phosphorylation and β-arrestin2 recruitment, using the two endogenous agonists, α- and β-melanocyte stimulating hormone (MSH), along with a synthetic peptide agonist (NDP-α-MSH). The S127L mutation led to a full loss-of-function in all investigated pathways, whereas V103I and H158R were clearly biased towards the Gq/11 pathway when challenged with the endogenous ligands. These results show that MC4R mutations can cause vastly different changes in the various MC4R signaling pathways and highlight the importance of a comprehensive characterization of receptor mutations.
Collapse
|
3
|
Dores RM, Liang L, Hollmann RE, Sandhu N, Vijayan MM. Identifying the activation motif in the N-terminal of rainbow trout and zebrafish melanocortin-2 receptor accessory protein 1 (MRAP1) orthologs. Gen Comp Endocrinol 2016; 234:117-22. [PMID: 26752246 DOI: 10.1016/j.ygcen.2015.12.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 10/22/2022]
Abstract
The activation of mammalian melanocortin-2 receptor (MC2R) orthologs is dependent on a four-amino acid activation motif (LDYL/I) located in the N-terminal of mammalian MRAP1 (melanocortin-2 receptor accessory protein). Previous alanine substitution analysis had shown that the Y residue in this motif appears to be the most important for mediating the activation of mammalian MC2R orthologs. Similar, but not identical amino acid motifs were detected in rainbow trout MRAP1 (YDYL) and zebrafish MRAP1 (YDYV). To determine the importance of these residues in the putative activation motifs, rainbow trout and zebrafish MRAP1 orthologs were individually co-expressed in CHO cells with rainbow trout MC2R, and the activation of this receptor with either the wild-type MRAP1 ortholog or alanine-substituted analogs of the two teleost MRAP1s was analyzed. Alanine substitutions at all four amino acid positions in rainbow trout MRAP1 blocked activation of the rainbow trout MC2R. Single alanine substitutions of the D and Y residues in rainbow trout and zebrafish MRAP1 indicate that these two residues play a significant role in the activation of rainbow trout MC2R. These observations indicate that there are subtle differences in the way that teleost and mammalian MRAPs are involved in the activation of their corresponding MC2R orthologs.
Collapse
Affiliation(s)
- Robert M Dores
- University of Denver, Department of Biological Sciences, Denver, CO, USA.
| | - Liang Liang
- University of Denver, Department of Biological Sciences, Denver, CO, USA
| | - Rebecca E Hollmann
- University of Denver, Department of Biological Sciences, Denver, CO, USA
| | - Navdeep Sandhu
- University of Calgary, Department of Biological Sciences, Calgary, Canada
| | | |
Collapse
|
4
|
Dores RM, Liang L, Davis P, Thomas AL, Petko B. 60 YEARS OF POMC: Melanocortin receptors: evolution of ligand selectivity for melanocortin peptides. J Mol Endocrinol 2016; 56:T119-33. [PMID: 26792827 DOI: 10.1530/jme-15-0292] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 01/31/2023]
Abstract
The evolution of the melanocortin receptors (MCRs) is linked to the evolution of adrenocorticotrophic hormone (ACTH), the melanocyte-stimulating hormones (MSHs), and their common precursor pro-opiomelanocortin (POMC). The origin of the MCRs and POMC appears to be grounded in the early radiation of the ancestral protochordates. During the genome duplications that have occurred during the evolution of the chordates, the organization plan for POMC was established, and features that have been retained include, the high conservation of the amino acid sequences of α-MSH and ACTH, and the presence of the HFRW MCR activation motif in all of the melanocortin peptides (i.e. ACTH, α-MSH, β-MSH, γ-MSH, and δ-MSH). For the MCRs, the chordate genome duplication events resulted in the proliferation of paralogous receptor genes, and a divergence in ligand selectivity. While most gnathostome MCRs can be activated by either ACTH or the MSHs, teleost and tetrapod MC2R orthologs can only be activated by ACTH. The appearance of the accessory protein, MRAP1, paralleled the emergence of teleost and tetrapods MC2R ligand selectivity, and the dependence of these orthologs on MRAP1 for trafficking to the plasma membrane. The accessory protein, MRAP2, does not affect MC2R ligand selectivity, but does influence the functionality of MC4R orthologs. In this regard, the roles that these accessory proteins may play in the physiology of the five MCRs (i.e. MC1R, MC2R, MC3R, MC4R, and MC5R) are discussed.
Collapse
Affiliation(s)
- Robert M Dores
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| | - Liang Liang
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| | - Perry Davis
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| | - Alexa L Thomas
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| | - Bogdana Petko
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| |
Collapse
|
5
|
Dores RM. Hypothesis and Theory: Revisiting Views on the Co-evolution of the Melanocortin Receptors and the Accessory Proteins, MRAP1 and MRAP2. Front Endocrinol (Lausanne) 2016; 7:79. [PMID: 27445982 PMCID: PMC4923161 DOI: 10.3389/fendo.2016.00079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/17/2016] [Indexed: 01/09/2023] Open
Abstract
The evolution of the melanocortin receptors (MCRs) is closely associated with the evolution of the melanocortin-2 receptor accessory proteins (MRAPs). Recent annotation of the elephant shark genome project revealed the sequence of a putative MRAP1 ortholog. The presence of this sequence in the genome of a cartilaginous fish raises the possibility that the mrap1 and mrap2 genes in the genomes of gnathostome vertebrates were the result of the chordate 2R genome duplication event. The presence of a putative MRAP1 ortholog in a cartilaginous fish genome is perplexing. Recent studies on melanocortin-2 receptor (MC2R) in the genomes of the elephant shark and the Japanese stingray indicate that these MC2R orthologs can be functionally expressed in CHO cells without co-expression of an exogenous mrap1 cDNA. The novel ligand selectivity of these cartilaginous fish MC2R orthologs is discussed. Finally, the origin of the mc2r and mc5r genes is reevaluated. The distinctive primary sequence conservation of MC2R and MC5R is discussed in light of the physiological roles of these two MCR paralogs.
Collapse
Affiliation(s)
- Robert M. Dores
- Department of Biological Sciences, University of Denver, Denver, CO, USA
- *Correspondence: Robert M. Dores,
| |
Collapse
|
6
|
Malik S, Dolan TM, Maben ZJ, Hinkle PM. Adrenocorticotropic Hormone (ACTH) Responses Require Actions of the Melanocortin-2 Receptor Accessory Protein on the Extracellular Surface of the Plasma Membrane. J Biol Chem 2015; 290:27972-85. [PMID: 26424796 DOI: 10.1074/jbc.m115.668491] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 01/26/2023] Open
Abstract
The melanocortin-2 (MC2) receptor is a G protein-coupled receptor that mediates responses to ACTH. The MC2 receptor acts in concert with the MC2 receptor accessory protein (MRAP) that is absolutely required for ACTH binding and signaling. MRAP has a single transmembrane domain and forms a highly unusual antiparallel homodimer that is stably associated with MC2 receptors at the plasma membrane. Despite the physiological importance of the interaction between the MC2 receptor and MRAP, there is little understanding of how the accessory protein works. The dual topology of MRAP has made it impossible to determine whether highly conserved and necessary regions of MRAP are required on the intracellular or extracellular face of the plasma membrane. The strategy used here was to fix the orientation of two antiparallel MRAP molecules and then introduce inactivating mutations on one side of the membrane or the other. This was achieved by engineering proteins containing tandem copies of MRAP fused to the amino terminus of the MC2 receptor. The data firmly establish that only the extracellular amino terminus (Nout) copy of MRAP, oriented with critical segments on the extracellular side of the membrane, is essential. The transmembrane domain of MRAP is also required in only the Nout orientation. Finally, activity of MRAP-MRAP-MC2-receptor fusion proteins with inactivating mutations in either MRAP or the receptor was rescued by co-expression of free wild-type MRAP or free wild-type receptor. These results show that the basic MRAP-MRAP-receptor signaling unit forms higher order complexes and that these multimers signal.
Collapse
Affiliation(s)
- Sundeep Malik
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center Rochester, New York 14642
| | - Terrance M Dolan
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center Rochester, New York 14642
| | - Zachary J Maben
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center Rochester, New York 14642
| | - Patricia M Hinkle
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center Rochester, New York 14642
| |
Collapse
|
7
|
Abstract
The large-scale production of recombinant G protein-coupled receptors (GPCRs) is one of the major bottlenecks that hamper functional and structural studies of this important class of integral membrane proteins. Heterologous overexpression of GPCRs often results in low yields of active protein, usually due to a combination of several factors, such as low expression levels, protein insolubility, host cell toxicity, and the need to use harsh and often denaturing detergents (e.g., SDS, LDAO, OG, and DDM, among others) to extract the recombinant receptor from the host cell membrane. Many of these problematic issues are inherently linked to cell-based expression systems and can therefore be circumvented by the use of cell-free systems. In this unit, we provide a range of protocols for the production of GPCRs in a cell-free expression system. Using this system, we typically obtain GPCR expression levels of ∼1 mg per ml of reaction mixture in the continuous-exchange configuration. Although the protocols in this unit have been optimized for the cell-free expression of GPCRs, they should provide a good starting point for the production of other classes of membrane proteins, such as ion channels, aquaporins, carrier proteins, membrane-bound enzymes, and even large molecular complexes.
Collapse
Affiliation(s)
- Kenneth Segers
- VIB Center for the Biology of Disease, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.,Structural Biology Group, Biologics Research Europe, Janssen Research & Development, Beerse, Belgium
| | - Stefan Masure
- Structural Biology Group, Biologics Research Europe, Janssen Research & Development, Beerse, Belgium
| |
Collapse
|
8
|
Abstract
The purpose of this article is to review fundamentals in adrenal gland histophysiology. Key findings regarding the important signaling pathways involved in the regulation of steroidogenesis and adrenal growth are summarized. We illustrate how adrenal gland morphology and function are deeply interconnected in which novel signaling pathways (Wnt, Sonic hedgehog, Notch, β-catenin) or ionic channels are required for their integrity. Emphasis is given to exploring the mechanisms and challenges underlying the regulation of proliferation, growth, and functionality. Also addressed is the fact that while it is now well-accepted that steroidogenesis results from an enzymatic shuttle between mitochondria and endoplasmic reticulum, key questions still remain on the various aspects related to cellular uptake and delivery of free cholesterol. The significant progress achieved over the past decade regarding the precise molecular mechanisms by which the two main regulators of adrenal cortex, adrenocorticotropin hormone (ACTH) and angiotensin II act on their receptors is reviewed, including structure-activity relationships and their potential applications. Particular attention has been given to crucial second messengers and how various kinases, phosphatases, and cytoskeleton-associated proteins interact to ensure homeostasis and/or meet physiological demands. References to animal studies are also made in an attempt to unravel associated clinical conditions. Many of the aspects addressed in this article still represent a challenge for future studies, their outcome aimed at providing evidence that the adrenal gland, through its steroid hormones, occupies a central position in many situations where homeostasis is disrupted, thus highlighting the relevance of exploring and understanding how this key organ is regulated. © 2014 American Physiological Society. Compr Physiol 4:889-964, 2014.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of Endocrinology, Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, and Centre de Recherche Clinique Étienne-Le Bel of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | | |
Collapse
|
9
|
Barlock TK, Gehr DT, Dores RM. Analysis of the pharmacological properties of chicken melanocortin-2 receptor (cMC2R) and chicken melanocortin-2 accessory protein 1 (cMRAP1). Gen Comp Endocrinol 2014; 205:260-7. [PMID: 24726989 DOI: 10.1016/j.ygcen.2014.03.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 01/02/2023]
Abstract
The chicken (Gallus gallus) melanocortin-2 receptor (cMC2R) can be functionally expressed in CHO cells when chicken melanocortin-2 receptor accessory protein 1 (cMRAP1) is co-expressed. The transiently transfected CHO cells responded in a robust manner to stimulation by hACTH(1-24) (EC50 value=2.7 × 10(-12)M +/- 1.3 × 10(-12)), but the transfected CHO cells could not be stimulated by NDP-MSH at concentrations as high as 10(-7)M. Incubation of cMC2R/cMRAP1 transfected cells with alanine substituted analogs of hACTH(1-24) at amino acid positions F(7) or W(9) completely blocked stimulation of the transfected cells. Similarly, incubation of cMC2R/cMRAP1 transfected cells with an analog of hACTH(1-24) with alanine substitutions at amino acid positions R(17)R(18)P(19) resulted in a 276 fold shift in EC50 value relative to the positive control (p<0.004). Collectively these observations suggest that cMC2R has binding sites for the HFRW motif and KKRRP motif of hACTH(1-24), and both motifs are required for full activation of the receptor. While previous studies had shown that Anolis carolinensis MC2R and Xenopus tropicalis MC2R could be functionally expressed in CHO cells that co-expressed mouse MRAP1, co-expression of these non-mammalian tetrapod MC2Rs with cMRAP1 resulted in a significant increase in sensitivity to hACTH(1-24), as measured by EC50 value, for A. carolinensis MC2R (p<0.005) and X. tropicalis MC2R (p<0.007). The implications of these observations are discussed.
Collapse
Affiliation(s)
- Travis K Barlock
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Deshae T Gehr
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Robert M Dores
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA.
| |
Collapse
|
10
|
Dores RM, Liang L. Analyzing the activation of the melanocortin-2 receptor of tetrapods. Gen Comp Endocrinol 2014; 203:3-9. [PMID: 24713445 DOI: 10.1016/j.ygcen.2014.03.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 01/17/2023]
Abstract
Following the biochemical characterization of the pituitary hormone, adrenocorticotropin (ACTH), in the 1950's, a number of structure/function studies were done which identifies two amino acid motifs in ACTH, the HFRW motif and KKRR motif, as critical for the activation of the "ACTH" receptor on adrenal cortex cells. In the 1990's the "ACTH" receptor was identified as a member of the melanocortin receptor gene family, and given the name melanocortin-2 receptor (MC2R). Since that time a number of studies on both tetrapod and teleost MC2R orthologs have established that these orthologs can only be activated by ACTH, but not by any of the MSH-sized melanocortin ligands, and these orthologs require interaction with the melanocortin-2 receptor accessory protein (MRAP) for functional expression. This review summarizes recent structure/function studies on human ACTH, and points out the importance of the GKPVG motif in ACTH for the activation of the receptor. In this regard, a multiple-step model for the activation of tetrapod and teleost MC2R orthologs is presented, and the evolution of gnathostome MC2R ligand selectivity and the requirement for MRAP interaction is discussed in light of a recent study on a cartilaginous fish MC2R ortholog. This review contains excerpts from the Gorbman/Bern Lecture presented at the Second Meeting of the North American Society for Comparative Endocrinology (NASCE).
Collapse
Affiliation(s)
- Robert M Dores
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA.
| | - Liang Liang
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| |
Collapse
|
11
|
Dores RM, Londraville RL, Prokop J, Davis P, Dewey N, Lesinski N. Molecular evolution of GPCRs: Melanocortin/melanocortin receptors. J Mol Endocrinol 2014; 52:T29-42. [PMID: 24868105 DOI: 10.1530/jme-14-0050] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The melanocortin receptors (MCRs) are a family of G protein-coupled receptors that are activated by melanocortin ligands derived from the proprotein, proopiomelanocortin (POMC). During the radiation of the gnathostomes, the five receptors have become functionally segregated (i.e. melanocortin 1 receptor (MC1R), pigmentation regulation; MC2R, glucocorticoid synthesis; MC3R and MC4R, energy homeostasis; and MC5R, exocrine gland physiology). A focus of this review is the role that ligand selectivity plays in the hypothalamus/pituitary/adrenal-interrenal (HPA-I) axis of teleosts and tetrapods as a result of the exclusive ligand selectivity of MC2R for the ligand ACTH. A second focal point of this review is the roles that the accessory proteins melanocortin 2 receptor accessory protein 1 (MRAP1) and MRAP2 are playing in, respectively, the HPA-I axis (MC2R) and the regulation of energy homeostasis by neurons in the hypothalamus (MC4R) of teleosts and tetrapods. In addition, observations are presented on trends in the ligand selectivity parameters of cartilaginous fish, teleost, and tetrapod MC1R, MC3R, MC4R, and MC5R paralogs, and the modeling of the HFRW motif of ACTH(1-24) when compared with α-MSH. The radiation of the MCRs during the evolution of the gnathostomes provides examples of how the physiology of endocrine and neuronal circuits can be shaped by ligand selectivity, the intersession of reverse agonists (agouti-related peptides (AGRPs)), and interactions with accessory proteins (MRAPs).
Collapse
Affiliation(s)
- Robert M Dores
- Department of Biological SciencesUniversity of Denver, Denver, Colorado 80210, USADepartment of BiologyUniversity of Akron, Akron, Ohio 44325, USA
| | - Richard L Londraville
- Department of Biological SciencesUniversity of Denver, Denver, Colorado 80210, USADepartment of BiologyUniversity of Akron, Akron, Ohio 44325, USA
| | - Jeremy Prokop
- Department of Biological SciencesUniversity of Denver, Denver, Colorado 80210, USADepartment of BiologyUniversity of Akron, Akron, Ohio 44325, USA
| | - Perry Davis
- Department of Biological SciencesUniversity of Denver, Denver, Colorado 80210, USADepartment of BiologyUniversity of Akron, Akron, Ohio 44325, USA
| | - Nathan Dewey
- Department of Biological SciencesUniversity of Denver, Denver, Colorado 80210, USADepartment of BiologyUniversity of Akron, Akron, Ohio 44325, USA
| | - Natalie Lesinski
- Department of Biological SciencesUniversity of Denver, Denver, Colorado 80210, USADepartment of BiologyUniversity of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
12
|
Cortés R, Agulleiro MJ, Navarro S, Guillot R, Sánchez E, Cerdá-Reverter JM. Melanocortin receptor accessory protein 2 (MRAP2) interplays with the zebrafish melanocortin 1 receptor (MC1R) but has no effect on its pharmacological profile. Gen Comp Endocrinol 2014; 201:30-6. [PMID: 24709359 DOI: 10.1016/j.ygcen.2014.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 12/18/2022]
Abstract
The melanocortin system is probably one of the most complex hormonal systems since it integrates agonist, encoded in the proopiomelanocortin precursor, endogenous antagonist, agouti signaling protein and agouti-related protein, five different G-protein coupled receptors and two accessory proteins. These accessory proteins interact with melanocortin receptors to allow traffic to the plasma membrane or to regulate the pharmacological profile. The MC1R fill the extension locus, which is primarily responsible for the regulation of pigmentation. In zebrafish, both MC1R and MRAP2 system are expressed in the skin. We demonstrate that zebrafish MC1R physically, or closely, interacts with the MRAP2 system, although this interaction did not result in modification of the studied pharmacological profile. However, progressive fasting induced skin darkening but also an upregulation of the MRAP2 expression in the skin, suggesting an unknown role for MRAP2a that could involve receptor desensitization processes. We also demonstrate that crowding stress induces skin darkening and a downregulation of MC1R expression in the skin.
Collapse
Affiliation(s)
- Raúl Cortés
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Maria Josep Agulleiro
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Sandra Navarro
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Raúl Guillot
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Elisa Sánchez
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - José Miguel Cerdá-Reverter
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
13
|
Davis P, Franquemont S, Liang L, Angleson JK, Dores RM. Evolution of the melanocortin-2 receptor in tetrapods: studies on Xenopus tropicalis MC2R and Anolis carolinensis MC2R. Gen Comp Endocrinol 2013; 188:75-84. [PMID: 23639234 DOI: 10.1016/j.ygcen.2013.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 12/25/2022]
Abstract
The tetrapods are a diverse assemblage of vertebrates, and that diversity is reflected in the sequences of tetrapod melanocortin-2 receptors (MC2Rs). In this review, the features common to human (mammal), Gallus gallus (bird), Anolis carolinensis (reptile), and Xenopus tropicalis (amphibian) MC2Rs in terms of ligand selectivity, requirements for interaction with MRAP1, and the effects of alanine substitutions to three amino acid motifs in the ligand hACTH(1-24) are discussed. Analysis of the effects of alanine substitutions to the H(6)F(7)R(8)W(9) and the K(15)K(16)R(17)R(18)P(19) motifs of hACTH(1-24) indicated that activation of A. carolinensis MC2R and X. tropicalis MC2R was more adversely affected by alanine substitutions at these positions as compared to the response of human MC2R to these same analogs. Furthermore, single alanine substitutions in the G(10)K(11)P(12)V(13)G(14) motif of hACTH(1-24) had negative affects on activation of both A. carolinensis MC2R and X. tropicalis MC2R that were not observed for human MC2R. The implications of responses to the various analogs of hACTH(1-24) in terms of the mechanism for mediating the activation of these various tetrapod melanocortin-2 receptors are discussed.
Collapse
Affiliation(s)
- Perry Davis
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | | | | | | | | |
Collapse
|
14
|
Dores RM. Observations on the evolution of the melanocortin receptor gene family: distinctive features of the melanocortin-2 receptor. Front Neurosci 2013; 7:28. [PMID: 23596380 PMCID: PMC3622036 DOI: 10.3389/fnins.2013.00028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/19/2013] [Indexed: 01/03/2023] Open
Abstract
The melanocortin receptors (MCRs) are a gene family in the rhodopsin class of G protein-coupled receptors. Based on the analysis of several metazoan genome databases it appears that the MCRs are only found in chordates. The presence of five genes in the family (i.e., mc1r, mc2r, mc3r, mc4r, mc5r) in representatives of the tetrapods indicates that the gene family is the result of two genome duplication events and one local gene duplication event during the evolution of the chordates. The MCRs are activated by melanocortin ligands (i.e., ACTH, α-MSH, β-MSH, γ-MSH, δ-MSH) which are all derived from the polypeptide hormone/neuropeptide precursor, POMC, and as a result the functional evolution of the MCRs is intimately associated with the co-evolution of POMC endocrine and neuronal circuits. This review will consider the origin of the MCRs, and discuss the evolutionary relationship between MC2R, MC5R, and MC4R. In addition, this review will analyze the functional evolution of the mc2r gene in light of the co-evolution of the MRAP (Melanocortin-2 Receptor Accessory Protein) gene family.
Collapse
Affiliation(s)
- Robert M Dores
- Department of Biological Sciences, University of Denver Denver, CO, USA
| |
Collapse
|
15
|
Liang L, Angleson JK, Dores RM. Using the human melanocortin-2 receptor as a model for analyzing hormone/receptor interactions between a mammalian MC2 receptor and ACTH(1-24). Gen Comp Endocrinol 2013. [PMID: 23201148 DOI: 10.1016/j.ygcen.2012.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
When considering the interactions between the melanocortin peptides (i.e., ACTH, α-MSH, β-MSH, γ-MSH) and the melanocortin receptors (i.e., MC1R, MC2R, MC3R, MC4R, MC5R), it appears that the structure/function relationship between ACTH and MC2R is the most complicated. Human ACTH(1-24) and the human melanocortin-2 receptor provide a useful model system for understanding how ACTH emerged as the sole ligand for the melanocortin-2 receptor of bony vertebrates. This review will discuss how studies utilizing analogs of hACTH(1-24) have revealed two critical amino acid motifs in this ligand (HFRW and KKRRP) which are required for activation of the melanocortin-2 receptor. In addition, observations on the unique activation features of the melanocortin-2 receptor, as revealed from studies on Familial Glucocorticoid Deficiency, will be considered. Finally, the evolutionary implications of the relationship between MC2R and MRAP1 will be discussed.
Collapse
Affiliation(s)
- Liang Liang
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | | | | |
Collapse
|
16
|
Liang L, Sebag JA, Eagelston L, Serasinghe MN, Veo K, Reinick C, Angleson J, Hinkle PM, Dores RM. Functional expression of frog and rainbow trout melanocortin 2 receptors using heterologous MRAP1s. Gen Comp Endocrinol 2011; 174:5-14. [PMID: 21846469 DOI: 10.1016/j.ygcen.2011.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 11/27/2022]
Abstract
Analysis of the functional expression of the melanocortin 2 receptor (MC2R) from a rather broad spectrum of vertebrates indicates that MC2R is exclusively selective for the ligand, ACTH, and the melanocortin receptor accessory protein 1 (MRAP1) is required for high affinity ACTH binding and activation of MC2R. A phylogenetic analysis of MRAP1 suggested that tetrapod sequences and bony fish sequences may represent two distinct trends in the evolution of the mrap1 gene. To test this hypothesis, a frog (Xenopus tropicalis) MC2R was expressed in CHO cells either in the presence of a tetrapod (mouse) MRAP1 or a bony fish (zebrafish) MRAP1. The response of frog MC2R to different concentrations of human ACTH(1-24) was more robust in the presence of mouse MRAP1 than in the presence of zebrafish MRAP1. Conversely, the cAMP response mediated by the rainbow trout (Oncorhynchus mykiss) MC2R was almost twofold higher and occurred at 1000-fold lower ACTH concentration in the presence of zebrafish MRAP1 than in the presence of mouse MRAP1. Collectively, these experiments raise the possibility that at least two distinct trends have emerged in the co-evolution of MC2R/MRAP1 interactions during the radiation of the vertebrates.
Collapse
Affiliation(s)
- Liang Liang
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Roy S, Roy SJ, Pinard S, Taillefer LD, Rached M, Parent JL, Gallo-Payet N. Mechanisms of melanocortin-2 receptor (MC2R) internalization and recycling in human embryonic kidney (hek) cells: identification of Key Ser/Thr (S/T) amino acids. Mol Endocrinol 2011; 25:1961-77. [PMID: 21920850 DOI: 10.1210/me.2011-0018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
ACTH is the most important stimulus of the adrenal cortex. The precise molecular mechanisms underlying the ACTH response are not yet clarified. The functional ACTH receptor includes melanocortin-2 receptor (MC2R) and MC2R accessory proteins (MRAP). In human embryonic kidney 293/Flp recombinase target cells expressing MC2R, MRAP1 isoforms, and MRAP2, we found that ACTH induced a concentration-dependent and arrestin-, clathrin-, and dynamin-dependent MC2R/MRAP1 internalization, followed by intracellular colocalization with Rab (Ras-like small guanosine triphosphate enzyme)4-, Rab5-, and Rab11-positive recycling endosomes. Preincubation of cells with monensin and brefeldin A revealed that 28% of the internalized receptors were recycled back to the plasma membrane and participated in total accumulation of cAMP. Moreover, certain intracellular Ser and Thr (S/T) residues of MC2R were found to play important roles not only in plasma membrane targeting and function but also in promoting receptor internalization. The S/T residues T131, S140, T204, and S280 were involved in MRAP1-independent cell-surface MC2R expression. Other mutants (S140A, S208A, and S202D) had lower cell-surface expressions in absence of MRAPβ. In addition, T143A and T147D drastically impaired cell-surface expression and function, whereas T131A, T131D, and S280D abrogated MC2R internalization. Thus, the modification of MC2R intracellular S/T residues may positively or negatively regulate its plasma membrane expression and the capacity of ACTH to induce cAMP accumulation. Mutations of T131, T143, T147, and S280 into either A or D had major repercussions on cell-surface expression, cAMP accumulation, and/or internalization parameters, pointing mostly to the second intracellular loop as being crucial for MC2R expression and functional regulation.
Collapse
Affiliation(s)
- Simon Roy
- Service d'Endocrinologie, Département de Médecine, Université de Sherbrooke, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Veo K, Reinick C, Liang L, Moser E, Angleson JK, Dores RM. Observations on the ligand selectivity of the melanocortin 2 receptor. Gen Comp Endocrinol 2011; 172:3-9. [PMID: 21501611 DOI: 10.1016/j.ygcen.2011.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 11/29/2022]
Abstract
The melanocortin 2 receptor (MC2R) is unique in terms of ligand selectivity and in vitro expression in mammalian cell lines as compared to the other four mammalian MCRs. It is well established that ACTH is the only melanocortin ligand that can activate the ACTH receptor (i.e., melanocortin 2 receptor). Recent studies have provided new insights into the presence of a common binding site for the HFRW motif common to all melanocortin ligands. However, the activation of the melanocortin 2 receptor requires an additional amino acid motif that is only found in the sequence of ACTH. This mini-review will focus on these two topics and provide a phylogenetic perspective on the evolution of MC2R ligand selectivity.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Humans
- Ligands
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Molecular Sequence Data
- Observation
- Phylogeny
- Receptor, Melanocortin, Type 2/agonists
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 2/metabolism
- Receptor, Melanocortin, Type 2/physiology
- Receptors, Melanocortin/genetics
- Sequence Homology, Amino Acid
- Substrate Specificity
Collapse
Affiliation(s)
- Kristopher Veo
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | | | | | | | | | | |
Collapse
|
19
|
An implication for post-transcriptional control: reciprocal changes of melanocortin receptor type 2 mRNA and protein expression in alopecia areata. Med Hypotheses 2010; 76:122-4. [PMID: 20884125 DOI: 10.1016/j.mehy.2010.08.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 08/26/2010] [Accepted: 08/27/2010] [Indexed: 11/23/2022]
Abstract
Alopecia areata (AA) is a hair follicle-specific autoimmune disease that is inherited genetically but triggered environmentally. Stress response is believed to play a role in the pathogenesis of AA. The hypothalamic-pituitary-adrenal axis (HPA axis), known as the stress axis, plays a cardinal role in the stress response. Growing evidence demonstrates that stress responses are under the control of both the central and peripheral nervous systems. Skin and hair follicles display peripheral HPA axis-like signaling systems. Some studies have revealed that a modified HPA axis, which is characterized by enhanced CRH/CRHR and insufficient glucocorticoid, is involved in the pathology of AA, suggesting that the paradoxical expression differs from that of normal control and should be further examined. Because adrenocorticotropic hormone (ACTH) is an intermediary in the HPA axis, MC2R, which specifically binds ACTH, may be important in the stress response of skin. Therefore, we investigated the gene and protein expression of MC2R in AA lesions and tried to elucidate the connection between HPA axis regulation, MC2R and AA. Reciprocal changes in MC2R mRNA and proteins in human AA were observed in our study; while mRNA levels were higher in lesions from AA patients compared with scalp tissues from normal controls, protein levels of MC2R were lower. The paradoxical expression of MC2R gene and protein levels coincided with evidence that over-responsive HPA activity coexists with a deficient HPA response in AA. We hypothesized that the HPA axis response in human AA may be the following: stressors first activate excess CRH/CRHR to produce increased ACTH, which up-regulates the expression of MC2R mRNA, but the stress response cannot create sufficient cortisol when the binding of ACTH/MC2R is deficient due to decreased MC2R protein. This hypothesis rationally clarifies the changed HPA axis in human AA and highlights the importance of MC2R in the pathogenesis of AA. The inconsistent expression of protein and mRNA implicates post-transcriptional control of human MC2R gene expression as found in murine MC2R gene.
Collapse
|
20
|
MRAP and MRAP2 are bidirectional regulators of the melanocortin receptor family. Proc Natl Acad Sci U S A 2009; 106:6146-51. [PMID: 19329486 DOI: 10.1073/pnas.0809918106] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The melanocortin receptor (MCR) family consists of 5 G protein-coupled receptors (MC1R-MC5R) with diverse physiologic roles. MC2R is a critical component of the hypothalamic-pituitary-adrenal axis, whereas MC3R and MC4R have an essential role in energy homeostasis. Mutations in MC4R are the single most common cause of monogenic obesity. Investigating the way in which these receptors signal and traffic to the cell membrane is vital in understanding disease processes related to MCR dysfunction. MRAP is an MC2R accessory protein, responsible for adrenal MC2R trafficking and function. Here we identify MRAP2 as a unique homologue of MRAP, expressed in brain and the adrenal gland. We report that MRAP and MRAP2 can interact with all 5 MCRs. This interaction results in MC2R surface expression and signaling. In contrast, MRAP and MRAP2 can reduce MC1R, MC3R, MC4R, and MC5R responsiveness to [Nle4,D-Phe7]alpha-melanocyte-stimulating hormone (NDP-MSH). Collectively, our data identify MRAP and MRAP2 as unique bidirectional regulators of the MCR family.
Collapse
|
21
|
Baron A, Veo K, Angleson J, Dores RM. Modeling the evolution of the MC2R and MC5R genes: studies on the cartilaginous fish, Heterondotus francisci. Gen Comp Endocrinol 2009; 161:13-9. [PMID: 19100739 DOI: 10.1016/j.ygcen.2008.11.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 11/28/2022]
Abstract
Comparative studies support the hypothesis that the proliferation of melanocortin receptor genes (MCRs) in gnathostomes corresponds to the 2R hypothesis for the radiation of gene families in Phylum Chordata. This mini-review will initially focus on the distribution of MCRs in cartilaginous fish and the relationship between the shark MC5R gene and the proposed ancestral MC5R/2R gene. This section will be followed by the results of recent studies on the features of the ligand binding site common to all melanocortin receptors. These data will provide the background for a set of hypotheses to explain the unique ligand selectivity of the MC2 receptor in teleosts and tetrapods.
Collapse
Affiliation(s)
- Andrea Baron
- University of Denver, Department of Biological Sciences, Olin Hall 102, 2190 E. Iliff, Denver, Colorado 80210-5212, USA
| | | | | | | |
Collapse
|
22
|
Webb TR, Chan L, Cooray SN, Cheetham ME, Chapple JP, Clark AJL. Distinct melanocortin 2 receptor accessory protein domains are required for melanocortin 2 receptor interaction and promotion of receptor trafficking. Endocrinology 2009; 150:720-6. [PMID: 18818285 PMCID: PMC6602883 DOI: 10.1210/en.2008-0941] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Melanocortin 2 receptor (MC2R) is the receptor for the pituitary hormone ACTH. When activated, MC2R stimulates cAMP production and adrenal steroidogenesis. The functional expression of the receptor requires melanocortin 2 receptor accessory protein (MRAP), a single-transmembrane domain protein involved in the trafficking of MC2R from the endoplasmic reticulum to the cell surface. Mutations in both MC2R and MRAP cause the inherited disease familial glucocorticoid deficiency. At present, little is known regarding the mechanism of MRAP in MC2R functional expression. Here we report the characterization of MRAP in the trafficking of MC2R to the cell surface and the formation of a functional receptor. We identify the transmembrane domain of MRAP as the MC2R interaction domain and a conserved N-terminal tyrosine-rich domain of MRAP that is required for trafficking MC2R to the cell surface.
Collapse
Affiliation(s)
- Tom R. Webb
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, London EC1M 6BQ, United Kingdom
| | - Li Chan
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, London EC1M 6BQ, United Kingdom
| | - Sadani N. Cooray
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, London EC1M 6BQ, United Kingdom
| | - Michael E. Cheetham
- Division of Molecular and Cellular Neuroscience, University College of London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - J. Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, London EC1M 6BQ, United Kingdom
| | - Adrian J. L. Clark
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
23
|
Chung TT, Webb TR, Chan LF, Cooray SN, Metherell LA, King PJ, Chapple JP, Clark AJL. The majority of adrenocorticotropin receptor (melanocortin 2 receptor) mutations found in familial glucocorticoid deficiency type 1 lead to defective trafficking of the receptor to the cell surface. J Clin Endocrinol Metab 2008; 93:4948-54. [PMID: 18840636 PMCID: PMC2635546 DOI: 10.1210/jc.2008-1744] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CONTEXT There are at least 24 missense, nonconservative mutations found in the ACTH receptor [melanocortin 2 receptor (MC2R)] that have been associated with the autosomal recessive disease familial glucocorticoid deficiency (FGD) type 1. The characterization of these mutations has been hindered by difficulties in establishing a functional heterologous cell transfection system for MC2R. Recently, the melanocortin 2 receptor accessory protein (MRAP) was identified as essential for the trafficking of MC2R to the cell surface; therefore, a functional characterization of MC2R mutations is now possible. OBJECTIVE Our objective was to elucidate the molecular mechanisms responsible for defective MC2R function in FGD. METHODS Stable cell lines expressing human MRAPalpha were established and transiently transfected with wild-type or mutant MC2R. Functional characterization of mutant MC2R was performed using a cell surface expression assay, a cAMP reporter assay, confocal microscopy, and coimmunoprecipitation of MRAPalpha. RESULTS Two thirds of all MC2R mutations had a significant reduction in cell surface trafficking, even though MRAPalpha interacted with all mutants. Analysis of those mutant receptors that reached the cell surface indicated that four of six failed to signal, after stimulation with ACTH. CONCLUSION The majority of MC2R mutations found in FGD fail to function because they fail to traffic to the cell surface.
Collapse
Affiliation(s)
- T T Chung
- Centre for Endocrinology, William Harvey Research Institute, Barts, London EC1M 6BQ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cooray SN, Almiro Do Vale I, Leung KY, Webb TR, Chapple JP, Egertová M, Cheetham ME, Elphick MR, Clark AJL. The melanocortin 2 receptor accessory protein exists as a homodimer and is essential for the function of the melanocortin 2 receptor in the mouse y1 cell line. Endocrinology 2008; 149:1935-41. [PMID: 18162519 DOI: 10.1210/en.2007-1463] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ACTH receptor [melanocortin 2 receptor (MC2R)] gene produces a functional receptor only when transfected into cells of adrenocortical origin, implying that it may require an adrenal-specific accessory factor. Recently we showed that the MC2R accessory protein (MRAP) is essential for the cell surface expression of the MC2R in such models. Using RNA interference (RNAi) technology, we have further explored the action of MRAP in the functioning of the MC2R in Y1 mouse adrenocortical cells that endogenously express MRAP and MC2R. We created stable cell lines expressing mouse MRAP short hairpin RNA (shRNAs) by transfecting cells with an expression vector containing the MRAP small interfering RNA sequence. The knockdown of MRAP resulted in a reduction in MC2R signaling. The overexpression of a mouse MRAP-Flag construct did not restore the expression of MRAP due to its degradation by the mouse shRNAs. The introduction of human MRAP that is resistant to silencing by mouse MRAP shRNAs resulted in the rescue of the MC2R signaling. MRAP migrates on SDS-PAGE with markedly lower mobility than predicted for a 14.1-kDa protein. Coimmunoprecipitation and mass spectroscopy suggests that MRAP exists as a homodimer that is resistant to dissociation by sodium dodecyl sulfate and reducing agents.
Collapse
Affiliation(s)
- Sadani N Cooray
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, Queen Mary University of London, West Smithfield, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chan LF, Clark AJL, Metherell LA. Familial Glucocorticoid Deficiency: Advances in the Molecular Understanding of ACTH Action. Horm Res Paediatr 2007; 69:75-82. [PMID: 18059087 DOI: 10.1159/000111810] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 07/31/2007] [Indexed: 11/19/2022] Open
Affiliation(s)
- L F Chan
- Centre for Endocrinology, William Harvey Research Institute, St. Bartholomew's and The Royal London School of Medicine and Dentistry, London, UK
| | | | | |
Collapse
|
26
|
Clark AJL, Metherell LA. Mechanisms of disease: the adrenocorticotropin receptor and disease. ACTA ACUST UNITED AC 2007; 2:282-90. [PMID: 16932299 DOI: 10.1038/ncpendmet0165] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 02/07/2006] [Indexed: 02/08/2023]
Abstract
The action of the peptide hormone adrenocorticotropin (ACTH) to stimulate glucocorticoid production by the adrenal gland is an essential physiologic process, yet is dependent on a single unique genetic component--the ACTH receptor or melanocortin 2 receptor. Genetic defects that cause abnormalities in this receptor or in a protein required for its expression at the cell surface result in a potentially fatal disease (familial glucocorticoid deficiency). Overexpression of this receptor or inability to desensitize it is found in adrenal adenomas or hyperplasia associated with glucocorticoid overproduction (Cushing syndrome). These disorders are uncommon, but there are considerable data to show that the hypothalamo-pituitary-adrenal axis is overactive, or in some circumstances underactive, in more common situations including depressive illness and septic shock. The origin of these latter disturbances is undoubtedly complex and multifactorial, but there is good evidence that a component of this phenomenon is an altered responsiveness of the ACTH receptor to ACTH. Understanding the basis of ACTH responsiveness might, therefore, contribute to the understanding of disorders such as these and perhaps enable the hypothalamo-pituitary-adrenal axis to be manipulated beneficially in these circumstances.
Collapse
Affiliation(s)
- Adrian J L Clark
- Centre for Endocrinology, the William Harvey Research Institute at Barts and the London, UK.
| | | |
Collapse
|
27
|
Klammt C, Schwarz D, Eifler N, Engel A, Piehler J, Haase W, Hahn S, Dötsch V, Bernhard F. Cell-free production of G protein-coupled receptors for functional and structural studies. J Struct Biol 2007; 158:482-93. [PMID: 17350285 DOI: 10.1016/j.jsb.2007.01.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 01/12/2007] [Accepted: 01/16/2007] [Indexed: 11/25/2022]
Abstract
G-protein coupled receptors (GPCRs) are key elements in signal transduction pathways of eukaryotic cells and they play central roles in many human diseases. So far, most structural and functional approaches have been limited by the immense difficulties in the production of sufficient amounts of protein samples in conventional expression systems based on living cells. We report the high level production of six different GPCRs in an individual cell-free expression system based on Escherichia coli extracts. The open nature of cell-free systems allows the addition of detergents in order to provide an artificial hydrophobic environment for the reaction. This strategy defines a completely new technique for the production of membrane proteins that can directly associate with detergent micelles upon translation. We demonstrate the efficient overproduction of the human melatonin 1B receptor, the human endothelin B receptor, the human and porcine vasopressin type 2 receptors, the human neuropeptide Y4 receptor and the rat corticotropin releasing factor receptor by cell-free expression. In all cases, the long chain polyoxyethylene detergent Brij78 was found to be highly effective for solubilization and milligram amounts of soluble protein could be generated in less than 24 h. Single particle analysis indicated a homogenous distribution of predominantly protein dimers of the cell-free expressed GPCR samples, with dimensions similar to the related rhodopsin. Ligand interaction studies with the endothelin B receptor and a derivative of its peptide ligand ET-1 gave further evidence of a functional folding of the cell-free produced protein.
Collapse
Affiliation(s)
- Christian Klammt
- Centre for Biomolecular Magnetic Resonance, University of Frankfurt/Main, Institute for Biophysical Chemistry, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Roy S, Rached M, Gallo-Payet N. Differential regulation of the human adrenocorticotropin receptor [melanocortin-2 receptor (MC2R)] by human MC2R accessory protein isoforms alpha and beta in isogenic human embryonic kidney 293 cells. Mol Endocrinol 2007; 21:1656-69. [PMID: 17456795 DOI: 10.1210/me.2007-0041] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The ACTH receptor [melanocortin-2 receptor (MC2R)] is the smallest known G protein-coupled receptor (GPCR). Herein, human MC2R accessory protein (MRAP) isoforms alpha and beta, cloned from a human fetal adrenal gland, were expressed with c-Myc-tagged MC2R (Myc-MC2R) in 293/Flp recombinase target site cells by homologous recombination. Although insertion of Myc-MC2R at the plasma membrane occurred without MRAP assistance, ACTH stimulation of cAMP production was only detected in cells coexpressing MC2R with either MRAP isoform. On the other hand, a MC2R-green fluorescent protein fusion transfected with either MRAPalpha or MRAPbeta was impaired both in cell membrane localization and signaling. MRAP isoforms were also tagged with either Flag or 6xHis epitopes. In cell populations coexpressing transiently and/or stably Myc-MC2R with MRAPalpha or MRAPbeta, stimulation with ACTH induced production of cAMP with EC(50) values lower in MRAPalpha- than in MRAPbeta-expressing cells. ACTH only bound Myc-MC2R in the presence of MRAP. Higher Myc-MC2R cell surface density was observed in the presence of MRAPbeta comparatively to MRAPalpha, possibly contributing to higher ACTH binding capacity and higher maximal cAMP responses observed in MRAPbeta-expressing cells. Immunofluorescence studies indicated that MRAP isoforms were localized near the plasma membrane and in the vicinity, but not colocalized, with Myc-MC2R. In summary, through the generation of a new all-human experimental model devoid of endogenous MCRs, we present evidence that human MRAP isoforms, although not essential for MC2R localization at the plasma membrane, are essential for ACTH binding and ACTH-induced cAMP production and that they differentially regulate, although modestly, cell membrane density and functional properties of MC2R.
Collapse
Affiliation(s)
- Simon Roy
- Service d'Endocrinologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | |
Collapse
|
29
|
Bibliography. Current world literature. Growth and development. Curr Opin Endocrinol Diabetes Obes 2007; 14:74-89. [PMID: 17940424 DOI: 10.1097/med.0b013e32802e6d87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|