1
|
Almazmomi MA, Esmat A, Naeem A. Acute Kidney Injury: Definition, Management, and Promising Therapeutic Target. Cureus 2023; 15:e51228. [PMID: 38283512 PMCID: PMC10821757 DOI: 10.7759/cureus.51228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Acute kidney injury (AKI) is caused by a sudden loss of renal function, resulting in the build-up of waste products and a significant increase in mortality and morbidity. It is commonly diagnosed in critically ill patients, with its occurrence estimated at up to 50% in patients hospitalized in the intensive critical unit. Despite ongoing efforts, the death rate associated with AKI has remained high over the past half-century. Thus, it is critical to investigate novel therapy options for preventing the epidemic. Many studies have found that inflammation and Toll-like receptor-4 (TLR-4) activation have a significant role in the pathogenesis of AKI. Noteworthy, challenges in the search for efficient pharmacological therapy for AKI have arisen due to the multifaceted origin and complexity of the clinical history of people with the disease. This article focuses on kidney injury's epidemiology, risk factors, and pathophysiological processes. Specifically, it focuses on the role of TLRs especially type 4 in disease development.
Collapse
Affiliation(s)
- Meaad A Almazmomi
- Pharmaceutical Care Department, Ministry of National Guard - Health Affairs, Jeddah, SAU
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Ahmed Esmat
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Anjum Naeem
- Pharmaceutical Care Department, Ministry of National Guard - Health Affairs, Jeddah, SAU
| |
Collapse
|
2
|
ET A receptors are involved in the febrile response induced by high dose of bacterial endotoxin. J Therm Biol 2020; 95:102804. [PMID: 33454036 DOI: 10.1016/j.jtherbio.2020.102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022]
Abstract
Previous studies have demonstrated that endothelin-1 (ET-1) is involved in the febrile response induced by lipopolysaccharide (LPS) in male and female rats. This peptide induces fever acting on ETB receptors in the central nervous system. However, during sepsis, endothelinergic ETA receptors in the brain also exert an important role reducing the mortality of the animals. The present study evaluated the participation of ETA receptors in the febrile response induced by different doses LPS in rats. Male Wistar rats were treated with the ETA receptor antagonist BQ123 before or after the injection of a low dose (10 μg/kg) or a high dose (200 μg/kg) of LPS intraperitoneally. The febrile response was evaluated. The treatment with BQ123, in both protocols did not change the febrile response induced by the lower dose of LPS. The pre-treatment with BQ123 also did not significantly change the febrile response induced by a higher dose of LPS but the post-treatment with the antagonist abolished the febrile response induced by this dose of LPS. These results suggest that even though ETA receptors are not recruited in the febrile response induced by lower doses of LPS, they are involved in the febrile response induced by high doses of this stimulus.
Collapse
|
3
|
Abuiessa SA, Wedn AM, El-Gowilly SM, Helmy MM, El-Mas MM. Pre-eclamptic Fetal Programming Alters Neuroinflammatory and Cardiovascular Consequences of Endotoxemia in Sex-Specific Manners. J Pharmacol Exp Ther 2020; 373:325-336. [PMID: 32094295 DOI: 10.1124/jpet.119.264192] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Pre-eclampsia (PE)-induced fetal programming predisposes offspring to health hazards in adult life. Here, we tested the hypothesis that pre-eclamptic fetal programming elicits sexually dimorphic inflammatory and cardiovascular complications to endotoxemia in adult rat offspring. PE was induced by oral administration of L-NAME (50 mg/kg per day for seven consecutive days) starting from day 14 of conception. Cardiovascular studies were performed in conscious adult male and female offspring preinstrumented with femoral indwelling catheters. Compared with non-PE male counterparts, intravenous administration of lipopolysaccharide (LPS, 5 mg/kg) to PE male offspring caused significantly greater 1) falls in blood pressure, 2) increases in heart rate, 3) rises in arterial dP/dtmax, a correlate of left ventricular contractility, and 4) decreases in time- and frequency-domain indices of heart rate variability (HRV). By contrast, the hypotensive and tachycardic actions of LPS in female offspring were independent of the pre-eclamptic state and no clear changes in HRV or dP/dtmax were noted. Measurement of arterial baroreflex activity by vasoactive method revealed no sex specificity in baroreflex dysfunction induced by LPS. Immunohistochemical studies showed increased protein expression of toll-like receptor 4 in heart as well as in brainstem neuronal pools of the nucleus of solitary tract and rostral ventrolateral medulla in endotoxic PE male, but not female, offspring. Enhanced myocardial, but not neuronal, expression of monocyte chemoattractant protein-1 was also demonstrated in LPS-treated male offspring. Together, pre-eclamptic fetal programming aggravates endotoxic manifestations of hypotension and autonomic dysfunction in male offspring via exacerbating myocardial and neuromedullary inflammatory pathways. SIGNIFICANCE STATEMENT: Current molecular and neuroanatomical evidence highlights a key role for pre-eclamptic fetal programming in offspring predisposition to health hazards induced by endotoxemia in adult life. Pre-eclampsia accentuates endotoxic manifestations of hypotension, tachycardia, and cardiac autonomic dysfunction in male offspring via exacerbating myocardial and central inflammatory pathways. The absence of such detrimental effects in female littermates suggests sexual dimorphism in the interaction of pre-eclamptic fetal programming with endotoxemia.
Collapse
Affiliation(s)
- Salwa A Abuiessa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Abdalla M Wedn
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mai M Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Wedn AM, El-Gowilly SM, El-Mas MM. The α7-nAChR/heme oxygenase-1/carbon monoxide pathway mediates the nicotine counteraction of renal inflammation and vasoconstrictor hyporeactivity in endotoxic male rats. Inflamm Res 2020; 69:217-231. [DOI: 10.1007/s00011-019-01309-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
|
5
|
Time and sex dependency of hemodynamic, renal, and survivability effects of endotoxemia in rats. Saudi Pharm J 2019; 28:127-135. [PMID: 31933528 PMCID: PMC6950976 DOI: 10.1016/j.jsps.2019.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/29/2019] [Indexed: 12/26/2022] Open
Abstract
Widely different exposure times to endotoxic insults have been employed in reported studies. The current experimental study systematically evaluated the time-course and sex influences of endotoxic insult on survivability and cardiovascular and renal functions. Rats received i.p. lipopolysaccharide (LPS, 5 mg/kg) once or twice (over 2 successive days). Systolic blood pressure (SBP), biomarkers of renal function and inflammation, and vasodilator responsiveness of isolated perfused kidneys to acetylcholine (ACh) or N-ethylcarboxamidoadenosine (NECA) were evaluated 6 hr after first LPS injection or 1, 2, or 6 days later. A single 6-hr LPS challenge caused (i) sex-unrelated elevations in serum urea and creatinine and reductions in NECA, but not ACh, vasodilations, (ii) more increases in renal NF-κB/iNOS expressions in male than in female rats, and (iii) hypotension and tachycardia only in male rats. These parameters, except for hemodynamic changes, were restored to near-control levels 1 day after single LPS dosing. The 2-days dosing with LPS had no effects on renal function biomarkers, but caused hypotension, tachycardia, and increases in renal NF-κB/iNOS expression and NECA and ACh vasodilations in both rat sexes. None of these parameters were different from control values when measured 6 days after the endotoxic insult. Alternatively, the rat mortality was observed during first 2 days of the study and was notably higher in male than in female rats. Our data suggest that the frequency and time elapsed after LPS exposure as well as rat sex are important determinants of the magnitude and direction of detrimental effects of endotoxemia.
Collapse
|
6
|
Wedn AM, El-Gowilly SM, El-Mas MM. Nicotine reverses the enhanced renal vasodilator capacity in endotoxic rats: Role of α7/α4β2 nAChRs and HSP70. Pharmacol Rep 2019; 71:782-793. [PMID: 31377559 DOI: 10.1016/j.pharep.2019.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Nicotine alleviates renal inflammation and injury induced by endotoxemia. This study investigated (i) the nicotine modulation of hemodynamic and renal vasodilatory responses to endotoxemia in rats, and (ii) roles of α7 or α4β2-nAChRs and related HSP70/TNFα/iNOS signaling in the interaction. METHODS Endotoxemia was induced by ip lipopolysaccharide (5 mg/kg/day, for 2 days) and changes in systolic blood pressure and vasodilator responsiveness of isolated perfused kidney to acetylcholine or 5'-N-ethylcarboxamidoadenosine (NECA, adenosine receptor agonist) were evaluated. RESULTS Lipopolysaccharide had no effect on serum creatinine, reduced blood pressure, and increased renal vasodilations induced by acetylcholine or NECA in male and female preparations. Immunohistochemical analyses showed that lipopolysaccharide reduced renal HSP70 expression, but increased α7-nAChRs, α4β2-nAChRs and iNOS expressions. The co-administration of aminoguanidine (iNOS inhibitor), pentoxifylline (TNFα inhibitor), or nicotine attenuated lipopolysaccharide mediation of renal vasodilations and elevations in α7/α4β2-nAChR and iNOS expressions. Nicotine also reversed the downregulating effect of lipopolysaccharide on HSP70 expression. α7-nAChRs (methyllycaconitine citrate, MLA) or α4β2-nAChRs (dihydro-β-erythroidine, DHβE) blockade potentiated the lipopolysaccharide enhancement of renal vasodilations, and abolished the depressant effect of nicotine on lipopolysaccharide responses. A similar abolition of nicotine effects was seen after HSP70 inhibition by quercetin. Alternatively, lipopolysaccharide hypotension was eliminated in rats treated with DHβE/nicotine or quercetin/nicotine regimen in contrast to no effect for nicotine alone or combined with MLA. CONCLUSIONS These findings establish that nicotine offsets lipopolysaccharide facilitation of renal vasodilations possibly through a crosstalk between HSP70 and nAChRs of the α7 and α4β2 types.
Collapse
Affiliation(s)
- Abdalla M Wedn
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
7
|
Meurer M, Ebert K, Schweda F, Höcherl K. The renal vasodilatory effect of prostaglandins is ameliorated in isolated-perfused kidneys of endotoxemic mice. Pflugers Arch 2018; 470:1691-1703. [DOI: 10.1007/s00424-018-2183-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/29/2022]
|
8
|
Steven S, Dib M, Roohani S, Kashani F, Münzel T, Daiber A. Time Response of Oxidative/Nitrosative Stress and Inflammation in LPS-Induced Endotoxaemia-A Comparative Study of Mice and Rats. Int J Mol Sci 2017; 18:ijms18102176. [PMID: 29057830 PMCID: PMC5666857 DOI: 10.3390/ijms18102176] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022] Open
Abstract
Sepsis is a severe and multifactorial disease with a high mortality rate. It represents a strong inflammatory response to an infection and is associated with vascular inflammation and oxidative/nitrosative stress. Here, we studied the underlying time responses in the widely used lipopolysaccharide (LPS)-induced endotoxaemia model in mice and rats. LPS (10 mg/kg; from Salmonella Typhosa) was intraperitoneally injected into mice and rats. Animals of every species were divided into five groups and sacrificed at specific points in time (0, 3, 6, 9, 12 h). White blood cells (WBC) decreased significantly in both species after 3 h and partially recovered with time, whereas platelet decrease did not recover. Oxidative burst and iNOS-derived nitrosyl-iron hemoglobin (HbNO) increased with time (maxima at 9 or 12 h). Immune cell infiltration (CD68 and F4/80 content) showed an increase with time, which was supported by increased vascular mRNA expression of VCAM-1, P-selectin, IL-6 and TNF-α. We characterized the time responses of vascular inflammation and oxidative/nitrosative stress in LPS-induced endotoxaemic mice and rats. The results of this study will help to interpret and compare data from different animal species in LPS-induced endotoxaemia models for the identification of new drug targets.
Collapse
Affiliation(s)
- Sebastian Steven
- Center for Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, D-55131 Mainz, Germany.
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, D-55131 Mainz, Germany.
| | - Mobin Dib
- Center for Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, D-55131 Mainz, Germany.
| | - Siyer Roohani
- Center for Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, D-55131 Mainz, Germany.
| | - Fatemeh Kashani
- Center for Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, D-55131 Mainz, Germany.
| | - Thomas Münzel
- Center for Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, D-55131 Mainz, Germany.
| | - Andreas Daiber
- Center for Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, D-55131 Mainz, Germany.
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, D-55131 Mainz, Germany.
| |
Collapse
|
9
|
Prolactin alters blood pressure by modulating the activity of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 2016; 113:12538-12543. [PMID: 27791173 DOI: 10.1073/pnas.1615051113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increased levels of a cleaved form of prolactin (molecular weight 16 kDa) have been associated with preeclampsia. To study the effects of prolactin on blood pressure (BP), we generated male mice with a single-copy transgene (Tg; inserted into the hypoxanthine-guanine phosphoribosyltransferase locus) that enables inducible hepatic production of prolactin and its cleavage product. The Tg is driven by the indole-3-carbinol (I3C)-inducible rat cytochrome P450 1A1 promoter. When the Tg mice were fed normal chow (NC), plasma prolactin concentrations were comparable to those in female WT mice in the last third of pregnancy, and BP was lower than in WT mice (∼95 mm Hg vs. ∼105 mm Hg). When the Tg mice were fed chow containing IC3, plasma prolactin concentrations increased threefold, BP increased to ∼130 mm Hg, and cardiac function became markedly impaired. IC3 chow did not affect the WT mice. Urinary excretion of nitrite/nitrate and the amount of Ser1177-phosphorylated endothelial nitric oxide (NO) synthase (eNOS) were significantly greater in the Tg mice fed NC than in WT mice, as they are during pregnancy. However, when I3C was fed, these indicators of NO production became significantly less in the Tg mice than in WT mice. The effects of increased plasma prolactin were abolished by a genetic absence of eNOS. Thus, a threefold increase in plasma prolactin is sufficient to increase BP significantly and to markedly impair cardiac function, with effects mediated by NO produced by eNOS. We suggest that pregnant women with abnormally high prolactin levels may need special attention.
Collapse
|
10
|
Matsuishi Y, Jesmin S, Kawano S, Hideaki S, Shimojo N, Mowa CN, Akhtar S, Zaedi S, Khatun T, Tsunoda Y, Kiwamoto T, Hizawa N, Inoue Y, Mizutani T. Landiolol hydrochloride ameliorates acute lung injury in a rat model of early sepsis through the suppression of elevated levels of pulmonary endothelin-1. Life Sci 2016; 166:27-33. [PMID: 27742253 DOI: 10.1016/j.lfs.2016.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 11/18/2022]
Abstract
Among the dysfunctions and pathologies associated with sepsis, the underlying molecular mechanisms of sepsis-induced acute lung injury (ALI) are poorly understood. Endothelin (ET)-1, a potent vasoconstrictor and pro-inflammatory peptide, is known to be involved in the pathogenesis of ALI in a rat model of sepsis. Here, we investigated whether landiolol hydrochloride, an ultra-short-acting β-blocker, plays a crucial role in ameliorating and attenuating LPS-induced ALI through modulation of the ET-1 system. Male Wistar rats at 8weeks of age were administered with either saline or lipopolysaccharide (LPS) for three hours (3h) and some of the LPS-administered rats were continuously treated with landiolol for 3h. ALI was induced by LPS, including levels of both circulatory and pulmonary TNF-α and IL-6 but [PaO2] was significantly decreased. LPS also induced a significant increase in levels of pulmonary ET-1 and ET-A receptor, but levels of ET-B receptor, which has vasodilating effects, were remarkably diminished. Further, LPS administration upregulated the pulmonary expression of HIF-1α. Finally, the treatment of LPS-administered rats with landiolol for 3h ameliorated and prevented ALI, normalized the altered levels of pulmonary ET-1 and ET-A receptors. Landiolol also induced significant down-regulation of ET-B receptor in lung tissues in the early hours (phase) of sepsis. However, Landiolol treatment had no effect on the up-regulated inflammatory mediators (TNF-α, IL-6) in both plasma and lung tissues during sepsis, and expression of pulmonary HIF-1α also remained unchanged after landiolol treatment. Collectively, these data led us to conclude that landiolol may ameliorate sepsis-induced ALI via the pulmonary ET system.
Collapse
Affiliation(s)
- Yujiro Matsuishi
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Subrina Jesmin
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Faculty of Health and Sports Science, Advanced Research Initiatives for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Satoru Kawano
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Sakuramoto Hideaki
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Nobutake Shimojo
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | | | - Shila Akhtar
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sohel Zaedi
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tanzila Khatun
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiya Tsunoda
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Takumi Kiwamoto
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Yoshiaki Inoue
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Taro Mizutani
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
11
|
Rosa RM, Colucci JA, Yokota R, Moreira RP, Aragão DS, Ribeiro AA, Arita DY, Watanabe IKM, Palomino Z, Cunha TS, Casarini DE. Alternative pathways for angiotensin II production as an important determinant of kidney damage in endotoxemia. Am J Physiol Renal Physiol 2016; 311:F496-504. [PMID: 27252489 DOI: 10.1152/ajprenal.00121.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/24/2016] [Indexed: 12/22/2022] Open
Abstract
Sepsis is an uncontrolled systemic inflammatory response against an infection and a major public health issue worldwide. This condition affects several organs, and, when caused by Gram-negative bacteria, kidneys are particularly damaged. Due to the importance of renin-angiotensin system (RAS) in regulating renal function, in the present study, we aimed to investigate the effects of endotoxemia over the renal RAS. Wistar rats were injected with Escherichia coli lipopolysaccharide (LPS) (4 mg/kg), mimicking the endotoxemia induced by Gram-negative bacteria. Three days after treatment, body mass, blood pressure, and plasma nitric oxide (NO) were reduced, indicating that endotoxemia triggered cardiovascular and metabolic consequences and that hypotension was maintained by NO-independent mechanisms. Regarding the effects in renal tissue, inducible NO synthase (iNOS) was diminished, but no changes in the renal level of NO were detected. RAS was also highly affected by endotoxemia, since renin, angiotensin-converting enzyme (ACE), and ACE2 activities were altered in renal tissue. Although these enzymes were modulated, only angiotensin (ANG) II was augmented in kidneys; ANG I and ANG 1-7 levels were not influenced by LPS. Cathepsin G and chymase activities were increased in the endotoxemia group, suggesting alternative pathways for ANG II formation. Taken together, our data suggest the activation of noncanonical pathways for ANG II production and the presence of renal vasoconstriction and tissue damage in our animal model. In summary, the systemic administration of LPS affects renal RAS, what may contribute for several deleterious effects of endotoxemia over kidneys.
Collapse
Affiliation(s)
- Rodolfo Mattar Rosa
- Medicine Department, Nephrology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; and
| | - Juliana Almada Colucci
- Medicine Department, Nephrology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; and
| | - Rodrigo Yokota
- Medicine Department, Nephrology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; and
| | - Roseli Peres Moreira
- Medicine Department, Nephrology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; and
| | - Danielle Sanches Aragão
- Medicine Department, Nephrology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; and
| | - Amanda Aparecida Ribeiro
- Medicine Department, Nephrology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; and
| | - Danielle Yuri Arita
- Medicine Department, Nephrology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; and
| | - Ingrid Kazue Mizuno Watanabe
- Medicine Department, Nephrology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; and
| | - Zaira Palomino
- Medicine Department, Nephrology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; and
| | - Tatiana Sousa Cunha
- Science and Technology Department, Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil
| | - Dulce Elena Casarini
- Medicine Department, Nephrology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; and
| |
Collapse
|
12
|
Abstract
All components of the endothelin (ET) system are present in renal tubular cells. In this review, we summarize current knowledge about ET and the most common tubular diseases: acute kidney injury (AKI) and polycystic kidney disease. AKI originally was called acute tubular necrosis, pointing to the most prominent morphologic findings. Similarly, cysts in polycystic kidney disease, and especially in autosomal-dominant polycystic kidney disease, are of tubular origin. Preclinical studies have indicated that the ET system and particularly ETA receptors are involved in the pathogenesis of ischemia-reperfusion injury, although these findings have not been translated to clinical studies. The ET system also has been implicated in radiocontrast-dye-induced AKI, however, ET-receptor blockade in a large human study was not successful. The ET system is activated in sepsis models of AKI; the effectiveness of ET blocking agents in preclinical studies is variable depending on the model and the ET-receptor antagonist used. Numerous studies have shown that the ET system plays an important role in the complex pathophysiology associated with cyst formation and disease progression in polycystic kidney disease. However, results from selective targeting of ET-receptor subtypes in animal models of polycystic kidney disease have proved disappointing and do not support clinical trials. These studies have shown that a critical balance between ETA and ETB receptor action is necessary to maintain structure and function in the cystic kidney. In summary, ETs have been implicated in the pathogenesis of several renal tubulointerstitial diseases, however, experimental animal findings have not yet led to use of ET blockers in human beings.
Collapse
Affiliation(s)
- Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit, Department of Infection and Immunity, University of Sheffield Medical School, Sheffield, UK
| | | | - Berthold Hocher
- Institute for Nutritional Science, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
13
|
Angiotensin Receptor Blockade Modulates NFκB and STAT3 Signaling and Inhibits Glial Activation and Neuroinflammation Better than Angiotensin-Converting Enzyme Inhibition. Mol Neurobiol 2015; 53:6950-6967. [DOI: 10.1007/s12035-015-9584-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/29/2015] [Indexed: 01/02/2023]
|
14
|
Abdel Kawy HS. Low-dose carvedilol protects against acute septic renal injury in rats during the early and late phases. Can J Physiol Pharmacol 2015; 93:443-50. [PMID: 25928585 DOI: 10.1139/cjpp-2014-0516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recent findings from septic acute renal injury studies have implicated the mitochondrion as an important factor in kidney injury, and that increased sympathetic nerve activity may contribute to the induction of organ failure. This study investigated the impact of a nondepressor dose of carvedilol, which is a beta-adrenoreceptor antagonist with antioxidant activity, on septic renal injury induced in rats with cecal ligation and puncture (CLP). Three groups of rats were studied. The first group was the sham-operated control. The other 2 groups of rats underwent CLP, and were administered either the vehicle or carvedilol (2.0 mg/kg body mass, by intraperitoneal (i.p.) injection, daily for 2 days as well as 30 min prior to CLP). Kidney function, inflammatory parameters, mitochondrial function, and renal perfusion pressure (RPP) were investigated at 6 and 18 h after CLP. Carvedilol did not significantly induce hypotension, and it significantly improved RPP and renal dysfunction induced with CLP, together with significant reductions in serum levels of interleukin 6 and tumor necrosis factor-alpha. Septic kidney injury mediated increased levels of malondialdehyde and protein carbonyls. Carvedilol also attenuated the decrease in kidney mitochondrial glutathione and nicotinamide adenine dinucleotide phosphate dehydrogenase. Further, intracellular renal edema and inflammation induced with CLP were reduced with carvedilol. These findings suggest renoprotective effects of carvedilol in sepsis.
Collapse
Affiliation(s)
- Hala Salah Abdel Kawy
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Ramsis Street, Abbassia, Cairo, Egypt
| |
Collapse
|
15
|
Ogura Y, Jesmin S, Yamaguchi N, Oki M, Shimojo N, Islam MM, Khatun T, Kamiyama J, Sakuramoto H, Hagiya K, Kawano S, Mizutani T. Potential amelioration of upregulated renal HIF-1alpha-endothelin-1 system by landiolol hydrochloride in a rat model of endotoxemia. Life Sci 2014; 118:347-56. [PMID: 24846832 DOI: 10.1016/j.lfs.2014.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 05/04/2014] [Accepted: 05/09/2014] [Indexed: 12/16/2022]
Abstract
AIMS Endothelin (ET)-1 is the best known potent vasoconstrictor and has been implicated in pathogenesis of sepsis-associated acute kidney injury (AKI) in human or lipopolysaccharide (LPS)-induced AKI in animal models. We have previously shown that ET-1 is highly up-regulated in renal tissues and in plasma after LPS administration. Here, we investigated whether landiolol hydrochloride, an ultra-short-acting beta-blocker, can play an important role in ameliorating levels of LPS-induced up-regulation of renal HIF-1α-ET-1 system and inflammatory cytokines in a rat model of endotoxemia. MAIN METHODS Male Wistar rats at 8 weeks of age were either administered with: a) lipopolysaccharide (LPS) only for three hours (3 h) or b) LPS, followed by continuous administration of landiolol for 3 h; c) third group was only treated with vehicle. KEY FINDINGS At 3 h after LPS administration there was: a) minimal injury in kidney tissues; b) circulatory levels of creatinine, blood urea nitrogen and NGAL increased and c) expression of inflammatory cytokines, such as TNF-α, IL-6 and iNOS increased at the level of both circulatory and renal tissues. In addition, LPS significantly induced renal expression of ET-1 and HIF-1α compared to control. Finally, treatment of LPS-administered rats with landiolol for 3 h normalized elevated serum markers of renal injury and up-regulated levels of renal HIF-1α-ET-1 system with normalization of TNF-α. SIGNIFICANCE Taken together, these data led us to conclude that landiolol ameliorates the up-regulation of HIF-1α-ET-1 system in minimally morphologically-injured kidney and normalizes biomarkers of renal injury in early hours of endotoxemia of a rat model.
Collapse
Affiliation(s)
- Yoshiyasu Ogura
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Health Science, Ibaraki Prefectural University, Ami, Ibaraki, Japan.
| | - Subrina Jesmin
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Health Science, Ibaraki Prefectural University, Ami, Ibaraki, Japan.
| | - Naoto Yamaguchi
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Health Science, Ibaraki Prefectural University, Ami, Ibaraki, Japan.
| | - Masami Oki
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Health Science, Ibaraki Prefectural University, Ami, Ibaraki, Japan.
| | - Nobutake Shimojo
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Health Science, Ibaraki Prefectural University, Ami, Ibaraki, Japan.
| | - Md Majedul Islam
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Health Science, Ibaraki Prefectural University, Ami, Ibaraki, Japan.
| | - Tanzila Khatun
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Health Science, Ibaraki Prefectural University, Ami, Ibaraki, Japan.
| | - Junko Kamiyama
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Health Science, Ibaraki Prefectural University, Ami, Ibaraki, Japan.
| | - Hideaki Sakuramoto
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Health Science, Ibaraki Prefectural University, Ami, Ibaraki, Japan.
| | - Keiichi Hagiya
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Health Science, Ibaraki Prefectural University, Ami, Ibaraki, Japan.
| | - Satoru Kawano
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Health Science, Ibaraki Prefectural University, Ami, Ibaraki, Japan.
| | - Taro Mizutani
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Center for Health Science, Ibaraki Prefectural University, Ami, Ibaraki, Japan.
| |
Collapse
|
16
|
Seki Y, Jesmin S, Shimojo N, Islam MM, Rahman MA, Khatun T, Sakuramoto H, Oki M, Sonobe A, Kamiyama J, Hagiya K, Kawano S, Mizutani T. Significant reversal of cardiac upregulated endothelin-1 system in a rat model of sepsis by landiolol hydrochloride. Life Sci 2014; 118:357-63. [PMID: 24735957 DOI: 10.1016/j.lfs.2014.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 03/26/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
AIMS Landiolol hydrochloride, an ultra-short-acting highly cardio-selective β-1 blocker, has become useful for various medical problems. Recent studies have demonstrated that co-treatment with landiolol protects against acute lung injury and cardiac dysfunction in rats of lipopolysaccharide (LPS)-induced systemic inflammation, and was also associated with a significant reduction in serum levels of the inflammation mediator HMGB-1 and histological lung damage. Endothelin (ET)-1, a potent vasoconstrictor, has been implicated in pathogenesis of sepsis and sepsis-induced multiple organ dysfunction syndrome. Here, we investigated whether landiolol hydrochloride can play important roles in ameliorating LPS-induced alterations in cardiac ET system of septic rats. MAIN METHODS Eight-week-old male Wistar rats were administered LPS only for 3 h and the rest were treated with LPS as well as with landiolol non-stop for 3 h. KEY FINDINGS At 3 h after LPS (only) administration, circulatory tumor necrosis factor (TNF)-α level, blood lactate concentration and percentage of fractional shortening of heart were significantly increased. In addition, LPS induced a significant expression of various components of cardiac ET-1 system compared to control. Finally, treatment of LPS-administered rats with landiolol for 3 h normalized LPS-induced blood lactate levels and cardiac functional compensatory events, without altering levels of plasma TNF-α and ET-1. Most strikingly, landiolol treatment significantly normalized various components of cardiac ET-1 signaling system in septic rat. SIGNIFICANCE Taken together, these data led us to conclude that landiolol may be cardio-protective in septic rats by normalizing the expression of cardiac vasoactive peptide such as ET, without altering the circulatory levels of inflammatory cytokines.
Collapse
Affiliation(s)
- Yoshimoto Seki
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Subrina Jesmin
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nobutake Shimojo
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Md Majedul Islam
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Md Arifur Rahman
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tanzila Khatun
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideaki Sakuramoto
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masami Oki
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Aiko Sonobe
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Junko Kamiyama
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiichi Hagiya
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Kawano
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Taro Mizutani
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
17
|
Effects of protease activated receptor (PAR)2 blocking peptide on endothelin-1 levels in kidney tissues in endotoxemic rat mode. Life Sci 2014; 102:127-33. [PMID: 24641950 DOI: 10.1016/j.lfs.2014.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/23/2014] [Accepted: 03/06/2014] [Indexed: 11/23/2022]
Abstract
AIMS Septic shock, the severe form of sepsis, is associated with development of progressive damage in multiple organs. Kidney can be injured and its functions altered by activation of coagulation, vasoactive-peptide and inflammatory processes in sepsis. Endothelin (ET)-1, a potent vasoconstrictor, is implicated in the pathogenesis of sepsis and its complications. Protease-activated receptors (PARs) are shown to play an important role in the interplay between inflammation and coagulation. We examined the time-dependent alterations of ET-1 and inflammatory cytokine, such as tumor necrosis factor (TNF)-α in kidney tissue in lipopolysaccharide (LPS)-induced septic rat model and the effects of PAR2 blocking peptide on the LPS-induced elevations of renal ET-1 and TNF-α levels. MAIN METHODS Male Wistar rats at 8 weeks of age were administered with either saline solution or LPS at different time points (1, 3, 6 and 10h). Additionally, we treated LPS-administered rats with PAR2 blocking peptide for 3h to assess whether blockade of PAR2 has a regulatory role on the ET-1 level in septic kidney. KEY FINDINGS An increase in ET-1 peptide level was observed in kidney tissue after LPS administration time-dependently. Levels of renal TNF-α peaked (around 12-fold) at 1h of sepsis. Interestingly, PAR2 blocking peptide normalized the LPS-induced elevations of renal ET-1 and TNF-α levels. SIGNIFICANCE The present study reveals a distinct chronological expression of ET-1 and TNF-α in LPS-administered renal tissues and that blockade of PAR2 may play a crucial role in treating renal injury, via normalization of inflammation, coagulation and vaso-active peptide.
Collapse
|
18
|
Nguyen BTA, Minkiewicz V, McCabe E, Cecile J, Mowa CN. Vascular endothelial growth factor induces mRNA expression of pro-inflammatory factors in the uterine cervix of mice. Biomed Res 2013; 33:363-72. [PMID: 23268960 DOI: 10.2220/biomedres.33.363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inflammation is believed to play a role in uterine cervical remodeling and infection-induced preterm labor. One of the distinct features of remodeling uterine cervix is presence of prominent vascular events, such as angiogenesis, vasodilation, and vascular permeability. Although the functional significance of these features is not yet clear, we know that in most tissue types, vascular remodeling is intricately intertwined with inflammation. Since vascular endothelial growth factor (VEGF) is the major architect of vascular remodeling, we sought to examine and elucidate the potential relationship between VEGF and inflammation in the uterine cervix of non-pregnant mice. The animals used were divided into 4 treatment groups: A) negative control (vehicle only), B) positive control (lipopolysaccharide, LPS), C) recombinant VEGF-164 protein, and D) LPS + VEGF blocker (n = 3). After the appropriate treatments, the uterine cervices were harvested and analyzed using real-time PCR and confocal fluorescence microscopy. Results showed that exogenous VEGF upregulates expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α mRNAs, whereas VEGF blocker partially diminishes the LPS-induced expression of pro-inflammatory factors compared to the positive control group. We conclude that a positive feed-forward relationship likely exists between VEGF and inflammation in the uterine cervix, thus implicating VEGF in inflammation-induced preterm labor.
Collapse
|
19
|
Tunctan B, Korkmaz B, Sari AN, Kacan M, Unsal D, Serin MS, Buharalioglu CK, Sahan-Firat S, Cuez T, Schunck WH, Manthati VL, Falck JR, Malik KU. Contribution of iNOS/sGC/PKG pathway, COX-2, CYP4A1, and gp91(phox) to the protective effect of 5,14-HEDGE, a 20-HETE mimetic, against vasodilation, hypotension, tachycardia, and inflammation in a rat model of septic shock. Nitric Oxide 2013; 33:18-41. [PMID: 23684565 DOI: 10.1016/j.niox.2013.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/23/2013] [Accepted: 05/07/2013] [Indexed: 01/08/2023]
Abstract
We have previously demonstrated that a stable synthetic analog of 20-hydroxyeicosatetraenoic acid (20-HETE), N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine (5,14-HEDGE), prevents vascular hyporeactivity, hypotension, tachycardia, and inflammation in rats treated with lipopolysaccharide (LPS) and mortality in endotoxemic mice. These changes were attributed to decreased production of inducible nitric oxide (NO) synthase (iNOS)-derived NO, cyclooxygenase (COX)-2-derived vasodilator prostanoids, and proinflammatory mediators associated with increased cyctochrome P450 (CYP) 4A1-derived 20-HETE and CYP2C23-dependent antiinflammatory mediator formation. The aim of this study was to determine whether decreased expression and activity of iNOS, soluble guanylyl cyclase (sGC), protein kinase G (PKG), COX-2, gp91(phox) (NOX2; a superoxide generating NOX enzyme), and peroxynitrite production associated with increased expression of COX-1 and CYP4A1 and 20-HETE formation in renal and cardiovascular tissues of rats contributes to the effect of 5,14-HEDGE to prevent vasodilation, hypotension, tachycardia, and inflammation in response to systemic administration of LPS. Mean arterial pressure fell by 28mmHg and heart rate rose by 47beats/min in LPS (10mg/kg, i.p.)-treated rats. Administration of LPS also increased mRNA and protein expression of iNOS and COX-2 associated with a decrease in COX-1 and CYP4A1 mRNA and protein expression. Increased NOS activity, iNOS-heat shock protein 90 complex formation (an index for iNOS activity), protein expression of phosphorylated vasodilator stimulated phosphoprotein (an index for PKG activity), gp91(phox), p47(phox) (NOXO2; organizer subunit of gp91(phox)), and nitrotyrosine (an index for peroxynitrite production) as well as cGMP (an index for sGC activity), 6-keto-PGF1α (a stable metabolite PGI2) and PGE2 levels (indexes for COX activity), and nitrotyrosine levels by LPS were also associated with decreased CYP hydroxylase activity as measured by 20-HETE formation from arachidonic acid in renal microsomes of LPS-treated rats. These effects of LPS, except iNOS mRNA and COX-1 protein expression, were prevented by 5,14-HEDGE (30mg/kg, s.c.; 1h after LPS). A competitive antagonist of vasoconstrictor effects of 20-HETE, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (30mg/kg, s.c.; 1h after LPS) reversed the effects of 5,14-HEDGE, except iNOS and COX-1 mRNA and protein expression as well as expression of CYP4A1 mRNA. These results suggest that increased CYP4A1 expression and 20-HETE formation associated with suppression of iNOS/sGC/PKG pathway, COX-2, and gp91(phox) participate in the protective effect of 5,14-HEDGE against vasodilation, hypotension, tachycardia, and inflammation in the rat model of septic shock.
Collapse
Affiliation(s)
- Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, 33169 Mersin, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lipopolysaccharide effects on the proliferation of NRK52E cells via alternations in gap-junction function. J Trauma Acute Care Surg 2012; 73:67-72. [PMID: 22743374 DOI: 10.1097/ta.0b013e318256a0fe] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Gap junctions regulate proper kidney function by facilitating intercellular communication, vascular conduction, and tubular purinergic signaling. However, no clear relationship has been described between gap-junction function and acute kidney injury induced by the endotoxin lipopolysaccharide (LPS). METHODS Normal rat kidney epithelial cells (NRK52E cells) were seeded at high and low densities to promote or impede gap-junction formation, respectively, and establish distinctive levels of intercellular communication in culture. Cells were then challenged with LPS at various concentrations (10-1,000 ng/mL). LPS-induced formation and function of gap junctions were assessed by measuring changes in cell proliferation and colony-forming rates, fluorescent dye transmission to adjacent cells, expression levels of connexin43, and repositioning of confluent cells in response to the gap junction inhibitor oleamide or agonist retinoic acid. RESULTS The cell proliferation rate and colony-forming rate of high- and low-density NRK52E cells were decreased upon LPS challenge, in a dose-dependent manner. The colony-forming rate of confluent high-density cells was significantly lower than that of low-density cells. Oleamide treatment raised the LPS-induced colony-forming rate of high-density cells, whereas retinoic acid decreased the rate. Neither oleamide nor retinoic acid significantly affected the LPS-induced colony-forming rate of low-density cells. Fluorescence transmission of high-density cells was reduced by LPS challenge, in a dose-dependent manner, but inclusion of retinoic acid increased the LPS-induced transmission of fluorescence. LPS challenge of either high- or low-density NRK52E cells resulted in down-regulated connexin43 expression. CONCLUSION Gap-junction function plays an important role in concentration-dependent cytotoxic effect of LPS on normal rat kidney cells in vitro.
Collapse
|
21
|
Tunctan B, Sari AN, Kacan M, Unsal D, Buharalioglu CK, Sahan-Firat S, Korkmaz B, Falck JR, Malik KU. NS-398 reverses hypotension in endotoxemic rats: contribution of eicosanoids, NO, and peroxynitrite. Prostaglandins Other Lipid Mediat 2012; 104-105:93-108. [PMID: 22975359 DOI: 10.1016/j.prostaglandins.2012.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 01/09/2023]
Abstract
We have previously demonstrated that inhibition of vasodilator prostanoids, PGI2 and PGE2, and nitric oxide (NO) synthesis by a selective cyclooxygenase-2 (COX-2) inhibitor, NS-398, restores blood pressure as a result of increased systemic and renal levels of 20-hydroxyeicosatetraenoic acid (20-HETE) in endotoxemic rats. The aim of this study was to further investigate the effects of NS-398 on the changes in expression and/or activity of COX-2, cytochrome P450 4A1 (CYP4A1), inducible NO synthase (iNOS), and peroxynitrite formation in serum, renal, cardiac, and/or vascular tissues of lipopolysaccharide (LPS)-treated rats. LPS (10mg/kg, i.p.)-induced decrease in blood pressure was associated with increased protein levels of COX-2, iNOS, and nitrotyrosine in kidney, heart, thoracic aorta, and superior mesenteric artery. The activities of COX-2 and iNOS as well as levels of PGI2, PGE2, and nitrotyrosine were also increased in the systemic circulation and renal, cardiac, and vascular tissues of LPS-treated rats. In contrast, renal, cardiac, and vascular CYP4A1 protein expression as well as systemic and tissue levels of 20-HETE were decreased in endotoxemic rats. These effects of LPS, except COX-2 protein expression, were prevented by NS-398 (10 mg/kg, i.p.), given 1h after injection of LPS. These data suggest that COX-2-derived vasodilator prostanoids, PGI2 and PGE2, produced during endotoxemia increase iNOS protein expression and activity as well as peroxynitrite formation resulting in decreased CYP4A1 protein expression and 20-HETE synthesis. Taken together, we concluded that an increase in 20-HETE levels associated with a decrease in the production of vasodilator prostanoids and NO participates in the effect of NS-398 to prevent hypotension in the rat model of septic shock.
Collapse
Affiliation(s)
- Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jesmin S, Zaedi S, Islam AMS, Sultana SN, Iwashima Y, Wada T, Yamaguchi N, Hiroe M, Gando S. Time-dependent alterations of VEGF and its signaling molecules in acute lung injury in a rat model of sepsis. Inflammation 2012; 35:484-500. [PMID: 21528367 DOI: 10.1007/s10753-011-9337-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular mechanisms of sepsis-associated acute lung injury (ALI) are poorly defined. Since vascular endothelial growth factor (VEGF) is a potent vascular permeability and mitogenic factor, it might contribute to the development of ALI in sepsis. Thus, using lipopolysaccharide (LPS)-induced (15 mg/kg, intraperitoneal) endotoxemic rat model, we studied the timeline (1, 3, 6, and 10 h) of pulmonary VEGF expression and its signaling machinery. Levels of pulmonary VEGF and its angiogenic-mediating receptor, Flk-1, were downregulated by LPS in a time-dependent manner; levels of plasma VEGF and its permeability-mediating receptor, Flt-1, in contrast, was upregulated with time. In addition, blockade of Flt-1 could improve the downregulated pulmonary VEGF level and attenuate the elevated plasma and pulmonary levels of TNF-α, followed by improvement of arterial oxygenation and wet-to-dry weight ratio of the lung. Expression of signaling, pro- and or apoptotic factors after LPS administration were as follows: phosphorylated Akt, a downstream molecule was downregulated time dependently; endothelial nitric oxide synthase levels were significantly reduced; pro-apoptotic markers caspase 3 and Bax were upregulated whereas levels of Bcl-2 were downregulated. The present findings show that VEGF may play a role through the expression of Flt-1 in LPS-induced ALI. Moreover, downregulation of VEGF signaling cascade may account for LPS-induced apoptosis and impaired physiological angiogenesis in lung tissues, which in turn may contribute to the development of ALI induced by LPS.
Collapse
Affiliation(s)
- Subrina Jesmin
- Division of Gene Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Choi JY, Nam SA, Jin DC, Kim J, Cha JH. Expression and cellular localization of inducible nitric oxide synthase in lipopolysaccharide-treated rat kidneys. J Histochem Cytochem 2012; 60:301-15. [PMID: 22260992 DOI: 10.1369/0022155411436131] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although inducible nitric oxide synthase (iNOS) is known to play significant roles in the kidney, its renal localization has long been controversial. To resolve this issue, the authors identified iNOS-positive cell types in rat kidneys using double immunohistochemistry and confirmed iNOS positivity using enzyme histochemistry with NADPH-diaphorase (NADPH-d) and in situ RT-PCR. Adult male Sprague-Dawley rats were injected intraperitoneally with lipopolysaccharide (LPS) or saline as a control and sacrificed at various time intervals after injection. Quantitative real-time reverse transcriptase polymerase chain reaction showed that iNOS was not expressed in control kidneys but was induced in LPS-treated kidneys. iNOS immunostaining was strongest 6 to 18 hr after injection and decreased gradually to control levels by day 7. Double immunohistochemistry and NADPH-d revealed that iNOS expression was induced in the interstitial cells, glomerular parietal epithelial cells, the proximal part of the short-looped descending thin limb, the upper and middle papillary parts of the long-looped descending thin limb, some inner medullary collecting duct cells, and almost all calyceal and papillary epithelial cells. The present study determines the precise localization of iNOS in LPS-treated rat kidneys and provides an important morphological basis for examining the roles of iNOS in sepsis-induced acute kidney injury.
Collapse
Affiliation(s)
- Jae-Youn Choi
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | | | | | | |
Collapse
|
24
|
Jesmin S, Yamaguchi N, Zaedi S, Nusrat Sultana S, Iwashima Y, Sawamura A, Gando S. Time-dependent expression of endothelin-1 in lungs and the effects of TNF-α blocking peptide on acute lung injury in an endotoxemic rat model. ACTA ACUST UNITED AC 2011; 32:9-17. [PMID: 21383506 DOI: 10.2220/biomedres.32.9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endothelin (ET)-1 is a potent vasoconstrictor that has been implicated in the pathogenesis of a number of diseases, and some studies suggest that circulating ET-1 is elevated in sepsis. The present study investigated whether ET plays a role in sepsis-mediated acute lung injury and whether its expression could be down regulated by blockade of TNF-α in septic lung. Male Wistar rats at 8 weeks of age were administered with either saline or lipopolysaccharide (LPS) at different time points (1, 3, 6 and 10 h) and various tests were then performed. The features of acute lung injury were observed at 1 h after LPS administration, which gradually became severe with time. Systolic and diastolic pressures were reduced just about one hour after LPS administration, whereas pulmonary TNF-α levels were significantly increased at various time points after LPS administration. LPS induced a time-dependent expression of ET-1 and ET(A) receptor in the lungs compared to control, peaking and increasing by 3 fold at 6 h after induction of endotoxemia, whereas levels of ET(B) receptor, which has vasodilating effects, were remarkably down regulated time-dependently. We conclude that time-dependent increase of ET-1 and ET(A) receptor with the down regulation of ET(B) receptor may play a role in the pathogenesis of acute lung injury in endotoxemia. Finally, treatment of LPS-administered rats with TNF-α blocking peptide for three hours significantly suppressed levels of pulmonary ET-1. These data taken together, led us to conclude that differential alteration in ET expression and its receptors may be mediated by TNF-α and may, in part, account for the pathogenesis of acute lung injury in endotoxemia.
Collapse
Affiliation(s)
- Subrina Jesmin
- Division of Gene Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
The impact of intrarenal nitric oxide synthase inhibition on renal blood flow and function in mild and severe hyperdynamic sepsis*. Crit Care Med 2011; 39:770-6. [DOI: 10.1097/ccm.0b013e318206c1fb] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Chen CF, Wang D, Reiter RJ, Yeh DY. Oral melatonin attenuates lung inflammation and airway hyperreactivity induced by inhalation of aerosolized pancreatic fluid in rats. J Pineal Res 2011; 50:46-53. [PMID: 20964706 DOI: 10.1111/j.1600-079x.2010.00808.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Melatonin is a free radical scavenger with potent antioxidant properties and immunomodulatory effects. The purpose of this study was to determine the effects of orally administered melatonin in a pancreatic fluid (PF)-induced lung inflammation and airway hyperreactivity model. Aerosolized PF was introduced into airways to induce inflammation in rats. Animals were randomized into three experimental groups: sham treated; PF treated (200 μL/kg); and PF with melatonin (10 mg/kg) pretreatment. Airway reactivity to methacholine, airflow and airway resistance, bronchoalveolar lavage (BAL) cellular differential, the tumor necrosis factor α (TNFα) level, lavage nitric oxide, hydroxyl radical, and lactic dehydrogenase (LDH) were compared among groups. mRNA expressions of inducible nitric oxide synthase (iNOS) and TNFα in lung tissues were determined by real-time polymerase chain reaction. Protein expressions of iNOS and nitrotyrosine and lung tissue myeloperoxidase (MPO) activity were determined using an ELISA assay. Oral melatonin treatment indicated anti-inflammatory efficacy as evidenced by decreased methacholine sensitivity by 24% and airway obstruction by 28%, reduction in BAL eosinophil (P < 0.01) and neutrophil counts (P < 0.05), LDH (P < 0.05), and TNFα concentrations (P < 0.05) when compared to levels in sham-treated rats. Melatonin-treated animals also had reduced nitric oxide and hydroxyl radical concentrations (P < 0.05) in lavage fluid. Oral melatonin significantly reduced mRNA and protein expression of iNOS (P < 0.05 and P < 0.01, respectively), TNFα (P < 0.05), nitrotyrosine (P < 0.05), and MPO activity (P < 0.05) in lung tissues when compared with the sham-treated animals. These results suggest that oral treatment with melatonin had a beneficial effect on PF-induced obstructive ventilatory insufficiency by attenuating nitrosative and oxidative stress.
Collapse
Affiliation(s)
- Chao F Chen
- Division of Gastroenterology, Department of Internal Medicine, Cheng Hsin General Hospital, Ming Chuan University, Taoyuan County, Taiwan
| | | | | | | |
Collapse
|
27
|
Lipopolysaccharide alters vasodilation to atrial natriuretic peptide via nitric oxide and endothelin-1: Time-dependent effects. Eur J Pharmacol 2009; 621:67-70. [DOI: 10.1016/j.ejphar.2009.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 08/05/2009] [Accepted: 08/19/2009] [Indexed: 01/28/2023]
|
28
|
Palin K, Moreau ML, Sauvant J, Orcel H, Nadjar A, Duvoid-Guillou A, Dudit J, Rabié A, Moos F. Interleukin-6 activates arginine vasopressin neurons in the supraoptic nucleus during immune challenge in rats. Am J Physiol Endocrinol Metab 2009; 296:E1289-99. [PMID: 19258490 DOI: 10.1152/ajpendo.90489.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The increase of plasma arginin-vasopressin (AVP) release, which translates hypothalamic AVP neuron activation in response to immune challenge, appears to occur independently of plasma osmolality or blood pressure changes. Many studies have shown that major inflammatory mediators produced in response to peripheral inflammation, such as prostaglandin (PG)-E(2) and interleukin (IL)-1beta, excite AVP neurons. However, in vivo electrical activation of AVP neurons was still not assessed in relation to plasma AVP release, osmolality, or blood pressure or to the expression and role of inflammatory molecules like PG-E(2), IL-1beta, IL-6, and tumor necrosis factor-alpha (TNFalpha). This study aims at elucidating those factors that underlie the activation of AVP neurons in response to immune stimulation mimicked by an intraperitoneal injection of lipopolysaccharide (LPS) in male Wistar rats. LPS treatment concomittanlty decreased diuresis and increased plasma AVP as well as AVP neuron activity in vivo, and these effects occurred as early as 30 min. Activation was sustained for more than 6 h. Plasma osmolality did not change, whereas blood pressure only transiently increased during the first hour post-LPS. PG-E(2), IL-1beta, and TNFalpha mRNA expression were raised 3 h after LPS, whereas IL-6 mRNA level increased 30 min post-LPS. In vivo electrophysiological recordings showed that brain IL-6 injection increased AVP neuron activity similarly to peripheral LPS treatment. In contrast, brain injection of anti-IL-6 antibodies prevented the LPS induced-activation of AVP neurons. Taken together, these results suggest that the early activation of AVP neurons in response to LPS injection is induced by brain IL-6.
Collapse
Affiliation(s)
- Karine Palin
- Laboratoire PsyNuGen, Université de Bordeaux 2, CNRS UMR5226, INRA UMR1286, IFR8 Neurosciences, Bâtiment UFR de pharmacie, 146 rue Léo Saignat, Bordeaux, F-33076, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
From Hemodynamics To Proteomics: Unraveling the Complexity of Acute Kidney Injury in Sepsis. Intensive Care Med 2009. [DOI: 10.1007/978-0-387-77383-4_53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Nitescu N, Grimberg E, Herlitz H, Guron G. ROLE OF ENDOTHELIN ETAAND ETBRECEPTOR SUBTYPES IN THE REGULATION OF INTRARENAL BLOOD FLOW AND OXYGEN TENSION IN RATS. Clin Exp Pharmacol Physiol 2008; 35:1227-32. [DOI: 10.1111/j.1440-1681.2008.04977.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Low-dose candesartan improves renal blood flow and kidney oxygen tension in rats with endotoxin-induced acute kidney dysfunction. Shock 2008; 30:166-72. [PMID: 18091574 DOI: 10.1097/shk.0b013e31815dd780] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sepsis is associated with an activation of the renin-angiotensin system and causes acute kidney injury. The aim was to examine the effects of a low, nondepressor dose of the selective angiotensin II type 1 receptor antagonist candesartan on renal hemodynamics and function in endotoxemic rats. Endotoxemia was induced in Sprague-Dawley rats by a dose of LPS (Escherichia coli O127:B8; 7.5 mg kg(-1), i.p.). At 16 h after endotoxin administration, renal clearance experiments were performed in thiobutabarbital anesthetized rats. Study groups (1) sham-saline, (2) LPS-saline, and (3) LPS-candesartan received isotonic saline or candesartan (10 microg kg(-1), i.v.) after baseline measurements. Kidney function, renal blood flow (RBF), and cortical and outer medullary perfusion (laser-Doppler flowmetry) and oxygen tension (P(O2); Clark-type microelectrodes) were analyzed during 2 h after drug administration. At baseline, endotoxemic rats showed an approximately 50% reduction in glomerular filtration rate and RBF (P < 0.05), a decline in cortical and outer medullary perfusion, and Po2 (P < 0.05), but no significant alterations in MAP compared with saline-injected controls. Candesartan treatment significantly improved RBF (+40% +/- 6% vs. baseline), cortical perfusion (+18% +/- 3% vs. baseline), and cortical (+19% +/- 7% vs. baseline) and outer medullary (+22% +/- 10% vs. baseline) P(O2) in endotoxemic rats (P < 0.05 vs. LPS-saline). Candesartan did not significantly influence MAP or glomerular filtration rate, whereas filtration fraction was reduced by 27% +/- 5% vs. baseline (P < 0.05 vs. LPS-saline). In conclusion, candesartan, in a dose that did not significantly decrease MAP, caused renal vasodilation and markedly improved RBF and intrarenal P(O2) in endotoxemic rats. These findings suggest renoprotective effects of candesartan in sepsis.
Collapse
|
32
|
Nitescu N, Grimberg E, Ricksten SE, Herlitz H, Guron G. Endothelin B receptors preserve renal blood flow in a normotensive model of endotoxin-induced acute kidney dysfunction. Shock 2008; 29:402-9. [PMID: 17693943 DOI: 10.1097/shk.0b013e3181454118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim was to investigate the role of endothelin 1 receptor subtypes in the early renal response to lipopolysaccharide (LPS) during normotensive endotoxemia with acute kidney dysfunction. Endotoxemia was induced in thiobutabarbital-anesthetized rats (n = 9 per group) by infusion of LPS (dosage, 1 mg/kg per hour i.v.). The study groups (1) sham-saline, (2) LPS-saline, (3) LPS-BQ123, (4) LPS-BQ788 and (5) LPS-BQ123 + BQ788 received isotonic saline, the ETA receptor antagonist BQ-123 (dosage, 30 nmol/kg per minute i.v.), and/or the ETB receptor antagonist BQ-788 (dosage, 30 nmol/kg per minute i.v.) before and during 2 h of LPS infusion. Renal clearance measurements, renal blood flow (RBF), and cortical and outer medullary perfusion (laser-Doppler flowmetry) and oxygen tension (Clark-type microelectrodes) were analyzed throughout. Before LPS administration, there were no significant differences between groups in glomerular filtration rate (GFR), RBF, or in cortical (CLDF) and outer medullary perfusion. However, mean arterial pressure (MAP) was elevated in LPS-BQ788 group compared with LPS-BQ123 + BQ788 group (P < 0.05). In saline-treated rats, endotoxin induced an approximate 35% reduction in GFR (P < 0.05), without significant effects on MAP, RBF, or on CLDF and cortical PO2. In addition, LPS increased outer medullary perfusion and PO2 (P < 0.05). The fractional urinary excretion rates of sodium, potassium, and water were not significantly different in LPS-saline group compared with sham-saline group. Neither selective nor combined ETA and ETB receptor blockade improved GFR. In BQ-788-infused rats, endotoxin produced marked reductions in RBF (-18% +/- 4% [P < 0.05]) and CLDF (-18% +/- 2% [P < 0.05]). Similarly, endotoxin decreased RBF (-14% +/- 3% [P < 0.05]) and CLDF (-10% +/- 2% [P < 0.05]) in LPS-BQ123 + BQ788 group. Endotoxin reduced MAP (-22% +/- 4% [P < 0.05]) in BQ-123-treated rats but did not significantly influence MAP in other groups. We conclude that in early normotensive endotoxemia, ETB receptors exert a renal vasodilator influence and contribute to maintain normal RBF.
Collapse
Affiliation(s)
- Nicoletta Nitescu
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, The Sahlgrenska Academy at Göteborg University, Sweden.
| | | | | | | | | |
Collapse
|
33
|
Guo LY, Liu P. Research progress in the mechanism of renal vasoconstriction in hepatorenal syndrome. Shijie Huaren Xiaohua Zazhi 2008; 16:982-986. [DOI: 10.11569/wcjd.v16.i9.982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatorenal syndrome (HRS) is defined as the development of renal failure in patients with severe liver disease in the absence of any other identifiable cause of renal pathology. The hallmark of HRS is renal vasoconstriction. The cause of renal vasoconstriction may involve several factors: activation of renal nervous system, imbalance of renal vasoactive mediators and molecular mechanism. In this review, we summarize the above progress.
Collapse
|
34
|
REDUCED VASCULAR RESPONSE TO PHENYLEPHRINE DURING EXPOSURE TO LIPOPOLYSACCHARIDE IN VITRO INVOLVES NITRIC OXIDE AND ENDOTHELIN 1. Shock 2008; 29:417-21. [DOI: 10.1097/shk.0b013e318142c5df] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
35
|
John E, Pais P, Furtado N, Chin A, Radhakrishnan J, Fornell L, Lumpaopong A, Beier UH. Early effects of lipopolysaccharide on cytokine release, hemodynamic and renal function in newborn piglets. Neonatology 2008; 93:106-12. [PMID: 17703105 DOI: 10.1159/000107352] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 05/30/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND Gram-negative sepsis in newborns is associated with high mortality and morbidity. Lipopolysaccharide (LPS) and cytokines released upon exposure to gram-negative sepsis are well known to be involved in the pathophysiology. OBJECTIVE In this report we investigate cytokine release, hemodynamic, and renal function induced by LPS in a newborn animal model with the intention to further examine early changes in gram-negative sepsis. METHODS Five 7- to 10-day-old domestic piglets were anesthetized and catheters placed in the jugular veins, left ventricle, and femoral artery. Urine output was monitored via suprapubic cystostomy. Mean arterial pressure, heart rate, and arterial blood gases were continuously monitored. Thirty minutes after line placement and obtaining baseline values, 0.06 mug/kg LPS were administered intravenously. One, 2, and 3 h later samples were taken to monitor tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, endothelin, and nitric oxide (NO)/nitrate via ELISA. In addition, blood flow was assessed by the microsphere method. RESULTS Our data show an initial surge of TNF-alpha and IL-1beta at 1 h after exposure to LPS. NO/nitrate, endothelin, and hemodynamic as well as metabolic changes became apparent mostly 3 h after exposure, by which time TNF-alpha and IL-1beta fell back to baseline. CONCLUSIONS Our sepsis model suggests a brief initial TNF-alpha and IL-1beta surge following LPS challenge; however, their effects become apparent by the time the levels are already subsiding. The emergence of vasoactive substances, NO and endothelin, precedes the first substantial clinical symptoms.
Collapse
Affiliation(s)
- Eunice John
- Division of Pediatric Nephrology, Department of Pediatrics, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Matejovic M, Radermacher P, Joannidis M. Acute kidney injury in sepsis: Is renal blood flow more than just an innocent bystander? Intensive Care Med 2007; 33:1498-500. [PMID: 17572878 DOI: 10.1007/s00134-007-0735-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
Gupta A, Rhodes GJ, Berg DT, Gerlitz B, Molitoris BA, Grinnell BW. Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2. Am J Physiol Renal Physiol 2007; 293:F245-54. [PMID: 17409278 DOI: 10.1152/ajprenal.00477.2006] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial dysfunction contributes significantly to acute renal failure (ARF) during inflammatory diseases including septic shock. Previous studies have shown that activated protein C (APC) exhibits anti-inflammatory properties and modulates endothelial function. Therefore, we investigated the effect of APC on ARF in a rat model of endotoxemia. Rats subjected to lipopolysaccharide (LPS) treatment exhibited ARF as illustrated by markedly reduced peritubular capillary flow and increased serum blood urea nitrogen (BUN) levels. Using quantitative two-photon intravital microscopy, we observed that at 3 h post-LPS treatment, rat APC (0.1 mg/kg iv bolus) significantly improved peritubular capillary flow [288 +/- 15 microm/s (LPS) vs. 734 +/- 59 microm/s (LPS+APC), P = 0.0009, n = 6], and reduced leukocyte adhesion (P = 0.003) and rolling (P = 0.01) compared with the LPS-treated group. Additional experiments demonstrated that APC treatment significantly improved renal blood flow and reduced serum BUN levels compared with 24-h post-LPS treatment. Biochemical analysis revealed that APC downregulated inducible nitric oxide synthase (iNOS) mRNA levels and NO by-products in the kidney. In addition, APC modulated the renin-angiotensin system by reducing mRNA expression levels of angiotensin-converting enzyme-1 (ACE1), angiotensinogen, and increasing ACE2 mRNA levels in the kidney. Furthermore, APC significantly reduced ANG II levels in the kidney compared with the LPS-treated group. Taken together, these data suggest that APC can suppress LPS-induced ARF by modulating factors involved in vascular inflammation, including downregulation of renal iNOS and ANG II systems. Furthermore, the data suggest a potential therapeutic role for APC in the treatment of ARF.
Collapse
Affiliation(s)
- Akanksha Gupta
- Division of Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285-0444, USA
| | | | | | | | | | | |
Collapse
|