1
|
Talukdar A, Doley R. Identification of poorly immunodepleted phospholipase A 2 (PLA 2) proteins of Bungarus fasciatus venom from Assam, India and evaluation of Indian polyvalent antivenom using third-generation antivenomics. Toxicon 2024; 239:107617. [PMID: 38219916 DOI: 10.1016/j.toxicon.2024.107617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Bungarus fasciatus also referred to as the Banded krait is a snake which possesses venom and belongs to the Elapidae family. It is widely distributed across the Indian subcontinent and South East Asian countries and is responsible for numerous snakebites in the population. B. fasciatus possesses a neurotoxic venom and envenomation by the snake results in significant morbidity and occasional morbidity in the victim if not treated appropriately. In this study, the efficacy of Indian polyvalent antivenom (Premium Serums polyvalent antivenom) was evaluated against the venom of B. fasciatus from Guwahati, Assam (India) employing the Third-generation antivenomics technique followed by identification of venom proteins from three poorly immunodepleted peaks (P5, P6 and P7) using LC-MS/MS analysis. Seven proteins were identified from the three peaks and all these venom proteins belonged to the phospholipase A2 (PLA2) superfamily. The identified PLA2 proteins were corroborated by the in vitro enzymatic activities (PLA2 and Anticoagulant activity) exhibited by the three peaks and previous reports of pathological manifestation in the envenomated victims. Neutralization of enzymatic activities by Premium Serums polyvalent antivenom was also assessed in vitro for crude venom, P5, P6 and P7 which revealed moderate to poor inhibition. Inclusion of venom proteins/peptides, which are non-immunodepleted or poorly immunodepleted, into the immunization mixture of venom used for antivenom production may help in enhancing the efficacy of the polyvalent antivenom.
Collapse
Affiliation(s)
- Amit Talukdar
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
| | - Robin Doley
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
| |
Collapse
|
2
|
Past, Present, and Future of Naturally Occurring Antimicrobials Related to Snake Venoms. Animals (Basel) 2023; 13:ani13040744. [PMID: 36830531 PMCID: PMC9952678 DOI: 10.3390/ani13040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
This review focuses on proteins and peptides with antimicrobial activity because these biopolymers can be useful in the fight against infectious diseases and to overcome the critical problem of microbial resistance to antibiotics. In fact, snakes show the highest diversification among reptiles, surviving in various environments; their innate immunity is similar to mammals and the response of their plasma to bacteria and fungi has been explored mainly in ecological studies. Snake venoms are a rich source of components that have a variety of biological functions. Among them are proteins like lectins, metalloproteinases, serine proteinases, L-amino acid oxidases, phospholipases type A2, cysteine-rich secretory proteins, as well as many oligopeptides, such as waprins, cardiotoxins, cathelicidins, and β-defensins. In vitro, these biomolecules were shown to be active against bacteria, fungi, parasites, and viruses that are pathogenic to humans. Not only cathelicidins, but all other proteins and oligopeptides from snake venom have been proteolyzed to provide short antimicrobial peptides, or for use as templates for developing a variety of short unnatural sequences based on their structures. In addition to organizing and discussing an expressive amount of information, this review also describes new β-defensin sequences of Sistrurus miliarius that can lead to novel peptide-based antimicrobial agents, using a multidisciplinary approach that includes sequence phylogeny.
Collapse
|
3
|
A New Group II Phospholipase A2 from Walterinnesia aegyptia Venom with Antimicrobial, Antifungal, and Cytotoxic Potential. Processes (Basel) 2020. [DOI: 10.3390/pr8121560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many venomous species, especially snakes, contain a variety of secreted phospholipases A2 that contribute to venom toxicity and prey digestion. We characterized a novel highly toxic phospholipase A2 of group II, WaPLA2-II, from the snake venom of Saudi Walterinnesia aegyptia (W. aegyptia). The enzyme was purified using a reverse phase C18 column. It is a monomeric protein with a molecular weight of approximately 14 kDa and an NH2-terminal amino acid sequence exhibiting similarity to the PLA2 group II enzymes. WaPLA2-II, which contains 2.5% (w/w) glycosylation, reached a maximal specific activity of 1250 U/mg at pH 9.5 and 55 °C in the presence of Ca2+ and bile salts. WaPLA2-II was also highly stable over a large pH and temperature range. A strong correlation between antimicrobial and indirect hemolytic activities of WaPLA2 was observed. Additionally, WaPLA2-II was found to be significantly cytotoxic only on cancerous cells. However, chemical modification with para-Bromophenacyl bromide (p-BPB) inhibited WaPLA2-II enzymatic activity without affecting its antitumor effect, suggesting the presence of a separate ‘pharmacological site’ in snake venom phospholipase A2 via its receptor binding affinity. This enzyme is a candidate for applications including the treatment of phospholipid-rich industrial effluents and for the food production industry. Furthermore, it may represent a new therapeutic lead molecule for treating cancer and microbial infections.
Collapse
|
4
|
Abstract
Abstract
Snake venoms are aqueous solutions containing peptides and proteins with various biochemical, physiological, and pathophysiological effects. Several snake venom components are used as lead molecules in the development of new active substances for the treatment of cardiovascular diseases, clotting disorders, cancer or pain.
Antibacterial activity has also been attributed to snake venoms and proteins isolated from snake venoms. This study provides information regarding the antibacterial activity of venoms obtained from various snake species from the Elapidae and Viperidae families. Minimum inhibitory and bactericidal concentrations of snake venoms were determined for three Gram-positive (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 29213, and Methicillin-resistant Staphylococcus aureus ATCC 43300) and three Gram-negative (Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, and Pseudomonas aeruginosa ATCC 27853) pathogenic bacteria. The observed effects were correlated with the protein content of each venom, determined using SDS-PAGE analysis and comparison with data available in the literature. Our findings represent a starting point for the selection of snake venoms containing components with potential use as lead molecules in the development of new antibacterial agents, targeting multidrug resistant bacterial strains.
Collapse
|
5
|
Mantravadi PK, Kalesh KA, Dobson RCJ, Hudson AO, Parthasarathy A. The Quest for Novel Antimicrobial Compounds: Emerging Trends in Research, Development, and Technologies. Antibiotics (Basel) 2019; 8:E8. [PMID: 30682820 PMCID: PMC6466574 DOI: 10.3390/antibiotics8010008] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 12/11/2022] Open
Abstract
Pathogenic antibiotic resistant bacteria pose one of the most important health challenges of the 21st century. The overuse and abuse of antibiotics coupled with the natural evolutionary processes of bacteria has led to this crisis. Only incremental advances in antibiotic development have occurred over the last 30 years. Novel classes of molecules, such as engineered antibodies, antibiotic enhancers, siderophore conjugates, engineered phages, photo-switchable antibiotics, and genome editing facilitated by the CRISPR/Cas system, are providing new avenues to facilitate the development of antimicrobial therapies. The informatics revolution is transforming research and development efforts to discover novel antibiotics. The explosion of nanotechnology and micro-engineering is driving the invention of antimicrobial materials, enabling the cultivation of "uncultivable" microbes and creating specific and rapid diagnostic technologies. Finally, a revival in the ecological aspects of microbial disease management, the growth of prebiotics, and integrated management based on the "One Health" model, provide additional avenues to manage this health crisis. These, and future scientific and technological developments, must be coupled and aligned with sound policy and public awareness to address the risks posed by rising antibiotic resistance.
Collapse
Affiliation(s)
| | | | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800 Christchurch, New Zealand.
| | - André O Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, 85 Lomb Memorial Dr, Rochester, NY 14623, USA.
| | - Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, 85 Lomb Memorial Dr, Rochester, NY 14623, USA.
| |
Collapse
|
6
|
Almeida JR, Palacios ALV, Patiño RSP, Mendes B, Teixeira CAS, Gomes P, da Silva SL. Harnessing snake venom phospholipases A 2 to novel approaches for overcoming antibiotic resistance. Drug Dev Res 2018; 80:68-85. [PMID: 30255943 DOI: 10.1002/ddr.21456] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
The emergence of antibiotic resistance drives an essential race against time to reveal new molecular structures capable of addressing this alarming global health problem. Snake venoms are natural catalogs of multifunctional toxins and privileged frameworks, which serve as potential templates for the inspiration of novel treatment strategies for combating antibiotic resistant bacteria. Phospholipases A2 (PLA2 s) are one of the main classes of antibacterial biomolecules, with recognized therapeutic value, found in these valuable secretions. Recently, a number of biomimetic oligopeptides based on small fragments of primary structure from PLA2 toxins has emerged as a meaningful opportunity to overcome multidrug-resistant clinical isolates. Thus, this review will highlight the biochemical and structural properties of antibacterial PLA2 s and peptides thereof, as well as their possible molecular mechanisms of action and key roles in development of effective therapeutic strategies. Chemical strategies possibly useful to convert antibacterial peptides from PLA2 s to efficient drugs will be equally addressed.
Collapse
Affiliation(s)
| | | | | | - Bruno Mendes
- Departamento de Biologia Animal, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| | - Cátia A S Teixeira
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Paula Gomes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Saulo L da Silva
- Facultad de Ciencias Química, Universidad de Cuenca - Cuenca/Azuay - Ecuador
| |
Collapse
|
7
|
Ben Bacha A, Alonazi MA, Elshikh MS, Karray A. A novel bactericidal homodimeric PLA 2 group-I from Walterinnesia aegyptia venom. Int J Biol Macromol 2018; 117:1140-1146. [PMID: 29885399 DOI: 10.1016/j.ijbiomac.2018.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 11/29/2022]
Abstract
A novel non-toxic phospholipase A2 was purified to homogeneity in a single chromatography step from the venom of Walterinnesia aegyptia, a monotypic elapid snake caught in Saudi Arabia, and its antimicrobial and hemolytic properties were evaluated as well. This enzyme, namely WaPLA2, is a homodimer with an estimated molecular mass of 30 kDa, and its NH2-terminal sequence exhibits a significant degree of similarity with PLA2 group-I. At optimal pH (8.5) and temperature (45 °C), the purified PLA2 exhibited a specific activity of 2100 U/mg, and it requires bile salts and Ca2+ for its activity. However, other cations such as Cd2+ and Hg2+ diminished the enzyme activity remarkably, thereby suggesting that the catalytic site arrangement has an exclusive structure for Ca2+ binding. Furthermore, WaPLA2 maintained almost 100% and 60% of its full activity in a pH range of 6.0-10 after 24 h incubation or after 60 min treatment at 70 °C, respectively. In the biological activity assays, WaPLA2 displayed potent indirectly hemolytic and antimicrobial activities that were strongly correlated. These promising findings encourage further in-depth research to understand the molecular mechanism of WaPLA2's antimicrobial properties for its possible use as a potential therapeutic lead molecule for treating infections.
Collapse
Affiliation(s)
- Abir Ben Bacha
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, Sfax 3038, Tunisia.
| | - Mona Awad Alonazi
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Mohamed Solman Elshikh
- Botany and Microbiology Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Aida Karray
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS, Université de Sfax, Route de Soukra 3038, BP 1173, Sfax, Tunisia
| |
Collapse
|
8
|
Analysis of snake venom composition and antimicrobial activity. Toxicon 2018; 150:151-167. [PMID: 29800609 DOI: 10.1016/j.toxicon.2018.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/24/2018] [Accepted: 05/21/2018] [Indexed: 02/02/2023]
Abstract
With the threat of a post-antibiotic era looming, the search for new and effective antibiotics from novel sources is imperative. Not only has crude snake venom been shown to be effective, but specific components within the venoms, such as Phospholipase A2s and l-amino acid oxidases have been isolated and demonstrated to be effective as well. Despite numerous studies being completed on snake venoms, there is a heavy bias towards utilizing the venoms from the highly toxic Elapidae and Viperidae species. Very few studies have been conducted on the less toxic, but taxonomically more diverse, Colubridae. Furthermore, an extensive review of the literature examining the efficacy and potential specificity of these venoms has not been completed. Therefore, the aims of this study were to elucidate any similarities in snake venoms as well as investigate the efficacy of snake venom antimicrobial properties towards morphologically and metabolically diverse microbial classes and the prevalence of snake species with antimicrobial properties within each snake family. The results indicate that snake venoms and their isolated components are powerful antimicrobial agents but vary in efficacy towards different microbial classes. Furthermore, due to similarities in venom composition, and limited preliminary studies, the less toxic Colubridae family may be a fruitful area of research to find novel antimicrobial agents that are less harmful to humans.
Collapse
|
9
|
Abstract
Naja ashei is an African spitting cobra species closely related to N. mossambica and N. nigricollis. It is known that the venom of N. ashei, like that of other African spitting cobras, mainly has cytotoxic effects, however data about its specific protein composition are not yet available. Thus, an attempt was made to determine the venom proteome of N. ashei with the use of 2-D electrophoresis and MALDI ToF/ToF (Matrix-Assisted Laser Desorption/Ionization Time of Flight) mass spectrometry techniques. Our investigation revealed that the main components of analysed venom are 3FTxs (Three-Finger Toxins) and PLA₂s (Phospholipases A₂). Additionally the presence of cysteine-rich venom proteins, 5'-nucleotidase and metalloproteinases has also been confirmed. The most interesting fact derived from this study is that the venom of N. ashei includes proteins not described previously in other African spitting cobras-cobra venom factor and venom nerve growth factor. To our knowledge, there are currently no other reports concerning this venom composition and we believe that our results will significantly increase interest in research of this species.
Collapse
Affiliation(s)
- Konrad Kamil Hus
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszow, Poland.
| | - Justyna Buczkowicz
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszow, Poland.
| | - Vladimír Petrilla
- Department of Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Kosice, Slovakia.
- Zoological Department, Zoological Garden Košice, Široká 31, 040 06 Košice-Kavečany, Slovakia.
| | - Monika Petrillová
- Department of General Education Subjects, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Kosice, Slovakia.
| | - Andrzej Łyskowski
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszow, Poland.
| | - Jaroslav Legáth
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszow, Poland.
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Kosice, Slovakia.
| | - Aleksandra Bocian
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959 Rzeszow, Poland.
| |
Collapse
|
10
|
Fernández ML, Quartino PY, Arce-Bejarano R, Fernández J, Camacho LF, Gutiérrez JM, Kuemmel D, Fidelio G, Lomonte B. Intravascular hemolysis induced by phospholipases A 2 from the venom of the Eastern coral snake, Micrurus fulvius: Functional profiles of hemolytic and non-hemolytic isoforms. Toxicol Lett 2017; 286:39-47. [PMID: 29197624 DOI: 10.1016/j.toxlet.2017.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/10/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
A unique feature of the venom of Micrurus fulvius (Eastern coral snake) is its ability to induce severe intravascular hemolysis in particular species, such as dogs or mice. This effect was previously shown to be induced by distinct phospholipase A2 (PLA2) isoforms which cause direct hemolysis in vitro, an uncommon finding for such enzymes. The functional profiles of PLA2-17, a direct hemolytic enzyme, and PLA2-12, a co-existing venom isoform lacking such effect, were compared. The enzymes differed not only in their ability to cause intravascular hemolysis: PLA2-17 additionally displayed lethal, myotoxic, and anticoagulant actions, whereas PLA2-12 lacked these effects. PLA2-12 was much more active in hydrolyzing a monodisperse synthetic substrate than PLA2-17, but the catalytic activity of latter was notably higher on a micellar substrate, or towards pure phospholipid artificial monolayers under controlled lateral pressures. Interestingly, PLA2-17 could hydrolyze substrate at a pressure of 20 mN m-1, in contrast to PLA2-12 or the non-toxic pancreatic PLA2. This suggests important differences in the monolayer penetrating power, which could be related to differences in toxicity. Comparative examination of primary structures and predicted three-dimensional folding of PLA2-12 and PLA2-17, revealed that differences concentrate in their N-terminal and central regions, leading to variations of the surface properties at the membrane interacting interface. PLA2-17 presents a less basic interfacial surface than PLA2-12, but more bulky aromatic residues, which could be associated to its higher membrane-penetrating strength. Altogether, these structural and functional comparative observations suggest that the ability of PLA2s to penetrate substrate interfaces could be a major determinant of toxicity, perhaps more important than protein surface charge.
Collapse
Affiliation(s)
- María Laura Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José 11501, Costa Rica
| | - Pablo Yunes Quartino
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Ruth Arce-Bejarano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José 11501, Costa Rica
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José 11501, Costa Rica
| | - Luis F Camacho
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José 11501, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José 11501, Costa Rica
| | - Daniel Kuemmel
- Biology and Chemistry Department, University of Osnabrueck, Osnabrueck, Germany
| | - Gerardo Fidelio
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica San José 11501, Costa Rica.
| |
Collapse
|
11
|
Affiliation(s)
- Hassan M. Akef
- National Organization for Research and Control of Biologicals (NORCB), Giza, Egypt
| |
Collapse
|
12
|
Jia Y, Ermolinsky B, Garza A, Provenzano D. Phospholipase A2 in the venom of three cottonmouth snakes. Toxicon 2017. [DOI: 10.1016/j.toxicon.2017.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Gomes A, Saha PP, Bhattacharya S, Ghosh S, Gomes A. Therapeutic potential of krait venom. Toxicon 2017; 131:48-53. [PMID: 28315357 DOI: 10.1016/j.toxicon.2017.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
Kraits belong to Elapideae and are widely distributed in East and South-East Asian countries. Krait venom possesses neurotoxins, membrane toxins, cardiotoxins, three finger toxins, metalloproteinases, cholinesterases, L-amino acid oxidases and serine proteases. The therapeutic potential of krait venom in pathophysiological conditions such as microbial and parasitic infections, cancer, arthritis, inflammation and blood coagulation disorder is discussed in this review. More intensive new research ventures are required to establish the therapeutic potential of krait venom in complex and emerging diseases.
Collapse
Affiliation(s)
- Antony Gomes
- Laboratory of Toxinology & Experimental Pharmacodynamics, Department of Physiology, University of Calcutta, 92 A P C Road, Kolkata, 700 009, India.
| | - Partha Pratim Saha
- Laboratory of Toxinology & Experimental Pharmacodynamics, Department of Physiology, University of Calcutta, 92 A P C Road, Kolkata, 700 009, India
| | - Shamik Bhattacharya
- Laboratory of Toxinology & Experimental Pharmacodynamics, Department of Physiology, University of Calcutta, 92 A P C Road, Kolkata, 700 009, India
| | - Sourav Ghosh
- Laboratory of Toxinology & Experimental Pharmacodynamics, Department of Physiology, University of Calcutta, 92 A P C Road, Kolkata, 700 009, India
| | - Aparna Gomes
- Laboratory of Toxinology & Experimental Pharmacodynamics, Department of Physiology, University of Calcutta, 92 A P C Road, Kolkata, 700 009, India
| |
Collapse
|
14
|
Perumal Samy R, Stiles BG, Franco OL, Sethi G, Lim LH. Animal venoms as antimicrobial agents. Biochem Pharmacol 2017; 134:127-138. [DOI: 10.1016/j.bcp.2017.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
|
15
|
In vitro antibacterial effect of wasp (Vespa orientalis) venom. J Venom Anim Toxins Incl Trop Dis 2014; 20:22. [PMID: 24955088 PMCID: PMC4045935 DOI: 10.1186/1678-9199-20-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 03/07/2014] [Indexed: 12/25/2022] Open
Abstract
Background The emergence of antibacterial resistance against several classes of antibiotics is an inevitable consequence of drug overuse. As antimicrobial resistance spreads throughout the globe, new substances will always be necessary to fight against multidrug-resistant microorganisms. Venoms of many animals have recently gained attention in the search for new antimicrobials to treat infectious diseases. Thefore, the present study aimed to study the antibacterial effects of wasp (Vespa orientalis) crude venom. Two gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two gram-negative ones (Escherichia coli and Klesiella pneumonia) were compared for their sensitivity to the venom by determining the inhibition zone (Kirby-Bauer method) and minimum inhibitory concentration (MIC). A microbroth kinetic system based on continuous monitoring of changes in the optical density of bacterial growth was also used for determination of antimicrobial activity. Results The venom exhibited a well-recognized antimicrobial property against the tested bacterial strains. The inhibition zones were determined to be 12.6, 22.7, 22.4 and 10.2 mm for S. aureus, B. subtilis, E. coli and K. pneumonia, respectively. The corresponding MIC values were determined to be 64, 8, 64 and 128 μg/mL, respectively. The MIC50 and MIC90 values of the venom were respectively determined to be 63.6 and 107 μg/mL for S. aureus, 4.3 and 7.0 μg/mL for B. subtilis, 45.3 and 65.7 μg/mL for E. coli and 74.4 and 119.2 μg/mL for K. pneumonia. Gram-positive bacteria were generally more sensitive to the venom than gram-negative ones. Conclusions Results revealed that the venom markedly inhibits the growth of both gram-positive and gram-negative bacteria and could be considered a potential source for developing new antibacterial drugs.
Collapse
|
16
|
de Oliveira Junior NG, e Silva Cardoso MH, Franco OL. Snake venoms: attractive antimicrobial proteinaceous compounds for therapeutic purposes. Cell Mol Life Sci 2013; 70:4645-58. [PMID: 23657358 PMCID: PMC11113393 DOI: 10.1007/s00018-013-1345-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 12/27/2022]
Abstract
Gram-positive and -negative bacteria are dangerous pathogens that may cause human infection diseases, especially due to the increasingly high prevalence of antibiotic resistance, which is becoming one of the most alarming clinical problems. In the search for novel antimicrobial compounds, snake venoms represent a rich source for such compounds, which are produced by specialized glands in the snake's jawbone. Several venom compounds have been used for antimicrobial effects. Among them are phospholipases A2, which hydrolyze phospholipids and could act on bacterial cell surfaces. Moreover, metalloproteinases and L-amino acid oxidases, which represent important enzyme classes with antimicrobial properties, are investigated in this study. Finally, antimicrobial peptides from multiple classes are also found in snake venoms and will be mentioned. All these molecules have demonstrated an interesting alternative for controlling microorganisms that are resistant to conventional antibiotics, contributing in medicine due to their differential mechanisms of action and versatility. In this review, snake venom antimicrobial compounds will be focused on, including their enormous biotechnological applications for drug development.
Collapse
Affiliation(s)
- Nelson Gomes de Oliveira Junior
- Pós-Graduação em Ciências Genômicas e Biotecnologia UCB, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF Brazil
- Programa em Biologia Animal, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF CEP 70910-900 Brazil
| | - Marlon Henrique e Silva Cardoso
- Pós-Graduação em Ciências Genômicas e Biotecnologia UCB, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF Brazil
| | - Octavio Luiz Franco
- Pós-Graduação em Ciências Genômicas e Biotecnologia UCB, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF Brazil
| |
Collapse
|
17
|
Interactions of PLA2-s from Vipera lebetina, Vipera berus berus and Naja naja oxiana venom with platelets, bacterial and cancer cells. Toxins (Basel) 2013; 5:203-23. [PMID: 23348053 PMCID: PMC3640532 DOI: 10.3390/toxins5020203] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 12/21/2022] Open
Abstract
Secretory phospholipasesA2 (sPLA2s) form a large family of structurally related enzymes widespread in nature. Herein, we studied the inhibitory effects of sPLA2s from Vipera lebetina (VLPLA2), Vipera berus berus (VBBPLA2), and Naja naja oxiana (NNOPLA2) venoms on (i) human platelets, (ii) four different bacterial strains (gram-negative Escherichia coli and Vibrio fischeri; gram-positive Staphylococcus aureus and Bacillus subtilis) and (iii) five types of cancer cells (PC-3, LNCaP, MCF-7, K-562 and B16-F10) in vitro. sPLA2s inhibited collagen-induced platelet aggregation: VBBPLA2 IC50 = 0.054, VLPLA2 IC50 = 0.072, NNOPLA2 IC50 = 0.814 μM. p-Bromophenacylbromide-inhibited sPLA2 had no inhibitory action on platelets. 36.17 μM VBBPLA2 completely inhibited the growth of gram-positive Bacillus subtilis whereas no growth inhibition was observed towards gram-negative Escherichia coli. The inhibitory action of sPLA2s (~0.7 μM and ~7 μM) towards cancer cells depended on both venom and cell type. VBBPLA2 (7.2 μM) inhibited significantly the viability of K-562 cells and the cell death appeared apoptotic. The sPLA2s exhibited no inhibitory effect towards LNCaP cells and some effect (8%–20%) towards other cells. Thus, already sub-μM concentrations of sPLA2s inhibited collagen-induced platelet aggregation and from the current suite of studied svPLA2s and test cells, VBBPLA2 was the most growth inhibitory towards Bacillus subtilis and K-562 cells.
Collapse
|
18
|
Li W, Li S, Zhong J, Zhu Z, Liu J, Wang W. A novel antimicrobial peptide from skin secretions of the earthworm, Pheretima guillelmi (Michaelsen). Peptides 2011; 32:1146-50. [PMID: 21539875 DOI: 10.1016/j.peptides.2011.04.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 04/14/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
Abstract
A novel lumbricin-like antimicrobial peptide named lumbricin-PG was isolated from skin secretions of the earthworm, Pheretima guillelmi (Michaelsen), using a procedure of one step Sephadex G-50 gel filtration and one step C(8) reverse-phase high-performance liquid chromatography (RP-HPLC). Its amino acid sequence was determined as FSRYARMRDSRPWSDRKNNYSGPQFTYPPEKAPPEKLIKWNN EGSPIFEMPAEGGHIEP by Edman degradation combined with cDNA cloning and mass spectrometry analysis. The cDNA encoding lumbricin-PG was cloned by cDNA library screening. The predicted protein from the cDNA sequence was composed of 73 amino acid residues including a mature lumbricin-PG and predicted signal peptide. It showed similarity with lumbricin antimicrobial peptide from the earthworm, Lumbricus rubellus by BLAST search. Purified lumbricin-PG exerted potential antimicrobial activities against bacteria and fungi; it showed weak hemolysis activity against human and rabbit red cells.
Collapse
Affiliation(s)
- Wenliang Li
- Oncology Department, The First Affiliated Hospital of Kunming Medical College, Kunming 650032, Yunnan, China
| | | | | | | | | | | |
Collapse
|
19
|
Ye J, Zhao H, Wang H, Bian J, Zheng R. A defensin antimicrobial peptide from the venoms of Nasonia vitripennis. Toxicon 2010; 56:101-6. [DOI: 10.1016/j.toxicon.2010.03.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/18/2010] [Accepted: 03/24/2010] [Indexed: 11/17/2022]
|
20
|
Renal and cardiovascular effects of Bothrops marajoensis venom and phospholipase A2. Toxicon 2010; 55:1061-70. [DOI: 10.1016/j.toxicon.2009.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 12/01/2009] [Accepted: 12/03/2009] [Indexed: 11/20/2022]
|
21
|
Costa Torres AF, Dantas RT, Toyama MH, Diz Filho E, Zara FJ, Rodrigues de Queiroz MG, Pinto Nogueira NA, Rosa de Oliveira M, de Oliveira Toyama D, Monteiro HSA, Martins AMC. Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: Phospholipase A2 and L-amino acid oxidase. Toxicon 2009; 55:795-804. [PMID: 19944711 DOI: 10.1016/j.toxicon.2009.11.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 11/09/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
Abstract
Some proteins present in snake venom possess enzymatic activities, such as phospholipase A(2) and l-amino acid oxidase. In this study, we verify the action of the Bothrops marajoensis venom (BmarTV), PLA(2) (BmarPLA(2)) and LAAO (BmarLAAO) on strains of bacteria, yeast, and Leishmania sp. The BmarTV was isolated by Protein Pack 5PW, and several fractions were obtained. Reverse phase HPLC showed that BmarPLA(2) was isolated from the venom, and N-terminal amino acid sequencing of sPLA(2) showed high amino acid identity with other lysine K49 sPLA(2)s isolated from Bothrops snakes. The BmarLAAO was purified to high molecular homogeneity and its N-terminal amino acid sequence demonstrated a high degree of amino acid conservation with others LAAOs. BmarLAAO was able to inhibit the growth of P. aeruginosa, C. albicans and S. aureus in a dose-dependent manner. The inhibitory effect was more significant on S. aureus, with a MIC=50 microg/mL and MLC=200 microg/mL. However, the BmarTV and BmarPLA(2) did not demonstrate inhibitory capacity. BmarLAAO was able to inhibit the growth of promastigote forms of L. chagasi and L. amazonensis, with an IC(50)=2.55 microg/mL and 2.86 microg/mL for L. amazonensis and L. chagasi, respectively. BmarTV also provided significant inhibition of parasitic growth, with an IC(50) of 86.56 microg/mL for L. amazonensis and 79.02 microg/mL for L. chagasi. BmarPLA(2) did not promote any inhibition of the growth of these parasites. The BmarLAAO and BmarTV presented low toxicity at the concentrations studied. In conclusion, whole venom as well as the l-amino acid oxidase from Bothrops marajoensis was able to inhibit the growth of several microorganisms, including S. aureus, Candida albicans, Pseudomonas aeruginosa, and Leishmania sp.
Collapse
Affiliation(s)
- Alba Fabiola Costa Torres
- Post-graduate Program in Pharmaceutical Sciences, Pharmacy Faculty, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wei JF, Yang HW, Wei XL, Qiao LY, Wang WY, He SH. Purification, characterization and biological activities of the l-amino acid oxidase from Bungarus fasciatus snake venom. Toxicon 2009; 54:262-71. [DOI: 10.1016/j.toxicon.2009.04.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/09/2009] [Accepted: 04/09/2009] [Indexed: 01/21/2023]
|
23
|
Yang X, Wang Y, Lu Z, Zhai L, Jiang J, Liu J, Yu H. A novel serine protease inhibitor from the venom of Vespa bicolor Fabricius. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:116-20. [PMID: 19258046 DOI: 10.1016/j.cbpb.2009.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 02/06/2009] [Accepted: 02/16/2009] [Indexed: 11/24/2022]
Abstract
Hornets possess highly toxic venoms, which are rich in toxin, enzymes and biologically active peptides. Many bioactive substances have been identified from wasp venoms but only a few serine protease inhibitors have been identified from two kinds of wasp venoms. In this work, a serine protease inhibitor named bicolin was purified and characterized from the venom of the wasp, Vespa bicolor Fabricius. The precursor encoding bicolin was cloned from the cDNA library of the venomous glands. It is a cysteine-rich small protein containing 54 amino acid residues including 6 half-cysteines. The peptide is homologous to serine protease inhibitors isolated from venoms of Anoplius samariensis and Pimpla hypochondriaca. Bicolin showed inhibitory ability against trypsin and thrombin.
Collapse
Affiliation(s)
- Xinbo Yang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050016, Hebei, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Wang Y, Hong J, Liu X, Yang H, Liu R, Wu J, Wang A, Lin D, Lai R. Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics. PLoS One 2008; 3:e3217. [PMID: 18795096 PMCID: PMC2528936 DOI: 10.1371/journal.pone.0003217] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 08/25/2008] [Indexed: 12/21/2022] Open
Abstract
Background Cathelicidins are a family of antimicrobial peptides acting as multifunctional effector molecules of innate immunity, which are firstly found in mammalians. Recently, several cathelicidins have also been found from chickens and fishes. No cathelicidins from other non-mammalian vertebrates have been reported. Principal Findings In this work, a cathelicidin-like antimicrobial peptide named cathelicidin-BF has been purified from the snake venoms of Bungarus fasciatus and its cDNA sequence was cloned from the cDNA library, which confirm the presence of cathelicidin in reptiles. As other cathelicidins, the precursor of cathelicidin-BF has cathelin-like domain at the N terminus and carry the mature cathelicidin-BF at the C terminus, but it has an atypical acidic fragment insertion between the cathelin-like domain and the C-terminus. The acidic fragment is similar to acidic domains of amphibian antimicrobial precursors. Phylogenetic analysis revealed that the snake cathelicidin had the nearest evolution relationship with platypus cathelicidin. The secondary structure of cathelicidin-BF investigated by CD and NMR spectroscopy in the presence of the helicogenic solvent TFE is an amphipathic α-helical conformation as many other cathelicidins. The antimicrobial activities of cathelicidin BF against forty strains of microorganisms were tested. Cathelicidin-BF efficiently killed bacteria and some fungal species including clinically isolated drug-resistance microorganisms. It was especially active against Gram-negative bacteria. Furthermore, it could exert antimicrobial activity against some saprophytic fungus. No hemolytic and cytotoxic activity was observed at the dose of up to 400 µg/ml. Cathelicidin-BF could exist stably in the mice plasma for at least 2.5 hours. Conclusion Discovery of snake cathelicidin with atypical structural and functional characterization offers new insights on the evolution of cathelicidins. Potent, broad spectrum, salt-independent antimicrobial activities make cathelicidin-BF an excellent candidate for clinical or agricultural antibiotics.
Collapse
Affiliation(s)
- Yipeng Wang
- Biotoxin Units of Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Jing Hong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Xiuhong Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hailong Yang
- Biotoxin Units of Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Rui Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jing Wu
- Biotoxin Units of Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Aili Wang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Donghai Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (DL); (RL)
| | - Ren Lai
- Biotoxin Units of Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail: (DL); (RL)
| |
Collapse
|
25
|
A Novel Trypsin Inhibitor from <I>Bungarus fasciatus</I> Venom. Chin J Nat Med 2008. [DOI: 10.3724/sp.j.1009.2008.00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Schmitt P, Mercado L, Díaz M, Guzmán F, Arenas G, Marshall SH. Characterization and functional recovery of a novel antimicrobial peptide (CECdir-CECret) from inclusion bodies after expression in Escherichia coli. Peptides 2008; 29:512-9. [PMID: 18325631 DOI: 10.1016/j.peptides.2007.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 11/17/2022]
Abstract
CECdir-CECret is a novel non-toxic doublet 8.5 kDa peptide representing the natural coding sequence of the antimicrobial peptide Cecropin A from Drosophila melanogaster fused in-frame to its own inverted version. Expression of this cloned doublet peptide in Escherichia coli, yielded peptides that were mostly packaged into inclusion bodies. The new molecule was purified, solubilized and refolded, through a standard guanidine-based procedure. The recovered refolded peptides were then characterized by HPLC chromatography, MALDI-TOF-mass spectrometry and peptide sequencing, and finally evaluated for their antimicrobial potential. The novel doublet peptide CECdir-CECret, displays an enhanced in vitro antimicrobial activity and action spectrum in comparison to the monomer Cecropin A.
Collapse
Affiliation(s)
- Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2950, Valparaíso, Chile
| | | | | | | | | | | |
Collapse
|
27
|
LU XY, WANG AL, YANG HL, LAI R. A Novel Trypsin Inhibitor from Bungarus fasciatus Venom. Chin J Nat Med 2008. [DOI: 10.1016/s1875-5364(09)60014-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Lu J, Yang H, Yu H, Gao W, Lai R, Liu J, Liang X. A novel serine protease inhibitor from Bungarus fasciatus venom. Peptides 2008; 29:369-74. [PMID: 18164783 DOI: 10.1016/j.peptides.2007.11.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 11/15/2022]
Abstract
By Sephadex G-50 gel filtration, cation-exchange CM-Sephadex C-25 chromatography and reversed phase high-performance liquid chromatography (HPLC), a novel serine protease inhibitor named bungaruskunin was purified and characterized from venom of Bungarus fasciatus. Its cDNA was also cloned from the cDNA library of B. fasciatus venomous glands. The predicted precursor is composed of 83 amino acid (aa) residues including a 24-aa signal peptide and a 59-aa mature bungaruskunin. Bungaruskunin showed maximal similarity (64%) with the predicted serine protease inhibitor blackelin deduced from the cDNA sequence of the red-bellied black snake Pseudechis porphyriacus. Bungaruskunin is a Kunitz protease inhibitor with a conserved Kunitz domain and could exert inhibitory activity against trypsin, chymotrypsin, and elastase. By screening the cDNA library, two new B chains of beta-bungarotoxin are also identified. The overall structures of bungaruskunin and beta-bungarotoxin B chains are similar; especially they have highly conserved signal peptide sequences. These findings strongly suggest that snake Kunitz/BPTI protease inhibitors and neurotoxic homologs may have originated from a common ancestor.
Collapse
Affiliation(s)
- Jia Lu
- Biotoxin Units of Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang X, Song Y, Li J, Liu H, Xu X, Lai R, Zhang K. A new family of antimicrobial peptides from skin secretions of Rana pleuraden. Peptides 2007; 28:2069-74. [PMID: 17764786 DOI: 10.1016/j.peptides.2007.07.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 07/17/2007] [Accepted: 07/17/2007] [Indexed: 11/19/2022]
Abstract
While conducting experiments to investigate antimicrobial peptides of amphibians living in the Yunnan-Guizhou region of southwest China, a new family of antimicrobial peptides was identified from skin secretions of the Yunnan frog, Rana pleuraden. Members of the new peptide family named pleurain-As are composed of 26 amino acids with a unique N-terminal sequence (SIIT) and a disulfide-bridged heptapeptide sequence (CRLYNTC). By BLAST search, pleurain-As had no significant similarity to any known peptides. Native and synthetic peptides showed antimicrobial activities against tested microorganisms including Gram-negative and Gram-positive bacteria and fungi. Twenty different cDNAs encoding pleurain-As were cloned from the skin cDNA library of R. pleuraden. The precursors of pleurain-As are composed of 69 amino acid residues including predicted signal peptides, acidic propieces, and cationic mature antimicrobial peptides. The preproregion of pleurain-A precursor comprises a hydrophobic signal peptide of 22 residues followed by an 18 residue acidic propiece which terminates by a typical prohormone processing signal Lys-Arg. The preproregions of precursors are very similar to other amphibian antimicrobial peptide precursors but the mature pleurain-As are different from other antimicrobial peptide families. The remarkable similarity of preproregions of precursors that give rise to very different antimicrobial peptides in distantly related frog species suggests that the corresponding genes form a multigene family originating from a common ancestor. Furthermore, pleurain-As could exert antimicrobial capability against Helicobacter pylori. This is the first report of naturally occurring peptides with anti-H. pylori activity from Rana amphibians.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Chen L, Li Y, Li J, Xu X, Lai R, Zou Q. An antimicrobial peptide with antimicrobial activity against Helicobacter pylori. Peptides 2007; 28:1527-31. [PMID: 17698252 DOI: 10.1016/j.peptides.2007.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 07/04/2007] [Accepted: 07/06/2007] [Indexed: 01/16/2023]
Abstract
An antimicrobial peptide named odorranain-HP was identified from skin secretions of the diskless odorous frog, Odorrana grahami. It is composed of 23 amino acids with an amino acid sequence of GLLRASSVWGRKYYVDLAGCAKA. By BLAST search, odorranain-HP had similarity to antimicrobial peptide odorranain-W1 but it has a different GLLR N-terminus. The cDNA encoding odorranain-HP was cloned from the cDNA library of the skin of O. grahami. This peptide showed antimicrobial activities against tested microorganisms. Interestingly, odorranain-HP could exert antimicrobial capability against Helicobacter pylori, along with its antimicrobial activities similar to odorranain-W1. This is the first report of naturally occurring peptide with anti-H. pylori activity from amphibian skins.
Collapse
Affiliation(s)
- Lihua Chen
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | | | | | | | | | | |
Collapse
|