1
|
Tian Y, Daya R, Bhandari J, Joshi H, Thomson S, Patel V, Mishra R. Effect of Chronic Treatment with D2 Allosteric Modulator PAOPA on the Expression of Cerebral Dopamine Neurotrophic Factor (CDNF) in Select Brain Regions. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
2
|
Basu D, Tian Y, Hui P, Bhandari J, Johnson RL, Mishra RK. Change in expression of vesicular protein synapsin II by chronic treatment with D2 allosteric modulator PAOPA. Peptides 2015; 66:58-62. [PMID: 25703303 DOI: 10.1016/j.peptides.2015.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 12/21/2022]
Abstract
The hallmark symptoms of schizophrenia include profound disturbances in thought, perception, cognition etc., which negatively impacts an individual's quality of life. Current antipsychotic drugs are not effective in treating all symptoms of this disorder, and often cause severe movement and metabolic side effects. Consequently, there remains a strong impetus to develop safer and more efficacious therapeutics for patients, as well as elucidating the etiology of schizophrenia. Previous work in our lab has introduced a novel candidate for the treatment of this disease: the dopamine D2 receptor (D2R) allosteric modulator, 3(R)-[(2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide (PAOPA). We have previously shown that PAOPA, by selectively modulating D2R, can ameliorate schizophrenia-like symptoms in animal models, although the precise mechanism is presently not understood. Synapsin II is a presynaptic vesicular protein which has been strongly implicated in schizophrenia, as it is reduced in the prefrontal cortex of patients, and knockdown of this protein elicits schizophrenia-like phenotypes in animal models. Given the therapeutic effects of PAOPA and the role of synapsin II in schizophrenia, the objective of this study was to investigate the effect of chronic administration of PAOPA (45 days) on neuronal synapsin II protein expression in rodents. Immunoblot results revealed that the synapsin IIa, but not the IIb isoform, was increased in the dopaminergic regions of the striatum, nucleus accumbens, and medial prefrontal cortex. The results of this study implicate a role for modulation of synapsin II as a possible therapeutic mechanism of action for potential antipsychotic drug PAOPA.
Collapse
Affiliation(s)
- Dipannita Basu
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1200 Main St. W., Hamilton, ON, Canada L8N 3Z5
| | - Yuxin Tian
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1200 Main St. W., Hamilton, ON, Canada L8N 3Z5
| | - Patricia Hui
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1200 Main St. W., Hamilton, ON, Canada L8N 3Z5
| | - Jayant Bhandari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1200 Main St. W., Hamilton, ON, Canada L8N 3Z5
| | - Rodney L Johnson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Ram K Mishra
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1200 Main St. W., Hamilton, ON, Canada L8N 3Z5.
| |
Collapse
|
3
|
Basu D, Tian Y, Bhandari J, Jiang JR, Hui P, Johnson RL, Mishra RK. Effects of the dopamine D2 allosteric modulator, PAOPA, on the expression of GRK2, arrestin-3, ERK1/2, and on receptor internalization. PLoS One 2013; 8:e70736. [PMID: 23940634 PMCID: PMC3735488 DOI: 10.1371/journal.pone.0070736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/26/2013] [Indexed: 11/19/2022] Open
Abstract
The activity of G protein-coupled receptors (GPCRs) is intricately regulated by a range of intracellular proteins, including G protein-coupled kinases (GRKs) and arrestins. Understanding the effects of ligands on these signaling pathways could provide insights into disease pathophysiologies and treatment. The dopamine D2 receptor is a GPCR strongly implicated in the pathophysiology of a range of neurological and neuropsychiatric disorders, particularly schizophrenia. Previous studies from our lab have shown the preclinical efficacy of a novel allosteric drug, 3(R)- [(2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide (PAOPA), in attenuating schizophrenia-like behavioural abnormalities in rodent models of the disease. As an allosteric modulator, PAOPA binds to a site on the D2 receptor, which is distinct from the endogenous ligand-binding site, in order to modulate the binding of the D2 receptor ligand, dopamine. The exact signaling pathways affected by this allosteric modulator are currently unknown. The objectives of this study were to decipher the in vivo effects, in rats, of chronic PAOPA administration on D2 receptor regulatory and downstream molecules, including GRK2, arrestin-3 and extracellular receptor kinase (ERK) 1/2. Additionally, an in vitro cellular model was also used to study PAOPA’s effects on D2 receptor internalization. Results from western immunoblots showed that chronic PAOPA treatment increased the striatal expression of GRK2 by 41%, arrestin-3 by 34%, phospho-ERK1 by 51% and phospho-ERK2 by 36%. Results also showed that the addition of PAOPA to agonist treatment in cells increased D2 receptor internalization by 33%. This study provides the foundational evidence of putative signaling pathways, and changes in receptor localization, affected by treatment with PAOPA. It improves our understanding on the diverse mechanisms of action of allosteric modulators, while advancing PAOPA’s development into a novel drug for the improved treatment of schizophrenia.
Collapse
Affiliation(s)
- Dipannita Basu
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Yuxin Tian
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Jayant Bhandari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Jian Ru Jiang
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Patricia Hui
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Rodney L. Johnson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ram K. Mishra
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
4
|
Tan ML, Basu D, Kwiecien JM, Johnson RL, Mishra RK. Preclinical pharmacokinetic and toxicological evaluation of MIF-1 peptidomimetic, PAOPA: examining the pharmacology of a selective dopamine D2 receptor allosteric modulator for the treatment of schizophrenia. Peptides 2013; 42:89-96. [PMID: 23416534 DOI: 10.1016/j.peptides.2013.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 11/28/2022]
Abstract
Schizophrenia is a mental illness characterized by a breakdown in cognition and emotion. Over the years, drug treatment for this disorder has mainly been compromised of orthosteric ligands that antagonize the active site of the dopamine D2 receptor. However, these drugs are limited in their use and often lead to the development of adverse movement and metabolic side effects. Allosteric modulators are an emerging class of therapeutics with significant advantages over orthosteric ligands, including an improved therapeutic and safety profile. This study investigates our newly developed allosteric modulator, PAOPA, which is a specific modulator of the dopamine D2 receptor. Previous studies have shown PAOPA to attenuate schizophrenia-like behavioral abnormalities in preclinical models. To advance this newly developed allosteric drug from the preclinical to clinical stage, this study examines the pharmacokinetic behavior and toxicological profile of PAOPA. Results from this study prove the effectiveness of PAOPA in reaching the implicated regions of the brain for therapeutic action, particularly the striatum. Pharmacokinetic parameters of PAOPA were found to be comparable to current market antipsychotic drugs. Necropsy and histopathological analyses showed no abnormalities in all examined organs. Acute and chronic treatment of PAOPA indicated no movement abnormalities commonly found with the use of current typical antipsychotic drugs. Moreover, acute and chronic PAOPA treatment revealed no hematological or metabolic abnormalities classically found with the use of atypical antipsychotic drugs. Findings from this study demonstrate a better safety profile of PAOPA, and necessitates the progression of this newly developed therapeutic for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Mattea L Tan
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
5
|
Bhagwanth S, Mishra RK, Johnson RL. Development of peptidomimetic ligands of Pro-Leu-Gly-NH(2) as allosteric modulators of the dopamine D(2) receptor. Beilstein J Org Chem 2013; 9:204-14. [PMID: 23400263 PMCID: PMC3566759 DOI: 10.3762/bjoc.9.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/24/2012] [Indexed: 12/24/2022] Open
Abstract
A variety of stable, small-molecule peptidomimetic ligands have been developed to elucidate the mechanism by which the neuropeptide Pro-Leu-Gly-NH2 (PLG) modulates dopaminergic neurotransmission. Photoaffinity labeling ligands based upon PLG peptidomimetics have been used to establish that PLG binds to the D2 dopamine receptor at a site that is different from the orthosteric site, thus making PLG and its peptidomimetics allosteric modulators of the dopamine receptor. Through the design, synthesis and pharmacological evaluation of conformationally constrained peptidomimetics containing lactam, bicyclic, and spiro-bicyclic scaffolds, support was provided for the hypothesis that the bioactive conformation of PLG is a type II β-turn. In addition, studies with peptidomimetics designed to mimic either a type VI β-turn or polyproline II helix conformation yielded molecules that were able to modulate dopamine receptors because of their ability to place the carboxamide NH2 pharmacophore in the same topological space as that seen in the type II β-turn. Extensive studies with the spiro-bicyclic PLG peptidomimetics also established that both positive and negative modes of modulation were possible for the same series of peptidomimetics simply as a result of minor differences in the stereochemistry about the bridgehead carbon within the scaffold. This information was used to transform existing positive modulators into negative modulators, which demonstrated that small structural changes in the spiro-bicyclic dopamine receptor modulators are capable of causing major changes in the modulatory activity of PLG peptidomimetics.
Collapse
Affiliation(s)
- Swapna Bhagwanth
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
6
|
Jlalia I, Lensen N, Chaume G, Dzhambazova E, Astasidi L, Hadjiolova R, Bocheva A, Brigaud T. Synthesis of an MIF-1 analogue containing enantiopure (S)-α-trifluoromethyl-proline and biological evaluation on nociception. Eur J Med Chem 2013; 62:122-9. [PMID: 23353749 DOI: 10.1016/j.ejmech.2012.12.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/19/2012] [Accepted: 12/23/2012] [Indexed: 11/16/2022]
Abstract
The synthesis and the effect of a novel MIF-1 analogue on nociception during acute pain in rat model are reported. The synthesis of this enantiopure trifluoromethyl group containing tripeptide was performed through a peptide coupling reaction between the HCl. Leu-Gly-NH2 and the (S)-α-Tfm-proline. The analgesic effect of the CF3-(MIF-1) 2 has been evaluated in vivo on rat model by paw pressure (PP) and hot plate (HP) tests and compared to the native peptide MIF-1. Highest analgesic effect was observed with CF3-(MIF-1) 2 only in PP test. In order to study the mechanisms of nociception induced by the studied peptides, the involvement of the opioid and the nitric oxideergic systems was investigated. The results are in favor of a participation of both system since pretreatment, 20 min before injection of the CF3-(MIF-1) 2, with the non-competitive antagonist of opiate receptors naloxone, the nitric oxide synthase (NOS) inhibitor l-N(G)-nitroarginine ester (l-NAME) or the nitric oxide (NO) donor l-arginine (l-Arg) significantly decreased the pain perception in PP and HP tests.
Collapse
Affiliation(s)
- Ibtissem Jlalia
- Laboratoire SOSCO, Université de Cergy-Pontoise, EA 4505, 5 Mail Gay Lussac, Neuville sur Oise, 95000 Cergy-Pontoise Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Mahindra A, Nooney K, Uraon S, Sharma KK, Jain R. Microwave-assisted solution phase peptide synthesis in neat water. RSC Adv 2013. [DOI: 10.1039/c3ra43040e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
8
|
Bhagwanth S, Mishra S, Daya R, Mah J, Mishra RK, Johnson RL. Transformation of Pro-Leu-Gly-NH2 peptidomimetic positive allosteric modulators of the dopamine D2 receptor into negative modulators. ACS Chem Neurosci 2012; 3:274-84. [PMID: 22860194 DOI: 10.1021/cn200096u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/13/2012] [Indexed: 11/28/2022] Open
Abstract
The synthesis of dimethyl derivatives of 5.6.5 spiro bicyclic lactam Pro-Leu-Gly-NH(2) peptidomimetics was carried out to test the hypothesis that by placing methyl groups on the β-methylene carbon of the thiazolidine ring steric bulk would be introduced into the topological space that the β-methylene carbon is believed to occupy in the negative allosteric modulators of the dopamine D(2) receptor. With such a modification, a positive allosteric modulator would be converted into a negative allosteric modulator. This hypothesis was shown to be correct as 3a and 4a where found to be negative allosteric modulators, whereas their unmethylated derivatives were positive allosteric modulators of the dopamine D(2) receptor.
Collapse
Affiliation(s)
- Swapna Bhagwanth
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis,
Minnesota 55455, United States
| | - Satyendra Mishra
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis,
Minnesota 55455, United States
| | - Ritesh Daya
- Department of Psychiatry and
Behavioral Neurosciences, McMaster University, 1200 Main Street W, Hamilton, Ontario L8N 3Z5, Canada
| | - Jordan Mah
- Department of Psychiatry and
Behavioral Neurosciences, McMaster University, 1200 Main Street W, Hamilton, Ontario L8N 3Z5, Canada
| | - Ram K. Mishra
- Department of Psychiatry and
Behavioral Neurosciences, McMaster University, 1200 Main Street W, Hamilton, Ontario L8N 3Z5, Canada
| | - Rodney L. Johnson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis,
Minnesota 55455, United States
| |
Collapse
|
9
|
Dyck B, Guest K, Sookram C, Basu D, Johnson R, Mishra RK. PAOPA, a potent analogue of Pro-Leu-glycinamide and allosteric modulator of the dopamine D2 receptor, prevents NMDA receptor antagonist (MK-801)-induced deficits in social interaction in the rat: implications for the treatment of negative symptoms in schizophrenia. Schizophr Res 2011; 125:88-92. [PMID: 21036015 PMCID: PMC3010311 DOI: 10.1016/j.schres.2010.09.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 09/28/2010] [Accepted: 09/29/2010] [Indexed: 01/27/2023]
Abstract
The aim of this study was to investigate whether a potent analogue of the endogenous brain peptide l-prolyl-l-leucyl-glycinamide (PLG), (3(R)-[(2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide (PAOPA), can prevent the induction of social withdrawal caused by sub-chronic treatment with the non-competitive NMDA (N-methyl-l-aspartate) receptor antagonist, MK-801. Results indicate that MK-801 (0.5 mg/kg) significantly decreased social interaction following sub-chronic treatment (7 days). Treatment with PAOPA (1 mg/kg) blocked the effects of MK-801, and increased the amount of time spent in social interaction in comparison to control animals. These results provide evidence for the development of peptidomimetic compounds for the treatment of social withdrawal and related negative symptoms associated with schizophrenia.
Collapse
Affiliation(s)
- Bailee Dyck
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Kelly Guest
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Christal Sookram
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Dipannita Basu
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Rodney Johnson
- Department of Medicinal Chemistry, University of Minnesota, MI, USA
| | - Ram K. Mishra
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|