1
|
Ergul Erkec O, Huyut Z, Acikgoz E, Huyut MT. Effects of exogenous ghrelin treatment on oxidative stress, inflammation and histological parameters in a fat-fed streptozotocin rat model. Arch Physiol Biochem 2024:1-11. [PMID: 39324977 DOI: 10.1080/13813455.2024.2407551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/17/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
In this study, the anti-inflammatory, antioxidative, and protective effects of ghrelin were investigated in a fat-fed streptozotocin (STZ) rat model and compared with metformin, diabetes and the healthy control groups. Histopathological evaluations were performed on H&E-stained pancreas and brain sections. Biochemical parameters were investigated by enzyme-linked immunosorbent assay. Blood glucose levels were significantly decreased with ghrelin or metformin treatments than the diabetes group. STZ administration increased brain, renal and pancreatic IL-1β, TNF-α and MDA while decreasing GPX, CAT, SOD, and NGF levels. Ghrelin increased renal GPX, CAT, NGF pancreatic GPX, SOD, CAT, NGF and brain SOD, NGF while it decreased renal, pancreatic and brain IL-1β, TNF-α and MDA levels. Ghrelin reduced neuronal loss and degeneration in the cerebral cortex and hippocampus and greatly ameliorated diabetes-related damage in pancreas. In conclusion, the data suggested that ghrelin is an effective candidate as a protectant for reducing the adverse effects of diabetes.
Collapse
Affiliation(s)
- Ozlem Ergul Erkec
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Zubeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Mehmet Tahir Huyut
- Department of Biostatistics, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
2
|
Kılıçoğlu M, Düz U, Arslan G, Ayyıldız M, Ağar E, Kılıç N. The effects of leptin and cannabinoid CB1 receptor agonist/antagonist in cerebral tissues of epileptic rats. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231333. [PMID: 38775505 PMCID: PMC11111122 DOI: 10.1590/1806-9282.20231333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 05/24/2024]
Abstract
OBJECTIVE In this study, the effects of leptin, cannabinoid-1 (CB1) receptor agonist ACEA and antagonist AM251, and the interactions between leptin and CB1 receptor agonist/antagonist on oxidant and antioxidant enzymes in the cerebrum, cerebellum, and pedunculus cerebri tissue samples were investigated in the penicillin-induced epileptic model. METHODS Male Wistar albino rats (n=56) were included in this study. In anesthetized animals, 500 IU penicillin-G potassium was injected into the cortex to induce epileptiform activity. Leptin (1 μg), ACEA (7.5 μg), AM251 (0.25 μg), and the combinations of the leptin+ACEA and leptin+AM251 were administered intracerebroventricularly (i.c.v.) after penicillin injections. Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels were measured in the cerebral tissue samples and plasma with the ELISA method. RESULTS MDA levels increased, while SOD and GPx levels decreased after penicillin injection in the cerebrum and cerebellum. The efficacy of penicillin on SOD, MDA and GPx levels was further enhanced after leptin or AM251 injections. Whereas, ACEA decreased the MDA levels and increased GPx levels compared with the penicillin group. Administration of AM251+leptin did not change any oxidation parameter compared with the AM251. Furthermore, co-administration of ACEA and leptin significantly increased oxidative stress compared with the ACEA-treated group by increasing MDA and decreasing GPx levels. CONCLUSION It was concluded that leptin reversed the effect of ACEA on oxidative stress. Co-administration of AM251 and leptin did not change oxidative stress compared with the AM251-treated group suggesting AM251 and leptin affect oxidative stress using the same pathways.
Collapse
Affiliation(s)
- Mesut Kılıçoğlu
- Kayseri Education and Research Hospital, Department of Clinical Biochemistry, Kayseri, Türkiye
| | - Uğur Düz
- Aydın Provincial Directorate of Health, Public Health Laboratory, Aydın, Türkiye
| | - Gökhan Arslan
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| | - Mustafa Ayyıldız
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| | - Erdal Ağar
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| | - Nermin Kılıç
- Department of Clinical Biochemistry, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| |
Collapse
|
3
|
Ergul Erkec O, Yunusoglu O, Huyut Z. Evaluation of repeated ghrelin administration on seizures, oxidative stress and neurochemical parameters in pentyleneterazole induced kindling in rats. Int J Neurosci 2024; 134:420-428. [PMID: 35903909 DOI: 10.1080/00207454.2022.2107516] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
Introduction: Epileptic seizures are thought to be caused by the impaired balance between excitatory (glutamate) and inhibitor [gamma amino butyric acid (GABA)] neurotransmitters in the brain. Neuropeptides have potent modulator properties on these neurotransmitters.Objective: Ghrelin exerts anticonvulsant effects in an acute pentylenetetrazole (PTZ) model. However, the effect of repeated ghrelin injections in chronic pentylenetetrazole kindling model is not known. In this study, the effects of repeated ghrelin administration on seizure scores, working memory, locomotor activity, oxidative biomarkers, and neurochemical parameters in PTZ kindling in rats was examined.Methods: For this purpose, 35 mg/kg of PTZ was administered intraperitoneally to the experimental groups. The rats also received physiological saline/diazepam or ghrelin before each PTZ injection. After behavioural analysis (Y-maze, rotarod, and locomotor activity tests), biochemical and neurochemical analyses were conducted using ELISA.Results: PTZ administration induced progression in the seizure scores and all of the rats in the PS + PTZ group were kindled with the 20th injection. Ghrelin treatment significantly reduced the seizure scores. The difference among the groups in terms of the Y-maze, locomotor activity, and rotarod tests was nonsignificant. PTZ administration significantly decreased the brain GABA, CAT, and AChE levels, and increased the MDA, NO, and protein carbonyl levels. Repeated ghrelin treatment ameliorated the GABA, AChE, CAT, MDA, NO, and protein carbonyl levels.Conclusion: Taken together, the results indicated that repeated ghrelin treatment had antioxidant, and anticonvulsant activity on PTZ kindling in rats.
Collapse
Affiliation(s)
- Ozlem Ergul Erkec
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Oruc Yunusoglu
- Department of Pharmacology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Zubeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
4
|
Wen X, Dong H, Zou W. The role of gut microorganisms and metabolites in intracerebral hemorrhagic stroke: a comprehensive review. Front Neurosci 2024; 18:1346184. [PMID: 38449739 PMCID: PMC10915040 DOI: 10.3389/fnins.2024.1346184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Intracerebral hemorrhagic stroke, characterized by acute hemorrhage in the brain, has a significant clinical prevalence and poses a substantial threat to individuals' well-being and productivity. Recent research has elucidated the role of gut microorganisms and their metabolites in influencing brain function through the microbiota-gut-brain axis (MGBA). This article provides a comprehensive review of the current literature on the common metabolites, short-chain fatty acids (SCFAs) and trimethylamine-N-oxide (TMAO), produced by gut microbiota. These metabolites have demonstrated the potential to traverse the blood-brain barrier (BBB) and directly impact brain tissue. Additionally, these compounds have the potential to modulate the parasympathetic nervous system, thereby facilitating the release of pertinent substances, impeding the buildup of inflammatory agents within the brain, and manifesting anti-inflammatory properties. Furthermore, this scholarly analysis delves into the existing dearth of investigations concerning the influence of gut microorganisms and their metabolites on cerebral functions, while also highlighting prospective avenues for future research.
Collapse
Affiliation(s)
- Xin Wen
- The First Clinical Medical College, Heilongjiang University Of Chinese Medicine, Harbin, China
| | - Hao Dong
- The First Clinical Medical College, Heilongjiang University Of Chinese Medicine, Harbin, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
5
|
Tuero C, Becerril S, Ezquerro S, Neira G, Frühbeck G, Rodríguez A. Molecular and cellular mechanisms underlying the hepatoprotective role of ghrelin against NAFLD progression. J Physiol Biochem 2023; 79:833-849. [PMID: 36417140 DOI: 10.1007/s13105-022-00933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
The underlying mechanisms for the development and progression of nonalcoholic fatty liver disease (NAFLD) are complex and multifactorial. Within the last years, experimental and clinical evidences support the role of ghrelin in the development of NAFLD. Ghrelin is a gut hormone that plays a major role in the short-term regulation of appetite and long-term regulation of adiposity. The liver constitutes a target for ghrelin, where this gut-derived peptide triggers intracellular pathways regulating lipid metabolism, inflammation, and fibrosis. Interestingly, circulating ghrelin levels are altered in patients with metabolic diseases, such as obesity, type 2 diabetes, and metabolic syndrome, which, in turn, are well-known risk factors for the pathogenesis of NAFLD. This review summarizes the molecular and cellular mechanisms involved in the hepatoprotective action of ghrelin, including the reduction of hepatocyte lipotoxicity via autophagy and fatty acid β-oxidation, mitochondrial dysfunction, endoplasmic reticulum stress and programmed cell death, the reversibility of the proinflammatory phenotype in Kupffer cells, and the inactivation of hepatic stellate cells. Together, the metabolic and inflammatory pathways regulated by ghrelin in the liver support its potential as a therapeutic target to prevent NAFLD in patients with metabolic disorders.
Collapse
Affiliation(s)
- Carlota Tuero
- Department of General Surgery, Clínica Universidad de Navarra, School of Medicine, University of Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Silvia Ezquerro
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
| | - Gabriela Neira
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain.
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
6
|
Ullah MI, Anwar R, Zia M, Gul B, Kamran S, Kamran SH. Assessment of in vivo antiepileptic potential and phytochemical analysis of Cassia absus seed extracts. Heliyon 2023; 9:e14660. [PMID: 37064443 PMCID: PMC10102194 DOI: 10.1016/j.heliyon.2023.e14660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Cassia absus, a member of Fabaceae family, has been a part of traditional medicine for various ailments such as Hypertension, Diabetes, and Cancer. This family of plants has been utilized for Anticonvulsant and Anxiolytic effects. The ongoing investigation is aimed to seek the antiepileptic potential of C. absus seed extracts in pentylenetetrazole-induced kindling mice. The seeds of C. absus were subjected to a sequential extraction process for the preparation of n-hexane, chloroform, methanol, and aqueous extracts. The PTZ-induced kindling model was employed to assess the antiepileptic activity of each extract. Seizure activity and antioxidant biomarkers in the brain tissue such as levels of CAT, SOD, tGSH, and MDA were assessed. Mechanism of action was elucidated by Flumazenil. Through GC-MS analysis, the phytochemical components in the chloroform extract of C. absus were evaluated. The outcomes showed that C. absus extracts markedly reduced the seizure activity in kindling mice. The extracts exhibited significant Antioxidant properties by enhancing the levels of antioxidant biomarkers in the brain tissue such as CAT, SOD, and tGSH, and decreasing the MDA level. The results demonstrated that C. absus extracts showed antiepileptic effects may be via GABA pathway. According to the results of this investigation, C. absus has significant antiepileptic potential in PTZ-induced kindling mice via GABA pathway modulation and combating reactive oxygen species.
Collapse
Affiliation(s)
- Muhammad Ihsan Ullah
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Rukhsana Anwar
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
- Corresponding author.
| | - Mahnoor Zia
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Bazgha Gul
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Shahzad Kamran
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
7
|
Ercan S, Basaranlar G. Effects of ghrelin on sulfite induced changes in lipid peroxidation, spatial memory, and locomotor activity in rats. Neurol Res 2022; 45:423-428. [PMID: 36449323 DOI: 10.1080/01616412.2022.2149535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND Humans are constantly exposed to sulfites and their derivatives, both endogenously and exogenously. Recent studies have shown that sulfite and its derivatives can cause oxidative stress. . Ghrelin has been reported to possess antioxidant properties and stimulates neurogenesis in hippocampal progenitor cells. This study aimed to investigate the effects of ghrelin on sulfite-induced changes in hippocampal oxidative status, spatial learning and locomotor activity in rats. METHODS Forty male albino Wistar rats were randomized into four groups as follows; Group 1: Control (C); Group 2: Sodium metabisulfite (Na2S2O5) treated (S); Group 3: Ghrelin treated (G); Group 4: Na2S2O5 + Ghrelin treated (SG). Sodium metabisulfite (100 mg/kg/day) was given by gastric gavage, and ghrelin (20 µg/kg/day) was administered intraperitoneally for 5 weeks. Thiobarbituric acid reactive substances (TBARS) were measured through fluorometric method. The spatial memory and locomotor activity of the rats were evaluated by Y-maze test. RESULTS Y-maze results revealed an enhancement of short-term spatial learning and memory in S and SG groups compared to C group. TBARS levels were increased significantly in S group with respect to C group. The increase in TBARS levels induced by sulfite was completely prevented by ghrelin in SG group. CONCLUSION We suggest that systemic ghrelin administration might ameliorate ingested sodium metabisulfite-induced hippocampal oxidative damage without providing any changes in spatial learning, memory and locomotion. Further investigation concerning the mechanism of ghrelin action in hippocampus might provide valuable information for developing new therapeutic approaches to attenuate oxidative stress in hippocampal tissue.
Collapse
Affiliation(s)
- Sevim Ercan
- Vocational School of Health Services, Akdeniz University, Antalya, Turkey
| | - Goksun Basaranlar
- Vocational School of Health Services, Biomedical Device Technology, Izmir Democracy University, İzmir, Turkey
| |
Collapse
|
8
|
Araújo Delmondes GD, Pereira Lopes MJ, Araújo IM, de Sousa Borges A, Batista PR, Melo Coutinho HD, Alencar de Menezes IR, Barbosa-Filho JM, Bezerra Felipe CF, Kerntopf MR. Possible mechanisms involved in the neuroprotective effect of Trans,trans-farnesol on pilocarpine-induced seizures in mice. Chem Biol Interact 2022; 365:110059. [PMID: 35931201 DOI: 10.1016/j.cbi.2022.110059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to investigate, through in vivo and in vitro methodologies, the effect of acute trans,trans-farnesol (12.5, 25, 50 or 100 mg/kg, p.o.) administration on behavioral and neurochemical parameters associated with pilocarpine-induced epileptic seizure (300 mg/kg, i.p.) in mice. The initial results showed that the compound in question presents no anxiolytic-like or myorelaxant effects, despite reducing locomotor activity in the animals at all doses tested. In addition, the lowest dose increased the latency to onset of the first epileptic seizure, and the time to death. In addition to decreasing the mortality percentage in mice submitted to the pilocarpine model. In this same model, pretreatment with the lowest dose of the compound decreased the hippocampal concentrations of thiobarbituric acid and nitrite, and partially restored striatal concentrations of noradrenaline, dopamine, and serotonin. Taken together, the results suggest that trans,trans-farnesol presents a central depressant effect which contributes to its antiepileptic action which, in turn, seems to be mediated by the antagonism of muscarinic cholinergic receptors, reduction of oxidative stress. and modulation of noradrenaline, dopamine and serotonin concentrations in the central nervous system.
Collapse
Affiliation(s)
- Gyllyandeson de Araújo Delmondes
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Natural Products Pharmacology Laboratory, Regional University of Cariri, Crato, CE, Brazil.
| | | | - Isaac Moura Araújo
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Alex de Sousa Borges
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Paulo Ricardo Batista
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | | | | | | | | | - Marta Regina Kerntopf
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Natural Products Pharmacology Laboratory, Regional University of Cariri, Crato, CE, Brazil
| |
Collapse
|
9
|
Tamer SA, Koyuncuoğlu T, Karagöz A, Akakın D, Yüksel M, Yeğen BÇ. Nesfatin-1 ameliorates oxidative brain damage and memory impairment in rats induced with a single acute epileptic seizure. Life Sci 2022; 294:120376. [DOI: 10.1016/j.lfs.2022.120376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022]
|
10
|
Targeting the Ghrelin Receptor as a Novel Therapeutic Option for Epilepsy. Biomedicines 2021; 10:biomedicines10010053. [PMID: 35052733 PMCID: PMC8773216 DOI: 10.3390/biomedicines10010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is a neurological disease affecting more than 50 million individuals worldwide. Notwithstanding the availability of a broad array of antiseizure drugs (ASDs), 30% of patients suffer from pharmacoresistant epilepsy. This highlights the urgent need for novel therapeutic options, preferably with an emphasis on new targets, since “me too” drugs have been shown to be of no avail. One of the appealing novel targets for ASDs is the ghrelin receptor (ghrelin-R). In epilepsy patients, alterations in the plasma levels of its endogenous ligand, ghrelin, have been described, and various ghrelin-R ligands are anticonvulsant in preclinical seizure and epilepsy models. Up until now, the exact mechanism-of-action of ghrelin-R-mediated anticonvulsant effects has remained poorly understood and is further complicated by multiple downstream signaling pathways and the heteromerization properties of the receptor. This review compiles current knowledge, and discusses the potential mechanisms-of-action of the anticonvulsant effects mediated by the ghrelin-R.
Collapse
|
11
|
Shao C, Liu Y, Chen Z, Qin Y, Wang X, Wang X, Yan C, Zhu HL, Zhao J, Qian Y. 3D two-photon brain imaging reveals dihydroartemisinin exerts antiepileptic effects by modulating iron homeostasis. Cell Chem Biol 2021; 29:43-56.e12. [PMID: 34936859 DOI: 10.1016/j.chembiol.2021.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Imbalanced iron homeostasis plays a crucial role in neurological diseases, yet direct imaging evidence revealing the distribution of active ferrous iron (Fe2+) in the living brain remains scarce. Here, we present a near-infrared excited two-photon fluorescent probe (FeP) for imaging changes of Fe2+ flux in the living epileptic mouse brain. In vivo 3D two-photon brain imaging with FeP directly revealed abnormal elevation of Fe2+ in the epileptic mouse brain. Moreover, we found that dihydroartemisinin (DHA), a lead compound discovered through probe-based high-throughput screening, plays a critical role in modulating iron homeostasis. In addition, we revealed that DHA might exert its antiepileptic effects by modulating iron homeostasis in the brain and finally inhibiting ferroptosis. This work provides a reliable chemical tool for assessing the status of ferrous iron in the living epileptic mouse brain and may aid the rapid discovery of antiepileptic drug candidates.
Collapse
Affiliation(s)
- Chenwen Shao
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
| | - Yani Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
| | - Zhangpeng Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
| | - Yajuan Qin
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xueao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
| | - Xueting Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
| | - Jing Zhao
- Department of Chemistry, Nanjing University, Xianlin Road 163, Nanjing 210023, China
| | - Yong Qian
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China.
| |
Collapse
|
12
|
Bademci R, Erdoğan MA, Eroğlu E, Meral A, Erdoğan A, Atasoy Ö, Erbaş O. Demonstration of the protective effect of ghrelin in the livers of rats with cisplatin toxicity. Hum Exp Toxicol 2021; 40:2178-2187. [PMID: 34151639 DOI: 10.1177/09603271211026722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the various and newly developed chemotherapeutic agents in recent years, cisplatin is still used very frequently as a chemotherapeutic agent, even though cisplatin has toxic effects on many organs. The aim of our study is to show whether ghrelin reduces the liver toxicity of cisplatin in the rat model. Twenty-eight male Sprague Dawley albino mature rats were chosen to be utilized in the study. Group 1 rats (n = 7) were taken as the control group, and no medication was given to them. Group 2 rats (n = 7) received 5 mg/kg/day cisplatin and 1 ml/kg/day of 0.9% NaCl, Group 3 rats (n = 7) received 5 mg/kg/day cisplatin and 10 ng/kg/day ghrelin, Group 4 rats (n = 7) received 5 mg/kg/day cisplatin and 20 ng/kg/day ghrelin for 3 days. Glutathione, malondialdehyde (MDA), superoxide dismutase (SOD), plasma alanine aminotransferase (ALT) levels, and liver biopsy results were measured in rats. It was determined that, especially in the high-dose group, the MDA, plasma ALT, and SOD levels increased less in the ghrelin group as compared to the cisplatin group, and the glutathione level decreased slightly with a low dose of ghrelin, while it increased with a higher dose. In histopathological examination, it was determined that the toxic effect of cisplatin on the liver was reduced with a low dose of ghrelin, and its histopathological appearance was similar to normal liver tissue when given a high dose of ghrelin. These findings show that ghrelin, especially in high doses, can be used to reduce the toxic effect of cisplatin.
Collapse
Affiliation(s)
- R Bademci
- Department of General Surgery, 218502Istanbul Medipol University, Istanbul, Turkey
| | - M A Erdoğan
- Faculty of Medicine, Department of Physiology, 485550Izmir Katip Çelebi University, Izmir, Turkey
| | - E Eroğlu
- Department of General Surgery, 64117Memorial Hospital, Istanbul, Turkey
| | - A Meral
- Medical Faculty, Department of Biochemistry, 64162Yuzuncü Yıl University, Van, Turkey
| | - A Erdoğan
- Department of Emergency Medicine, Izmir Cigli Regional Training Hospital, Izmir, Turkey
| | - Ö Atasoy
- Department of Radiation Oncology, Kartal Dr. Lütfi Kırdar Training and Research Hospital, Istanbul, Turkey
| | - O Erbaş
- Department of Physiology, Istanbul Bilim University, Istanbul, Turkey
| |
Collapse
|
13
|
Dose-dependent effects of ghrelin and aberrant anti-Mullerian hormone levels in the prevention of ovarian damage caused by cisplatin in Wistar-albino rats. Arch Gynecol Obstet 2021; 305:1003-1009. [PMID: 34687336 DOI: 10.1007/s00404-021-06292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Ghrelin has previously been proven to have anti-inflammatory and antioxidant properties in preventing cisplatin-induced ovarian damage. The aim of this study was to evaluate the potential effects of this hormone in preventing this damage in rats using histopathological and biochemical methods. METHODS Twenty-eight Wistar-albino rats were randomly divided into four groups. While no drug was given to Group 1 (sham group), acylated ghrelin was intraperitoneally administered to Group 2 at 0.5 nmol/kg and Group 3 at 2 nmol/kg for 21 days. Group 4 received only saline solution. On the 15th day, a single dose of 5 mg/kg cisplatin was intraperitoneally administered to each rat in Groups 2, 3 and 4. Serum anti-Mullerian hormone (AMH) values were measured on days 0, 15 and 21. Then, laparotomy and bilateral oophorectomy were performed, and the ovaries were histopathologically examined. RESULTS The number of primordial and primary follicles was significantly higher in Group 3 than in the saline solution + cisplatin group. In Group 4, cisplatin caused significantly higher follicle damage in the primordial, primary and secondary phases compared to the sham group. The AMH level of the SF + cisplatin group was significantly lower than that of the sham group and the high-dose ghrelin + cisplatin group, and the AMH level of the sham group was significantly higher than that of the low-dose ghrelin + cisplatin group. CONCLUSION High-dose ghrelin was effective in preventing cisplatin-induced ovarian damage by preserving the number of primordial and primary follicles. Larger randomized studies are needed to determine the optimal dosage and duration of ghrelin.
Collapse
|
14
|
Khordad E, Alipour F, Pourabbas M, Mansouri S, Salimnejad R. Hepatoprotective Impact of Ghrelin against Cyclophosphamide-Induced Toxicity in the Male Mice. Drug Res (Stuttg) 2021; 71:407-412. [PMID: 34282601 DOI: 10.1055/a-1508-5368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Despite its vast spectrum of clinical usage, cyclophosphamide (CP) exerts many adverse impacts, including hepatotoxicity. Antioxidant properties of ghrelin might protect the liver from CP-induced toxicity. The current study aimed to assess the protective impacts of ghrelin on CP-induced liver toxicity. METHODS Forty male mice were randomly divided into four groups (n=10) Group 1 as control received no intervention,group 2 received cyclophosphamide (CP) (100 mg/kg, i.p.) for five weeks and once a week. Group 3 received CP+ghrelin (CP+G), (80 µg/kg daily, i.p.) for five weeks. Group 4 received ghrelin with above-mentioned dose. At the end of the experiment, the mice were sacrificed to remove liver tissuesfor histological and biochemical examination. RESULTS Malondialdehyde (MDA) level increased after CP treatment but ghrelin administration significantly decreased the level of MDA (P<0.05). Measurement of the total antioxidant capacity (TAC) noted a significant decrease in the CP group against the control group (P<0.05). Ghrelin treatment in the CP+G group considerably increased the TAC activity when compared to the CP group (P<0.05). Histological examinations also confirmed the hepatocyte necrosis, local bleeding and inflammation, vacuolation, and sinusoidal dilation in the CP group, ghrelin administration reduced the destructive effects of CP on the liver significantly (P<0.05). CONCLUSION Our results reveal the hepatoprotective effect of ghrelin against CP. Therefore, ghrelin might be useful in protecting the body against the adverse impacts of injuries induced by chemotherapeutic drugs.
Collapse
Affiliation(s)
- Elnaz Khordad
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cellular Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Pourabbas
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Somaieh Mansouri
- Department of Anatomy, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ramin Salimnejad
- Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
15
|
Antiamnesic and Neuroprotective Effects of an Aqueous Extract of Ziziphus jujuba Mill. (Rhamnaceae) on Scopolamine-Induced Cognitive Impairments in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5577163. [PMID: 34422074 PMCID: PMC8373493 DOI: 10.1155/2021/5577163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/13/2021] [Accepted: 08/02/2021] [Indexed: 02/03/2023]
Abstract
Background Alzheimer's disease is a neurological condition that affects about 44 million people worldwide. The available treatments target symptoms rather than the underlying causes. Ziziphus jujuba (Rhamnaceae) is widely used in traditional Cameroonian medicine to treat diabetes, pain, infections, and dementia. Previous studies reported that Z. jujuba aqueous macerate improves working memory impairment, but no study on the antiamnesic effect of a concoction of Z. jujuba in rats has been performed. Therefore, this study aimed to assess the antiamnesic and neuroprotective effects of an aqueous extract of Z. jujuba on scopolamine-induced cognitive impairments in rats. Methods Learning and memory impairments were induced in rats by administering scopolamine (1 mg/kg, i.p.) to 58 rats for 15 days. Rats that developed learning and memory impairments in Morris water maze and Y-maze paradigms were divided into 7 groups (8 rats each) and treated daily for 15 days as follows: the normal control group received distilled water (10 ml/kg, p.o.), the negative control group received distilled water (10 ml/kg, p.o.), positive control groups either received donepezil (1.2 mg/kg, p.o.) or tacrine (10 mg/kg, p.o.), and the three test groups were given the extract (29, 57, and 114 mg/kg, p.o.). At the end of treatments, learning and memory impairments were determined using the same paradigms. Animals were then euthanized, and biochemical parameters of oxidative stress, inflammation, and apoptosis were analyzed in the hippocampus and prefrontal cortex. Results On the 4th day of the acquisition phase in the Morris water maze, Z. jujuba (29 and 114 mg/kg) reduced (p < 0.001) the latency to reach the platform, while in the retention phase, Z. jujuba (57 and 114 mg/kg) decreased (p < 0.001) the time to reach the platform and increased the time in the target quadrant (p < 0.05) compared to control. Surprisingly, the extract failed to affect spontaneous alternations in the Y-maze. Furthermore, the extract (29, 57, and 114 mg/kg) reversed (p < 0.001) scopolamine-induced oxidative stress, inflammation, and apoptosis. This was supported by the reduction of neuronal alterations in the hippocampus and prefrontal cortex. Conclusions Compared to donepezil, a standard drug against Alzheimer's disease, these findings suggest that Z. jujuba extract possesses antiamnesic and neuroprotective effects, and these effects are mediated in part through antioxidant, anti-inflammatory, and antiapoptotic activities. These findings help to explain its use in treating psychiatric disorders in Cameroon's folk medicine.
Collapse
|
16
|
Abstract
Background Oxidative stress is the result of cellular troubles related to aerobic metabolism. Furthermore, this stress is always associated with biological responses evoked by physical, chemical, environmental, and psychological factors. Several studies have developed many approaches of antioxidant defense to diminish the severity of many diseases. Ghrelin was originally identified from the rat stomach, and it is a potent growth hormone-releasing peptide that has pleiotropic functions. Methods A systematic review was conducted within PubMed, ScienceDirect, MEDLINE, and Scopus databases using keywords such as ghrelin, antioxidant, oxidative stress, and systemic oxidative stress sensor. Results In the last decade, many studies show that ghrelin exhibits protection effects against oxidative stress derived probably from its antioxidant effects. Pieces of evidence demonstrate that systemic oxidative stress increase ghrelin levels in the plasma. The expression of ghrelin and its receptor in ghrelin peripheral tissues and extensively in the central nervous system suggests that this endogenous peptide plays an important role as a systemic oxidative stress sensor Conclusion The current evidence confirms that ghrelin and its derived peptides (Desacyl-ghrelin, obestatin) act as a protective antioxidant agent. Therefore, stressor modality, duration, and intensity are the parameters of oxidative stress that must be taken into consideration to determine the role of ghrelin, Desacyl-ghrelin, and obestatin in the regulation of cell death pathways.
Collapse
Affiliation(s)
- Rachid Akki
- Department of Plant Protection and Environment, National School of Agriculture-Meknes/ENA, Meknes, Morocco.,Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Kawtar Raghay
- Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mohammed Errami
- Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
17
|
Shati AA, El-Kott AF. Acylated ghrelin protects against doxorubicin-induced nephropathy by activating silent information regulator 1. Basic Clin Pharmacol Toxicol 2021; 128:805-821. [PMID: 33547742 DOI: 10.1111/bcpt.13569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/01/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
This study investigated the nephroprotective role of acylated ghrelin (AG) against DOX-induced nephropathy and examined whether the protection involves silent information regulator 1 (SIRT1). Rats were divided into control, control + AG, DOX, DOX + AG, DOX + AG + [D-Lys3]-GHRP-6 (a ghrelin receptor antagonist), and DOX + AG + EX-527 (a sirt1 inhibitor). DOX was given over the first 2 weeks. AG (10 ng/kg) and both inhibitors were given as 3 doses/wk for 5 weeks. AG improved the structure and the function of the kidneys; down-regulated the renal expression of TGF-β1, collagen 1A1 and α-SMA; and inhibited the renal collagen deposition in the kidneys of DOX-treated rats. Concomitantly, it reduced the renal levels of ROS, MDA, TNF-α, and IL-6 and protein levels of cytochrome-c, TGF-β1, Smad3 and α-SMA in these rats. In both the control and DOX-treated rats, AG significantly increased the renal levels of SOD and GSH, decreased the expression of cleaved caspase-3 and Bax, increased the total levels and the nuclear activity of SIRT1 and reduced the deacetylation of p53, NF-κB and FOXO-31. All the effects were abolished by the concurrent administration of EX-527 and [D-Lys3]-GHRP-6. In conclusion, AG prevents DOX-induced nephropathy in SIRT1 and GSHRa1-dependent mechanism.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
18
|
Proconvulsant effects of Nepeta menthoides hydro alcoholic extract in different seizure tests: behavioral and biochemical studies. Heliyon 2020; 6:e05579. [PMID: 33294706 PMCID: PMC7701200 DOI: 10.1016/j.heliyon.2020.e05579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/30/2020] [Accepted: 11/19/2020] [Indexed: 01/31/2023] Open
Abstract
In Iran, both Nepeta menthoides - the endemic species of Nepeta genus - and Lavandula officinalis are known as Ustukhuddoos and used widely as medicinal herbs. In Iranian traditional medicine, Ustukhuddoos has been recommended for several neuronal diseases including depression and epilepsy. While the antiepileptic effects of Lavandula officinalis have been investigated in a number of studies, no reports are available taking into account the effect of Nepeta menthoides on epilepsy. Since convulsion is an important side effect of some medicinal plants, a thorough study of the effects of Nepeta menthoides on epilepsy seems necessary. This study was designed to investigate the potential anti- or pro-convulsant activity of Nepeta menthoides and its effects on oxidative stress markers. Since an herbal medicine showed opposite effects in two animal models of epilepsy in our laboratory, authers decided to study Nepeta effects through several seizure tests including the intravenous pentylenetetrazol (i.v. PTZ) infusion, the maximal electroshock (MES), acute PTZ and PTZ-kindling tests. These seizure models are generally used for screening pro- or anti-epileptic drugs. Nepeta menthoides (400 mg/kg) significantly reduced the dose of PTZ necessary for clonus seizure induction. Combining either phenytoin (Phen) or Valproate (Val) with Nepeta decreased their antiepileptic effects. Therefore, Nepeta menthoides not only failed to prevent the seizures but also increased sensitivity to them. Nepeta raised brain NO levels in different seizure tests. It seems there is a relation between NO elevation by Nepeta and increased sensitivity to seizures that should be investigated later.
Collapse
|
19
|
Oztas B, Sahin D, Kir H, Kuskay S, Ates N. Effects of leptin, ghrelin and neuropeptide y on spike-wave discharge activity and certain biochemical parameters in WAG/Rij rats with genetic absence epilepsy. J Neuroimmunol 2020; 351:577454. [PMID: 33333420 DOI: 10.1016/j.jneuroim.2020.577454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022]
Abstract
This study aimed to evaluate the effects of leptin, ghrelin and neuropeptide-Y on the development of nonconvulsive seizure activity and their role on combating oxidative stress and cytokines produced by the systemic immune response in the WAG/Rij rat model for genetic absence epilepsy. Current study showed that all three peptides aggravated spike wave discharges activity and affected the oxidative stress in WAG/Rij rats without any significant changes in the levels of IL-1β, IL-6 and TNF-α except leptin that only induced an increment in the concentration of IL-1β. Our results support the modulatory role of these endogenous peptides on absence epilepsy.
Collapse
Affiliation(s)
- Berrin Oztas
- Kocaeli University, Faculty of Medicine, Department of Biochemistry, Kocaeli, Turkey
| | - Deniz Sahin
- Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey.
| | - Hale Kir
- Kocaeli University, Faculty of Medicine, Department of Biochemistry, Kocaeli, Turkey
| | - Sevinc Kuskay
- Kocaeli University, Faculty of Medicine, Department of Biochemistry, Kocaeli, Turkey
| | - Nurbay Ates
- Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey
| |
Collapse
|
20
|
Tunali S, Cimen ES, Yanardag R. The effects of chard on brain damage in valproic acid-induced toxicity. J Food Biochem 2020; 44:e13382. [PMID: 32754946 DOI: 10.1111/jfbc.13382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/19/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Valproic acid (VPA; 2-propyl valeric acid) is a potent drug widely used in treating anxiety disorders, migraine as well as epileptic diseases. In the ongoing study chard protective effect was investigated, on the damaged VPA rat brain. Sprague Dawley rats (females) were grouped as follows: control, VPA (500 mg kg-1 day-1 VPA intraperitoneal), chard (100 mg/kg day chard extract by gavage), VPA + chard (500 mg kg-1 day-1 VPA + 100 mg kg-1 day-1 chard extract). Aqueous chard leaves extract was given 1 hr before apply VPA for a period of 7 days. Lipid peroxidation, advanced oxidation protein products and protein carbonyl content, and superoxide dismutase, glutathione peroxidase, glutathione-S-transferase, and glutathione reductase activities increased in the VPA group. Reduced glutathione levels, paraoxanase, and acetylcholinesterase activities were significantly diminished in the VPA animals. Chard extract application curatively reverted the studied biochemical parameters. The results obtained, it has been found the chard has a protective and antioxidant effect on brain damage induced by VPA. PRACTICAL APPLICATIONS: Valproic acid is a comparably safe pharmaceutical agent, but it can cause severe adverse effects on biological metabolism when it is used in high amount. There are not many studies declared that VPA stimulate the generation of ROS, which is liable for the life-threatening adverse effects of VPA therapy including hepatotoxicity neurotoxicity and teratogenicity. Chard is a plant which has antimicrobial, antibacterial, antiinflammatory, antioxidant, antitumor, antiacetylcholinesterase activities, and hepatoprotective effects. In the current study we examined the protection of the VPA damaged rat brain by chard.
Collapse
Affiliation(s)
- Sevim Tunali
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Esra Sule Cimen
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Refiye Yanardag
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
21
|
Mohammed HS, Aboul Ezz HS, Zedan A, Ali MA. Electrophysiological and Neurochemical Assessment of Selenium Alone or Combined with Carbamazepine in an Animal Model of Epilepsy. Biol Trace Elem Res 2020; 195:579-590. [PMID: 31444771 DOI: 10.1007/s12011-019-01872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/18/2019] [Indexed: 11/08/2022]
Abstract
The present study aims to evaluate the efficacy of selenium (Se) alone or combined with carbamazepine (CBZ) against the adverse effects induced by the chemoconvulsant pentylenetetrazole (PTZ) in the cortex of adult male rats. Electrocorticogram (ECoG) and oxidative stress markers were implemented to evaluate the differences between treated and untreated animals. Animals were divided into five groups: control group that received i.p. saline injection, PTZ-treated group that received a single i.p. injection of PTZ (60 mg/kg) for induction of seizures followed by a daily i.p. injection of saline, Se-treated group that received an i.p. injection of sodium selenite (0.3 mg/kg/day) after PTZ administration, CBZ-treated group that received orally CBZ (80 mg/kg/day) after PTZ administration, and combination (Se plus CBZ)-treated group that received an oral administration of CBZ (80 mg/kg/day) followed by an i.p. injection of sodium selenite (0.3 mg/kg/day) after PTZ administration. Quantitative analyses of the ECoG indices and the neurochemical parameters revealed that Se and CBZ have mitigated the adverse effects induced by PTZ. The main results were decrease in the number of epileptic spikes, restoring the normal distribution of slow and fast ECoG frequencies and attenuation of most of the oxidative stress markers. However, there was an increase in lipid perioxidation marker in combined treatment of CBZ and Se. The electrophysiological and neurochemical data proved the potential of these techniques in evaluating the treatment's efficiency and suggest that supplementation of Se with antiepileptic drugs (AEDs) may be beneficial in ameliorating most of the alterations induced in the brain as a result of seizure insults and could be recommended as an adjunct therapy with AEDs.
Collapse
Affiliation(s)
- Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Heba S Aboul Ezz
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Asmaa Zedan
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Maha A Ali
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
22
|
Li S, Song D, Huang W, Li Z, Liu Z. In Situ Imaging of Cysteine in the Brains of Mice with Epilepsy by a Near-Infrared Emissive Fluorescent Probe. Anal Chem 2020; 92:2802-2808. [DOI: 10.1021/acs.analchem.9b05211] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Songjiao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Dan Song
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Weijing Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhen Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhihong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
23
|
Gortan Cappellari G, Barazzoni R. Ghrelin forms in the modulation of energy balance and metabolism. Eat Weight Disord 2019; 24:997-1013. [PMID: 30353455 DOI: 10.1007/s40519-018-0599-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is a gastric hormone circulating in acylated (AG) and unacylated (UnAG) forms. This narrative review aims at presenting current emerging knowledge on the impact of ghrelin forms on energy balance and metabolism. AG represents ~ 10% of total plasma ghrelin, has an appetite-stimulating effect and is the only form for which a receptor has been identified. Moreover, other metabolic AG-induced effects have been reported, including the modulation of glucose homeostasis with stimulation of liver gluconeogenesis, the increase of fat mass and the improvement of skeletal muscle mitochondrial function. On the other hand, UnAG has no orexigenic effects, however recent reports have shown that it is directly involved in the modulation of skeletal muscle energy metabolism by improving a cluster of interlinked functions including mitochondrial redox activities, tissue inflammation and insulin signalling and action. These findings are in agreement with human studies which show that UnAG circulating levels are positively associated with insulin sensitivity both in metabolic syndrome patients and in a large cohort from the general population. Moreover, ghrelin acylation is regulated by a nutrient sensor mechanism, specifically set on fatty acids availability. These recent findings consistently point towards a novel independent role of UnAG as a regulator of muscle metabolic pathways maintaining energy status and tissue anabolism. While a specific receptor for UnAG still needs to be identified, recent evidence strongly supports the hypothesis that the modulation of ghrelin-related molecular pathways, including those involved in its acylation, may be a potential novel target in the treatment of metabolic derangements in disease states characterized by metabolic and nutritional complications.Level of evidence Level V, narrative review.
Collapse
Affiliation(s)
- Gianluca Gortan Cappellari
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy.
| | - Rocco Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy.
- Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy.
| |
Collapse
|
24
|
Buckinx A, Van Den Herrewegen Y, Pierre A, Cottone E, Ben Haj Salah K, Fehrentz JA, Kooijman R, De Bundel D, Smolders I. Differential Effects of a Full and Biased Ghrelin Receptor Agonist in a Mouse Kindling Model. Int J Mol Sci 2019; 20:ijms20102480. [PMID: 31137460 PMCID: PMC6567032 DOI: 10.3390/ijms20102480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/23/2022] Open
Abstract
The ghrelin system has received substantial recognition as a potential target for novel anti-seizure drugs. Ghrelin receptor (ghrelin-R) signaling is complex, involving Gαq/11, Gαi/o, Gα12/13, and β-arrestin pathways. In this study, we aimed to deepen our understanding regarding signaling pathways downstream the ghrelin-R responsible for mediating anticonvulsive effects in a kindling model. Mice were administered the proconvulsive dopamine 1 receptor-agonist, SKF81297, to gradually induce a kindled state. Prior to every SKF81297 injection, mice were treated with a ghrelin-R full agonist (JMV-1843), a Gαq and Gα12 biased ligand unable to recruit β-arrestin (YIL781), a ghrelin-R antagonist (JMV-2959), or saline. Mice treated with JMV-1843 had fewer and less severe seizures compared to saline-treated controls, while mice treated with YIL781 experienced longer and more severe seizures. JMV-2959 treatment did not lead to differences in seizure severity and number. Altogether, these results indicate that the Gαq or Gα12 signaling pathways are not responsible for mediating JMV-1843′s anticonvulsive effects and suggest a possible involvement of β-arrestin signaling in the anticonvulsive effects mediated by ghrelin-R modulation.
Collapse
Affiliation(s)
- An Buckinx
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Yana Van Den Herrewegen
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Anouk Pierre
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Eleonora Cottone
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Khoubaib Ben Haj Salah
- Max Mousseron Institute of Biomolecules UMR524, CNRS, University of Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 34090 Montpellier, France.
| | - Jean-Alain Fehrentz
- Max Mousseron Institute of Biomolecules UMR524, CNRS, University of Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 34090 Montpellier, France.
| | - Ron Kooijman
- Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium.
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
25
|
Demirel Yılmaz B, Eren B, Sağır D, Eren Z, Başardı Gökçe A. Stereological examination of curcumin's effects on hippocampal damage caused by the anti-epileptic drugs phenobarbital and valproic acid in the developing rat brain. Acta Histochem 2019; 121:430-436. [PMID: 30948196 DOI: 10.1016/j.acthis.2019.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/05/2023]
Abstract
The anti-epileptic drugs phenobarbital and valproic acid have an extremely strong negative effect on cognitive processes such as learning and memory in the developing brain. We examined whether or not curcumin has protective effects on neuronal injury caused by these drugs in the developing rat brain. Young male Wistar rats were studied in two groups, a 7 days old and a 14 days old group (35 rats in each). Both groups were then divided into 7 sub-groups as the control, curcumin, dimethylsulfoxide, phenobarbital, valproic acid, phenobarbital + curcumin, and valproic acid + curcumin groups (n = 5 in each group). At 24 h after the intraperitoneal injection of the compounds, the rats were sacrificed, and the hippocampal tissue was subjected to stereological analysis with the optical fractionation method. Total numbers of neurons in the hippocampus of the 7 days old and 14 days old rats were calculated. It was found that treatment with phenobarbital resulted in a loss of 43% of the neurons, and valproic acid induced a loss of 57% of the neurons in the 7 days old rats. Curcumin prevented this loss significantly with only 19% in the phenobarbital group and 41% in the valproic acid group. In the 14 days old rat groups, phenobarbital was found to reduce the number of neurons by 30%, and valproic acid reduced it by 38%. Curcumin treatment limited neuronal loss to 3% in the phenobarbital + curcumin group and 10% in the valproic acid + curcumin group. These data strongly indicate that curcumin is a protective agent and prevents hippocampal neuronal damage induced by phenobarbital and valproic acid treatment.
Collapse
Affiliation(s)
| | - Banu Eren
- Ondokuz Mayis University Faculty of Arts and Sciences, TR-55139 Samsun, Turkey.
| | - Dilek Sağır
- Sinop University Health High School, TR-57000 Sinop, Turkey.
| | - Zafer Eren
- Ondokuz Mayis University Faculty of Arts and Sciences, TR-55139 Samsun, Turkey.
| | - Ayşe Başardı Gökçe
- Ondokuz Mayis University Faculty of Arts and Sciences, TR-55139 Samsun, Turkey.
| |
Collapse
|
26
|
Felipe CFB, Albuquerque AMS, de Pontes JLX, de Melo JÍV, Rodrigues TCML, de Sousa AMP, Monteiro ÁB, Ribeiro AEDS, Lopes JP, de Menezes IRA, de Almeida RN. Comparative study of alpha- and beta-pinene effect on PTZ-induced convulsions in mice. Fundam Clin Pharmacol 2018; 33:181-190. [DOI: 10.1111/fcp.12416] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/27/2018] [Accepted: 09/10/2018] [Indexed: 01/26/2023]
Affiliation(s)
| | | | - João Luis Xavier de Pontes
- Federal University of Paraíba, Cidade Universitária; s/n - Castelo Branco III; João Pessoa - PB 58051-085 Brazil
| | - José Ítalo Vieira de Melo
- Federal University of Paraíba, Cidade Universitária; s/n - Castelo Branco III; João Pessoa - PB 58051-085 Brazil
| | | | - Ada Mirtes Pereira de Sousa
- Federal University of Paraíba, Cidade Universitária; s/n - Castelo Branco III; João Pessoa - PB 58051-085 Brazil
| | - Álefe Brito Monteiro
- Federal University of Paraíba, Cidade Universitária; s/n - Castelo Branco III; João Pessoa - PB 58051-085 Brazil
| | - Ana Elisa da Silva Ribeiro
- Faculty of Medicine Estácio of Juazeiro do Norte; Avenida Tenente Raimundo Rocha; 555 - Cidade Universitária Juazeiro do Norte - CE 63040-360 Brazil
| | - Janice Pereira Lopes
- Faculty of Medicine Estácio of Juazeiro do Norte; Avenida Tenente Raimundo Rocha; 555 - Cidade Universitária Juazeiro do Norte - CE 63040-360 Brazil
| | | | - Reinaldo Nóbrega de Almeida
- Federal University of Paraíba, Cidade Universitária; s/n - Castelo Branco III; João Pessoa - PB 58051-085 Brazil
| |
Collapse
|
27
|
Ergul Erkec O, Algul S, Kara M. Evaluation of ghrelin, nesfatin-1 and irisin levels of serum and brain after acute or chronic pentylenetetrazole administrations in rats using sodium valproate. Neurol Res 2018; 40:923-929. [DOI: 10.1080/01616412.2018.1503992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ozlem Ergul Erkec
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Sermin Algul
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Mehmet Kara
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
28
|
Falls N, Singh D, Anwar F, Verma A, Kumar V. Amelioration of neurodegeneration and cognitive impairment by Lemon oil in experimental model of Stressed mice. Biomed Pharmacother 2018; 106:575-583. [PMID: 29990845 DOI: 10.1016/j.biopha.2018.06.160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/18/2022] Open
Abstract
Citrous lemon (Rutaceae) an Indian folk medicine has been used for the treatment of various pathological diseases viz., diabetes, cardiovascular, inflammation, hepatobiliary dysfunction and neurodegenerative disorder. Can lemon oil altered the memory of unstressed and stressed mice, a basic question for which the present work was put on trial. The present investigation was intended to assess the impact of Lemon oil on memory of unstressed and Stressed Swiss young Albino mice. Lemon oil (50 and 100 mg/kg o.r.) and donepezil (10 mg/kg) were guided for three weeks to different groups of stressed and unstressed mice. The nootropic movement was assessed utilizing elevated plus maze and Hebbs Williams Maze. Cerebrum acetylcholinesterase (AChE), plasmacorticosterone, decreased glutathione, lipid per oxidation alongside superoxide dismutase and catalase was surveyed as marker for disease. Histopathology was performed for estimation of drug effects. Acute immobilized stress was induce, lemon oil (100 mg/kg) and donepezil together indicated memory enhancing movement both in stressed and unstressed mice. Lemon oil significantly (p < 0.001) altered and lowered brain AChE activity both in stressed and unstressed mice. Scopolamine induced amnesia was also significantly altered and reversed both in stressed and unstressed mice by lemon oil at a dose of 50 and 100 mg/kg. Lemon oil (50 and 100 mg/kg) was further able to control the corticosterone level in plasma for stressed mice. Lemon oil significantly (p < 0.001) elevated the level of catalase, superoxide dismutase and reduced glutathione levels both in stressed and unstressed animals with respect to controlled group along with TBARS both in stressed and unstressed compared with control group. Hence it can be concluded that memory enhancing activity might be related to reduction in AChE and TBARS activity and by elevated GSH, SOD and catalase through decrease in raised plasma corticosterone levels.
Collapse
Affiliation(s)
- Neha Falls
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, 211007, India
| | - Deepika Singh
- Department of Pharmaceutical Science, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Firoz Anwar
- Department of Biochemistry, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amita Verma
- Bio-organic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, 211007, Uttar Pradesh, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, 211007, India.
| |
Collapse
|
29
|
Reddy AJ, Dubey AK, Handu SS, Sharma P, Mediratta PK, Ahmed QM, Jain S. Anticonvulsant and Antioxidant Effects of Musa sapientum Stem Extract on Acute and Chronic Experimental Models of Epilepsy. Pharmacognosy Res 2018; 10:49-54. [PMID: 29568187 PMCID: PMC5855373 DOI: 10.4103/pr.pr_31_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Musa sapientum (banana) plant extract has been shown to possess antioxidant activity in previous studies. Neuronal injury resulting from oxidative stress is an important factor involved in pathogenesis of epilepsy. Objective: The present study aimed to evaluate the anticonvulsant activity of M. sapientum stem extract (MSSE) in acute and chronic experimental models in mice and its effects on various markers of oxidative stress in the brain of pentylenetetrazole (PTZ)-kindled animals. Material and Methods: Maximal electroshock seizures (MES) and PTZ-induced convulsion models were used for acute studies. For the chronic study, the effect of MSSE on the development of kindling was studied. For the evaluation of the effects of MSSE on oxidative stress in brain, malondialdehyde (MDA) and reduced glutathione (GSH) levels were estimated in the brains of the kindled animals. Results: MSSE significantly increased the latency to onset of myoclonic jerks and the duration of clonic convulsions following PTZ administration. The MSSE pretreated group showed significantly reduced mean seizure score on PTZ-induced kindling. There was a significant increase in the brain MDA levels and decrease in GSH levels in response to PTZ-induced kindling. On MSSE pretreatment, there was a significant decrease in the MDA levels in the brains, though the increase in the GSH levels was not significant. Conclusion: The results from this study suggest the presence of significant anticonvulsant activity in MSSE, in both acute and chronic PTZ-induced seizure models, which could be due to its antioxidant activity, as is reflected by the change in oxidative stress markers in brain. SUMMARY Evaluation of the anticonvulsant activity of Musa sapientum and its effects on various markers of oxidative stress in the brain has not been done previously to the best of our knowledge M. sapientum stem extract (MSSE) significantly increased the latency to onset of myoclonic jerks and the duration of clonic convulsions in the experimental models The MSSE pretreated group showed significantly reduced mean seizure score on pentylenetetrazole (PTZ)-induced kindling There was significant increase in the brain malondialdehyde (MDA) levels and decrease in glutathione (GSH) levels in response to PTZ-induced kindling On MSSE pretreatment, there was a significant decrease in the MDA levels in the brain, though the increase in the GSH levels was not significant.
Abbreviations Used: MSSE: Musa sapientum stem extract, PTZ: Pentylenetetrazole, MES: Maximal electroshock seizures, MDA: Malondialdehyde, GSH: Glutathione, SOD: Superoxide dismutase, THLE: Tonic hindlimb extension
Collapse
Affiliation(s)
- Aditya J Reddy
- Department of Pharmacology, SMS and R, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ashok Kumar Dubey
- Department of Pharmacology, SMS and R, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Shailendra S Handu
- Department of Pharmacology, SMS and R, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Prashant Sharma
- Department of Pharmacology, SMS and R, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Pramod K Mediratta
- Department of Pharmacology, SMS and R, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Qazi Mushtaq Ahmed
- Department of Pharmacology, SMS and R, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seema Jain
- Department of Pharmacology, UCMS, New Delhi, India
| |
Collapse
|
30
|
Boshra V, Abbas AM. Effects of peripherally and centrally applied ghrelin on the oxidative stress induced by renin angiotensin system in a rat model of renovascular hypertension. J Basic Clin Physiol Pharmacol 2018; 28:347-354. [PMID: 28315847 DOI: 10.1515/jbcpp-2016-0145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Renovascular hypertension (RVH) is a result of renal artery stenosis, which is commonly due to astherosclerosis. In this study, we aimed to clarify the central and peripheral effects of ghrelin on the renin-angiotensin system (RAS) in a rat model of RVH. METHODS RVH was induced in rats by partial subdiaphragmatic aortic constriction. Experiment A was designed to assess the central effect of ghrelin via the intracerebroventricular (ICV) injection of ghrelin (5 μg/kg) or losartan (0.01 mg/kg) in RVH rats. Experiment B was designed to assess the peripheral effect of ghrelin via the subcutaneous (SC) injection of ghrelin (150 μg/kg) or losartan (10 mg/kg) for 7 consecutive days. Mean arterial blood pressure (MAP), heart rate, plasma renin activity (PRA), and oxidative stress markers were measured in all rats. In addition, angiotensin II receptor type 1 (AT1R) concentration was measured in the hypothalamus of rats in Experiment B. RESULTS RVH significantly increased brain AT1R, PRA, as well as the brain and plasma oxidative stress. Either SC or ICV ghrelin or losartan caused a significant decrease in MAP with no change in the heart rate. Central ghrelin or losartan caused a significant decrease in brain AT1R with significant alleviation of the brain oxidative stress. Central ghrelin caused a significant decrease in PRA, whereas central losartan caused a significant increase in PRA. SC ghrelin significantly decreased PRA and plasma oxidative stress, whereas SC losartan significantly increased PRA and decreased plasma oxidative stress. CONCLUSIONS The hypotensive effect of ghrelin is mediated through the amelioration of oxidative stress, which is induced by RAS centrally and peripherally.
Collapse
|
31
|
Tambe R, Patil A, Jain P, Sancheti J, Somani G, Sathaye S. Assessment of luteolin isolated from Eclipta alba leaves in animal models of epilepsy. PHARMACEUTICAL BIOLOGY 2017; 55:264-268. [PMID: 27927066 PMCID: PMC6130635 DOI: 10.1080/13880209.2016.1260597] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
CONTEXT Eclipta alba (Linn) Hassk. (Asteraceae) has been reported to be a nerve tonic and has been used to treat epilepsy in folk medicine. OBJECTIVE The present study isolates and characterizes luteolin from E. alba and evaluates its antiepileptic potential in chemically induced acute and chronic models in mice. MATERIALS AND METHODS The methanol extract (16.85% w/w) of E. alba leaves was subjected to fractionation for isolation of luteolin. In acute pentylenetetrazole (PTZ) model, luteolin (5, 10, 20 mg/kg, i.p.) was administered 30 min prior to PTZ injection (100 mg/kg) in Swiss albino mice. Kindling was induced by chronic administration of PTZ (35 mg/kg) on every alternate day (48 days). Luteolin was investigated on the course of kindling development and oxidative stress markers [reduced glutathione (GSH) and malondialdehyde (MDA)] in kindled mice. RESULTS Single-dose pretreatment with luteolin (10 and 20 mg/kg, i.p.) was found to be effective in an acute PTZ model (100% protection from mortality) and it did not exhibit any effect on motor coordination at the same doses. PTZ-induced kindling was significantly (p < 0.001) prevented by luteolin (5, 10, 20 mg/kg, i.p.) in a dose-dependent manner. Luteolin restored levels of reduced GSH (p < 0.001) and decreased the level of MDA (p < 0.001), a marker of lipid peroxidation. DISCUSSION AND CONCLUSION The results of the present study demonstrated that luteolin had an anticonvulsant effect in an acute PTZ model. Luteolin exhibited and inhibitory effect on the course of kindling and associated oxidative stress and hence could be a potential molecule in the treatment of epilepsy.
Collapse
Affiliation(s)
- Rufi Tambe
- Department of Pharmaceutical Sciences and Technology, Pharmacology Research Lab-II, Institute of Chemical Technology, (University under Section 3 of UGC Act-1956, Elite Status and Centre of Excellence–Government of Maharashtra, TEQIP Phase II Funded), Mumbai, India
| | - Aditi Patil
- Department of Pharmaceutical Sciences and Technology, Pharmacology Research Lab-II, Institute of Chemical Technology, (University under Section 3 of UGC Act-1956, Elite Status and Centre of Excellence–Government of Maharashtra, TEQIP Phase II Funded), Mumbai, India
| | - Pankaj Jain
- Department of Pharmaceutical Sciences and Technology, Pharmacology Research Lab-II, Institute of Chemical Technology, (University under Section 3 of UGC Act-1956, Elite Status and Centre of Excellence–Government of Maharashtra, TEQIP Phase II Funded), Mumbai, India
| | - Jayant Sancheti
- Department of Pharmaceutical Sciences and Technology, Pharmacology Research Lab-II, Institute of Chemical Technology, (University under Section 3 of UGC Act-1956, Elite Status and Centre of Excellence–Government of Maharashtra, TEQIP Phase II Funded), Mumbai, India
| | - Gauresh Somani
- Department of Pharmaceutical Sciences and Technology, Pharmacology Research Lab-II, Institute of Chemical Technology, (University under Section 3 of UGC Act-1956, Elite Status and Centre of Excellence–Government of Maharashtra, TEQIP Phase II Funded), Mumbai, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences and Technology, Pharmacology Research Lab-II, Institute of Chemical Technology, (University under Section 3 of UGC Act-1956, Elite Status and Centre of Excellence–Government of Maharashtra, TEQIP Phase II Funded), Mumbai, India
- CONTACT Dr Sadhana SathayePharmacology Research Lab-II, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai-400 019, India
| |
Collapse
|
32
|
Salimnejad R, Soleimani Rad J, Mohammad Nejad D, Roshangar L. Effect of ghrelin on total antioxidant capacity, lipid peroxidation, sperm parameters and fertility in mice against oxidative damage caused by cyclophosphamide. Andrologia 2017; 50. [PMID: 28871600 DOI: 10.1111/and.12883] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2017] [Indexed: 12/20/2022] Open
Abstract
Cyclophosphamide is a drug used for chemotherapy and as an immune-suppressive in the organ transplantation. Despite its many clinical implications in the treatment of cancers, this drug has toxic effects on the reproductive system. This study aimed to evaluate the effect of ghrelin against the damages caused by cyclophosphamide. In this experimental study, 40 male mice were randomly divided into four groups: (i) control; (ii) cyclophosphamide; (iii) cyclophosphamide + ghrelin; and (iv) ghrelin. Cyclophosphamide (100 mg/kg body weight), once a week, and ghrelin (80 μg/kg body weight), daily, were administered intraperitoneally for 5 weeks. After 5 weeks, the epididymides were removed and the lipid peroxidation, total antioxidant capacity and sperm parameters were examined. The fertility rate was evaluated by performance in vitro fertilisation. In the mice exposed to cyclophosphamide, the number of spermatozoa and viability, as well as total antioxidant capacity, decreased significantly (p < .05). The increase in the abnormal sperm and MDA levels was observed (p < .05). In addition, the fertility rate decreased in this group, while the use of ghrelin significantly improved the above disorders in the treatment group (p < .05). The findings of this study showed that ghrelin attenuates negative effects caused by cyclophosphamide in the sperm parameters and enhances the fertility.
Collapse
Affiliation(s)
- R Salimnejad
- Department of Anatomical Science, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - J Soleimani Rad
- Department of Anatomical Science, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - D Mohammad Nejad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - L Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Ge T, Yang W, Fan J, Li B. Preclinical evidence of ghrelin as a therapeutic target in epilepsy. Oncotarget 2017; 8:59929-59939. [PMID: 28938694 PMCID: PMC5601790 DOI: 10.18632/oncotarget.18349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Ghrelin, an orexigenic peptide synthesized by endocrine cells of the gastric mucosa, plays a major role in inhibiting seizures. However, the underlying mechanism of ghrelin's anticonvulsant action is still unclear. Nowadays, there are considerable evidences showing that ghrelin is implicated in various neurophysiological processes, including learning and memory, neuroprotection, neurogenesis, and inflammatory effects. In this review, we will summarize the effects of ghrelin on epilepsy. It may provide a comprehensive picture of the role of ghrelin in epilepsy.
Collapse
Affiliation(s)
- Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
34
|
Omrani H, Alipour MR, Farajdokht F, Ebrahimi H, Mesgari Abbasi M, Mohaddes G. Effects of Chronic Ghrelin Treatment on Hypoxia-Induced Brain Oxidative Stress and Inflammation in a Rat Normobaric Chronic Hypoxia Model. High Alt Med Biol 2017; 18:145-151. [DOI: 10.1089/ham.2016.0132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Hasan Omrani
- Drug Applied Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alipour
- Neurosciences Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Ebrahimi
- Drug Applied Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Gisou Mohaddes
- Drug Applied Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Koyuncuoğlu T, Vızdıklar C, Üren D, Yılmaz H, Yıldırım Ç, Atal SS, Akakın D, Kervancıoğlu Demirci E, Yüksel M, Yeğen BÇ. Obestatin improves oxidative brain damage and memory dysfunction in rats induced with an epileptic seizure. Peptides 2017; 90:37-47. [PMID: 28223092 DOI: 10.1016/j.peptides.2017.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/08/2017] [Accepted: 02/16/2017] [Indexed: 11/16/2022]
Abstract
Obestatin was shown to alleviate renal, gastrointestinal and haemorrhage-induced brain injury in rats. In order to investigate the neuroprotective effects of obestatin on seizure-induced oxidative brain injury, an epileptic seizure was induced with a single intraperitoneal (i.p.) dose of pentylenetetrazole (PTZ, 45mg/kg) in male Wistar rats. Thirty minutes before the PTZ injection, rats were treated with either saline or obestatin (1μg/kg, i.p.). Seizure was video-taped and then evaluated by using Racine's scoring (0-5). For the assessment of memory function, passive-avoidance test was performed before seizure induction, which was repeated on the 3rd day of seizure. The rats were decapitated at the 24th or 72nd hour of seizures and brain tissues were obtained for histopathological examination and for measuring levels of malondialdehyde (MDA), glutathione (GSH), reactive oxygen radicals and myeloperoxidase (MPO) activity. Obestatin treatment reduced the average seizure score, decreased the occurrence and duration of generalized tonic-clonic seizures, presenting with a shorter latency to their onset. Increased lipid peroxidation and enhanced generation of oxygen-derived radicals detected at the post-seizure 72nd h were suppressed by the consecutive treatments of obestatin, but no changes were observed by the single obestatin treatment in the 24-h seizure group. Neuronal damage and increased GFAP immunoreactivity, observed in the hippocampal areas and cortex of PTZ-induced rats were alleviated in 3-day obestatin-treated PTZ group. PTZ-induced memory dysfunction was significantly improved in obestatin-treated PTZ group as compared to saline-treated rats. The present data indicate that obestatin ameliorated the severity of PTZ-induced seizures, improved memory dysfunction and reduced neuronal damage by limiting oxidative damage.
Collapse
Affiliation(s)
| | - Caner Vızdıklar
- Marmara University School of Medicine, Department of Physiology, Turkey
| | - Doğan Üren
- Marmara University School of Medicine, Department of Physiology, Turkey
| | - Hakan Yılmaz
- Marmara University School of Medicine, Department of Physiology, Turkey
| | - Çağan Yıldırım
- Marmara University School of Medicine, Department of Physiology, Turkey
| | - Sefa Semih Atal
- Marmara University School of Medicine, Department of Physiology, Turkey
| | - Dilek Akakın
- Marmara University School of Medicine, Department of Histology and Embryology, Turkey
| | | | - Meral Yüksel
- Marmara University Vocational School of Health Related Professions, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Marmara University School of Medicine, Department of Physiology, Turkey.
| |
Collapse
|
36
|
Oztas B, Sahin D, Kir H, Eraldemir FC, Musul M, Kuskay S, Ates N. The effect of leptin, ghrelin, and neuropeptide-Y on serum Tnf-Α, Il-1β, Il-6, Fgf-2, galanin levels and oxidative stress in an experimental generalized convulsive seizure model. Neuropeptides 2017; 61:31-37. [PMID: 27522536 DOI: 10.1016/j.npep.2016.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/04/2016] [Indexed: 12/26/2022]
Abstract
The objective of this study is to examine the effects of the endogenous ligands leptin, ghrelin, and neuropeptide Y (NPY) on seizure generation, the oxidant/antioxidant balance, and cytokine levels, which are a result of immune response in a convulsive seizure model. With this goal, Wistar rats were divided into 5 groups-Group 1: Saline, Group 2: Saline+PTZ (65mg/kg), Group 3: leptin (4mg/kg)+PTZ, Group 4: ghrelin (80μg/kg)+PTZ, and Group 5: NPY (60μg/kg)+PTZ. All injections were delivered intraperitoneally, and simultaneous electroencephalography (EEG) records were obtained. Seizure activity was scored by observing seizure behavior, and the onset time, latency, and seizure duration were determined according to the EEG records. At the end of the experiments, blood samples were obtained in all groups to assess the serum TNF-α, IL-1β, IL-6, FGF-2, galanin, nitric oxide (NOֹ), malondialdehyde (MDA), and glutathione (GSH) levels. The electrophysiological and biochemical findings (p<0.05) of this study show that all three peptides have anticonvulsant effects in the pentylenetetrazol (PTZ)-induced generalized tonic-clonic convulsive seizure model. The reduction of the levels of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 caused by leptin, ghrelin, and NPY shows that these peptides may have anti-inflammatory effects in epileptic seizures. Also, leptin significantly increases the serum levels of the endogenous anticonvulsive agent galanin. The fact that each one of these endogenous peptides reduces the levels of MDA and increases the serum levels of GSH leads to the belief that they may have protective effects against oxidative damage that is thought to play a role in the pathogenesis of epilepsy. Our study contributes to the clarification of the role of these peptides in the brain in seizure-induced oxidative stress and immune system physiology and also presents new approaches to the etiology and treatment of tendency to epileptic seizures.
Collapse
Affiliation(s)
- Berrin Oztas
- Sisli Hamidiye Etfal Research and Training Hospital, Department of Biochemistry, Istanbul, Turkey
| | - Deniz Sahin
- Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey.
| | - Hale Kir
- Kocaeli University, Faculty of Medicine, Department of Biochemistry, Kocaeli, Turkey
| | - Fatma Ceyla Eraldemir
- Kocaeli University, Faculty of Medicine, Department of Biochemistry, Kocaeli, Turkey
| | - Mert Musul
- Carsamba State Hospital, Department of Biochemistry, Samsun, Turkey
| | - Sevinç Kuskay
- Kocaeli University, Faculty of Medicine, Department of Biochemistry, Kocaeli, Turkey
| | - Nurbay Ates
- Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey
| |
Collapse
|
37
|
Kiasalari Z, Khalili M, Shafiee S, Roghani M. The effect of Vitamin E on learning and memory deficits in intrahippocampal kainate-induced temporal lobe epilepsy in rats. Indian J Pharmacol 2017; 48:11-4. [PMID: 26997715 PMCID: PMC4778198 DOI: 10.4103/0253-7613.174394] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objective: Since temporal lobe epilepsy (TLE) is associated with learning and memory impairment, we investigated the beneficial effect of Vitamin E on the impaired learning and memory in the intrahippocampal kainate model of TLE in rats. Materials and Methods: Rats were divided into sham, Vitamin E-treated sham, kainate, and Vitamin E-treated kainate. Intrahippocampal kainate was used for induction of epilepsy. Vitamin E was injected intraperitoneal (i.p.) at a dose of 200 mg/kg/day started 1 week before surgery until 1 h presurgery. Initial and step-through latencies in the passive avoidance test and alternation behavior percentage in Y-maze were finally determined in addition to measurement of some oxidative stress markers. Results: Kainate injection caused a higher severity and rate of seizures and deteriorated learning and memory performance in passive avoidance paradigm and spontaneous alternation as an index of spatial recognition memory in Y-maze task. Intrahippocampal kainate also led to the elevation of malondialdehyde (MDA) and nitrite and reduced activity of superoxide dismutase (SOD). Vitamin E pretreatment significantly attenuated severity and incidence rate of seizures, significantly improved retrieval and recall in passive avoidance, did not ameliorate spatial memory deficit in Y-maze, and lowered MDA and enhanced SOD activity. Conclusion: Vitamin E improves passive avoidance learning and memory and part of its beneficial effect is due to its potential to mitigate hippocampal oxidative stress.
Collapse
Affiliation(s)
- Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Mohsen Khalili
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Samaneh Shafiee
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
38
|
Kihara M, Kaiya H, Win ZP, Kitajima Y, Nishikawa M. Protective Effect of Dietary Ghrelin-Containing Salmon Stomach Extract on Mortality and Cardiotoxicity in Doxorubicin-Induced Mouse Model of Heart Failure. J Food Sci 2016; 81:H2858-H2865. [PMID: 27736040 DOI: 10.1111/1750-3841.13526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/04/2016] [Accepted: 09/10/2016] [Indexed: 01/11/2023]
Abstract
Ghrelin exhibits a cardioprotective effect. We examined whether orally administered ghrelin-containing salmon stomach extract (sSE) instead of chemically synthesized ghrelin protects against doxorubicin (DOX)-induced cardiotoxicity in mice. Mice were divided into four groups: (i) the control, (ii) DOX groups were fed a control diet (AIN-93G), (iii) the sSE, and (iv) DOX + sSE groups were fed a 10% sSE diet (AIN-93G + 10% sSE). After a 4-week pretreatment of sSE, DOX or saline was administered to the corresponding groups by intraperitoneal injection. The groups fed the 10% sSE diet consumed significantly more food than the groups fed the control diet before the DOX injection. No mortality was observed in the DOX + sSE group, whereas 40% (2 of 5) mortality was observed in the DOX group. Compared with the DOX group, levels of ascites and plasma cardiac troponin I improved in the DOX + sSE group. Significantly lesser DOX-induced collagen accumulation was observed in the left heart ventricle of the DOX group than in that of the DOX + sSE group. These results suggest that the dietary ghrelin contained in sSE mimics synthetic ghrelin in cardioprotective effect. Ghrelin in sSE (45 pmol/g) and the food intake-stimulating effect of sSE may explain, at least in part, the protective effect of orally administered teleost ghrelin.
Collapse
Affiliation(s)
- Minoru Kihara
- Dept. of Marine Biology and Sciences, School of Biological Sciences, Tokai Univ, Sapporo, 005-8601, Japan
| | - Hiroyuki Kaiya
- Dept. of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, 565-8565, Japan
| | - Zin Phyu Win
- Dept. of Marine Biology and Sciences, School of Biological Sciences, Tokai Univ, Sapporo, 005-8601, Japan
| | - Yuta Kitajima
- Dept. of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, Sendai, 982-0215, Japan
| | - Masazumi Nishikawa
- Dept. of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, Sendai, 982-0215, Japan
| |
Collapse
|
39
|
The Anticonvulsant Activity of a Flavonoid-Rich Extract from Orange Juice Involves both NMDA and GABA-Benzodiazepine Receptor Complexes. Molecules 2016; 21:molecules21091261. [PMID: 27657037 PMCID: PMC6273133 DOI: 10.3390/molecules21091261] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 12/27/2022] Open
Abstract
The usage of dietary supplements and other natural products to treat neurological diseases has been growing over time, and accumulating evidence suggests that flavonoids possess anticonvulsant properties. The aim of this study was to examine the effects of a flavonoid-rich extract from orange juice (OJe) in some rodent models of epilepsy and to explore its possible mechanism of action. The genetically audiogenic seizures (AGS)-susceptible DBA/2 mouse, the pentylenetetrazole (PTZ)-induced seizures in ICR-CD1 mice and the WAG/Rij rat as a genetic model of absence epilepsy with comorbidity of depression were used. Our results demonstrate that OJe was able to exert anticonvulsant effects on AGS-sensible DBA/2 mice and to inhibit PTZ-induced tonic seizures, increasing their latency. Conversely, it did not have anti-absence effects on WAG/Rij rats. Our experimental findings suggest that the anti-convulsant effects of OJe are likely mediated by both an inhibition of NMDA receptors at the glycine-binding site and an agonistic activity on benzodiazepine-binding site at GABAA receptors. This study provides evidences for the antiepileptic activity of OJe, and its results could be used as scientific basis for further researches aimed to develop novel complementary therapy for the treatment of epilepsy in a context of a multitarget pharmacological strategy.
Collapse
|
40
|
Zhang C, Li L, Zhao B, Jiao A, Li X, Sun N, Zhang J. Ghrelin Protects against Dexamethasone-Induced INS-1 Cell Apoptosis via ERK and p38MAPK Signaling. Int J Endocrinol 2016; 2016:4513051. [PMID: 27190513 PMCID: PMC4844876 DOI: 10.1155/2016/4513051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/10/2016] [Accepted: 03/23/2016] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoid excess induces apoptosis of islet cells, which may result in diabetes. In this study, we investigated the protective effect of ghrelin on dexamethasone-induced INS-1 cell apoptosis. Our data showed that ghrelin (0.1 μM) inhibited dexamethasone-induced (0.1 μM) apoptosis of INS-1 cells and facilitated cell proliferation. Moreover, ghrelin upregulated Bcl-2 expression, downregulated Bax expression, and decreased caspase-3 activity. The protective effect of ghrelin against dexamethasone-induced INS-1 cell apoptosis was mediated via growth hormone secretagogue receptor 1a. Further studies revealed that ghrelin increased ERK activation and decreased p38MAPK expression after dexamethasone treatment. Ghrelin-mediated protection of dexamethasone-induced apoptosis of INS-1 cells was attenuated using the ERK inhibitor U0126 (10 μM), and cell viability increased using the p38MAPK inhibitor SB203580 (10 μM). In conclusion, ghrelin could protect against dexamethasone-induced INS-1 cell apoptosis, at least partially via GHS-R1a and the signaling pathway of ERK and p38MAPK.
Collapse
Affiliation(s)
- Chengshuo Zhang
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, First Hospital of China Medical University, Shenyang 110001, China
| | - Le Li
- Hepatobiliary Surgery Department, Chifeng Municipal Hospital, Chifeng 024000, China
| | - Bochao Zhao
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, First Hospital of China Medical University, Shenyang 110001, China
| | - Ao Jiao
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, First Hospital of China Medical University, Shenyang 110001, China
| | - Xin Li
- Department of General Surgery, Fourth Hospital of China Medical University, Shenyang 110032, China
| | - Ning Sun
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, First Hospital of China Medical University, Shenyang 110001, China
| | - Jialin Zhang
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, First Hospital of China Medical University, Shenyang 110001, China
- *Jialin Zhang:
| |
Collapse
|
41
|
Virdis A, Duranti E, Colucci R, Ippolito C, Tirotta E, Lorenzini G, Bernardini N, Blandizzi C, Taddei S. Ghrelin restores nitric oxide availability in resistance circulation of essential hypertensive patients: role of NAD(P)H oxidase. Eur Heart J 2015. [PMID: 26224075 DOI: 10.1093/eurheartj/ehv365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS We assessed whether acute intra-arterial infusion of exogenous ghrelin can improve endothelial dysfunction by restoring nitric oxide (NO) availability in the forearm microcirculation of essential hypertensive patients. The effect of ghrelin on endothelial dysfunction (pressurized myograph), vascular oxidative stress generation (fluorescent dihydroethidium), and phosphorylation of p47phox (western blot), an index of NAD(P)H oxidase activation, in isolated small arteries taken from essential hypertensive patients (subcutaneous biopsy) were also investigated. METHODS AND RESULTS In 18 normotensive control subjects and 18 essential hypertensive patients, we studied the forearm blood flow (strain-gauge plethysmography) response to intra-arterial acetylcholine, repeated under NO synthase inhibitor N(G)-monomethyl-l-arginine (l-NMMA) or the antioxidant ascorbic acid. The protocol was repeated at the end of exogenous ghrelin intra-arterial infusion. In hypertensive patients, ghrelin normalized the blunted response to acetylcholine, restored the inhibiting effect of l-NMMA and abrogated the potentiating effect of ascorbic acid on acetylcholine. In controls, ghrelin failed to modify these vascular responses. In hypertensive patients, ghrelin decreased venous levels of malondialdehyde, lipoperoxide, and interleukin-6, and concomitantly increased endogenous antioxidant capacity. Small vessels from hypertensive patients showed an enhanced intravascular oxidative stress, which was strongly and similarly decreased by incubation with ghrelin, the NAD(P)H oxidase inhibitor gp91 ds-tat, or both. Ghrelin also normalized the overexpression of p47 phosphorylation and restored the NO availability in small vessels from hypertensive patients. CONCLUSIONS Exogenous ghrelin increases endothelial dysfunction by restoring NO availability in the forearm microcirculation of essential hypertensive patients, an effect ascribable to an antioxidant effect via inhibition of NAD(P)H oxidase activation.
Collapse
Affiliation(s)
- Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Emiliano Duranti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rocchina Colucci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Erika Tirotta
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gianni Lorenzini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
42
|
Can N, Catak O, Turgut B, Demir T, Ilhan N, Kuloglu T, Ozercan IH. Neuroprotective and antioxidant effects of ghrelin in an experimental glaucoma model. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2819-29. [PMID: 26082612 PMCID: PMC4459614 DOI: 10.2147/dddt.s83067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Damage to retinal ganglion cells due to elevation of intraocular pressure (IOP) is responsible for vision loss in glaucoma. Given that loss of these cells is irreversible, neuroprotection is crucial in the treatment of glaucoma. In this study, we investigated the possible antioxidant and neuroprotective effects of ghrelin on the retina in an experimental glaucoma model. Twenty-one Sprague–Dawley rats were randomly assigned to three groups comprising seven rats each. The rats in the control group were not operated on and did not receive any treatment. In all rats in the other groups, IOP was increased by cauterization of the limbal veins. After creation of the IOP increase, saline 1 mL/kg or ghrelin 40 μg/kg was administered intraperitoneally every day for 14 days in the vehicle control group and ghrelin groups, respectively. On day 14 of the study, the eyes were enucleated. Levels of malondialdehyde (MDA), nitric oxide (NO), and nitric oxide synthase-2 (NOS2) in anterior chamber fluid were measured. The retinas were subjected to immunohistochemistry staining for glial fibrillary acidic protein (GFAP), S-100, and vimentin expression. Mean levels of MDA, NO, and NOS2 in the aqueous humor were higher in the vehicle control group than in the control group (P<0.05). Mean levels of MDA, NO, and NOS2 in the ghrelin group did not show a significant increase compared with levels in the control group (P>0.05). Retinal TUNEL and immunohistochemistry staining in the vehicle control group showed an increase in apoptosis and expression of GFAP, S-100, and vimentin compared with the control group (P<0.05). In the ghrelin group, apoptosis and expression of GFAP, S-100, and vimentin was significantly lower than in the vehicle control group (P<0.05). This study suggests that ghrelin has antioxidant and neuroprotective effects on the retina in an experimental glaucoma model.
Collapse
Affiliation(s)
- Nagehan Can
- Department of Ophthalmology, Elazığ Training and Research Hospital, Fırat University, Elazığ, Turkey
| | - Onur Catak
- Department of Ophthalmology, School of Medicine, Fırat University, Elazığ, Turkey
| | - Burak Turgut
- Department of Ophthalmology, School of Medicine, Fırat University, Elazığ, Turkey
| | - Tamer Demir
- Department of Ophthalmology, School of Medicine, Fırat University, Elazığ, Turkey
| | - Nevin Ilhan
- Department of Biochemistry, School of Medicine, Fırat University, Elazığ, Turkey
| | - Tuncay Kuloglu
- Department of Histology and Embryology, School of Medicine, Fırat University, Elazığ, Turkey
| | | |
Collapse
|
43
|
Omrani H, Alipour MR, Mohaddes G. Ghrelin Improves Antioxidant Defense in Blood and Brain in Normobaric Hypoxia in Adult Male Rats. Adv Pharm Bull 2015; 5:283-8. [PMID: 26236669 DOI: 10.15171/apb.2015.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 09/30/2014] [Accepted: 10/18/2014] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Hypoxia is one of the important factors in formation of reactive oxygen species (ROS). Ghrelin is a peptide hormone that reduces oxidative stress. However, antioxidant effect of ghrelin on blood and brain in normobaric hypoxia condition has not yet been investigated. METHODS thirty-two animals were randomly divided into four (n=8) experimental groups: Control (C), ghrelin (Gh), hypoxia (H), hypoxic animals that received ghrelin (H+Gh). Normobaric systemic hypoxia (11% O2) was induced in rats for 48 hours. Effect of ghrelin (80 μg/kg, i.p) on serum TAC and MDA and brain SOD, CAT, GPx and MDA were assessed. RESULTS Hypoxia significantly (p<0.001) increased both blood and brain MDA Levels. Ghrelin treatment significantly (p<0.001) decreased blood MDA levels both in control and hypoxia, and brain MDA levels in hypoxia conditions. Brain SOD, CAT and GPx variations were not significant in two days of hypoxia. Ghrelin treatment also could not significantly increase activity of SOD, CAT and GPx in brain. Total antioxidant capacity of serum increased in ghrelin treatment both in control and hypoxic conditions, although it was only significant (p<0.01) in control conditions. CONCLUSION Our findings showed that administration of ghrelin may be useful in reducing blood and brain oxidative stress in normobaric hypoxia condition.
Collapse
Affiliation(s)
- Hasan Omrani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alipour
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
Mosa RMH, Zhang Z, Shao R, Deng C, Chen J, Chen C. Implications of ghrelin and hexarelin in diabetes and diabetes-associated heart diseases. Endocrine 2015; 49:307-23. [PMID: 25645463 DOI: 10.1007/s12020-015-0531-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/12/2015] [Indexed: 02/07/2023]
Abstract
Ghrelin and its synthetic analog hexarelin are specific ligands of growth hormone secretagogue (GHS) receptor. GHS have strong growth hormone-releasing effect and other neuroendocrine activities such as stimulatory effects on prolactin and adrenocorticotropic hormone secretion. Recently, several studies have reported other beneficial functions of GHS that are independent of GH. Ghrelin and hexarelin, for examples, have been shown to exert GH-independent cardiovascular activity. Hexarelin has been reported to regulate peroxisome proliferator-activated receptor gamma (PPAR-γ) in macrophages and adipocytes. PPAR-γ is an important regulator of adipogenesis, lipid metabolism, and insulin sensitization. Ghrelin also shows protective effects on beta cells against lipotoxicity through activation of phosphatidylinositol-3 kinase/protein kinase B, c-Jun N-terminal kinase (JNK) inhibition, and nuclear exclusion of forkhead box protein O1. Acylated ghrelin (AG) and unacylated ghrelin (UAG) administration reduces glucose levels and increases insulin-producing beta cell number, and insulin secretion in pancreatectomized rats and in newborn rats treated with streptozotocin, suggesting a possible role of GHS in pancreatic regeneration. Therefore, the discovery of GHS has opened many new perspectives in endocrine, metabolic, and cardiovascular research areas, suggesting the possible therapeutic application in diabetes and diabetic complications especially diabetic cardiomyopathy. Here, we review the physiological roles of ghrelin and hexarelin in the protection and regeneration of beta cells and their roles in the regulation of insulin release, glucose, and fat metabolism and present their potential therapeutic effects in the treatment of diabetes and diabetic-associated heart diseases.
Collapse
|
45
|
Novel Antioxidant Properties of Ghrelin and Oleuropein Versus Lipopolysaccharide-Mediated Renal Failure in Rats. Int J Pept Res Ther 2015. [DOI: 10.1007/s10989-015-9470-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Cevik B, Solmaz V, Aksoy D, Erbas O. Montelukast inhibits pentylenetetrazol-induced seizures in rats. Med Sci Monit 2015; 21:869-74. [PMID: 25803241 PMCID: PMC4384514 DOI: 10.12659/msm.892932] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Montelukast is an antiinflammatory drug with an antioxidant property. In this study, we aimed to reveal whether montelukast has a preventive effect against seizures and post-seizure oxidative stress in pentylenetetrazol (PTZ)-induced seizures in rats. Material/Methods Of the 48 male Sprague-Dawley rats used in the study, 24 were assigned to EEG recordings (group A) and 24 were assigned to behavioral studies (group B). In group A, the electrodes were implanted on dura over the left frontal cortex for EEG recording. After 10 days, in group A, i.p. saline, 25, 50, or 100 mg/kg montelukast+35 mg/kg PTZ was administered to the rats. EEG was recorded and spike percentage was evaluated. In group B, i.p. saline, 25, 50, or 100 mg/kg montelukast+70 mg/kg PTZ was administered to the rats. Racine’s Convulsion Scale (RCS) and onset times of first myoclonic jerk (FMJ) was used to evaluate the seizures. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were determined in the brain tissue of animals. Results Animals treated with 50 or 100 mg/kg montelukast had significantly lower RCS and significantly increased FMJ onset time compared to the saline-treated animals. Moreover, groups given 25, 50, or 100 mg/kg montelukast had significantly lower MDA and higher SOD levels compared to the saline-treated group. The differences were more pronounced in the 100 mg/kg montelukast-pretreated group (p<0.001). Conclusions Montelukast showed anticonvulsant action and led to amelioration of oxidative stress markers in PTZ-induced seizures in rats.
Collapse
Affiliation(s)
- Betul Cevik
- Department of Neurology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Volkan Solmaz
- Department of Neurology, Turhal State Hospital, Tokat, Turkey
| | - Durdane Aksoy
- Department of Neurology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Oytun Erbas
- Department of Physiology, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey
| |
Collapse
|
47
|
Ercan S, Kencebay C, Basaranlar G, Ozcan F, Derin N, Aslan M. Induction of omega 6 inflammatory pathway by sodium metabisulfite in rat liver and its attenuation by ghrelin. Lipids Health Dis 2015; 14:7. [PMID: 25889219 PMCID: PMC4335696 DOI: 10.1186/s12944-015-0008-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/05/2015] [Indexed: 12/13/2022] Open
Abstract
Background Sodium metabisulfite is commonly used as preservative in foods but can oxidize to sulfite radicals initiating molecular oxidation. Ghrelin is a peptide hormone primarily produced in the stomach and has anti-inflammatory effects in many organs. This study aimed to assess endogenous omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) in rat peripheral organs following sodium metabisulfite treatment and determine the possible effect of ghrelin on changes in n-6 inflammatory pathway. Methods Male Wistar rats included in the study were allowed free access to standard rat chow. Sodium metabisulfite was given by gastric gavage and ghrelin was administered intraperitoneally for 5 weeks. Levels of arachidonic acid (AA, C20:4n-6), dihomo-gamma-linolenic acid (DGLA, C20:3n-6), eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3) in liver, heart and kidney tissues were determined by an optimized multiple reaction monitoring (MRM) method using ultra fast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Cyclooxygenase (COX) and prostaglandin E2 (PGE2) were measured in tissue samples to evaluate changes in n-6 inflammatory pathway. Results Omega-6 PUFA levels, AA/DHA and AA/EPA ratio were significantly increased in liver tissue following sodium metabisulfite treatment compared to controls. No significant change was observed in heart and kidney PUFA levels. Tissue activity of COX and PGE2 levels were also significantly increased in liver tissue of sodium metabisulfite treated rats compared to controls. Ghrelin treatment decreased n-6 PUFA levels and reduced COX and PGE2 levels in liver tissue of sodium metabisulfite treated rats. Conclusion Current results suggest that ghrelin exerts anti-inflammatory action through modulation of n-6 PUFA levels in hepatic tissue.
Collapse
Affiliation(s)
- Sevim Ercan
- Akdeniz University, Vocational School of Health Services, Antalya, 07070, Turkey.
| | - Ceren Kencebay
- Akdeniz University, Medical School, Department of Biophysics, Antalya, 07070, Turkey.
| | - Goksun Basaranlar
- Akdeniz University, Medical School, Department of Biophysics, Antalya, 07070, Turkey.
| | - Filiz Ozcan
- Akdeniz University, Medical School, Department of Medical Biochemistry, Antalya, 07070, Turkey.
| | - Narin Derin
- Akdeniz University, Medical School, Department of Biophysics, Antalya, 07070, Turkey.
| | - Mutay Aslan
- Akdeniz University, Medical School, Department of Medical Biochemistry, Antalya, 07070, Turkey.
| |
Collapse
|
48
|
Ercan S, Kencebay C, Basaranlar G, Derin N, Aslan M. Induction of xanthine oxidase activity, endoplasmic reticulum stress and caspase activation by sodium metabisulfite in rat liver and their attenuation by Ghrelin. Food Chem Toxicol 2015; 76:27-32. [DOI: 10.1016/j.fct.2014.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 11/28/2022]
|
49
|
Dobutovic B, Sudar E, Tepavcevic S, Djordjevic J, Djordjevic A, Radojcic M, Isenovic ER. Effects of ghrelin on protein expression of antioxidative enzymes and iNOS in the rat liver. Arch Med Sci 2014; 10:806-16. [PMID: 25276168 PMCID: PMC4175782 DOI: 10.5114/aoms.2014.44872] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/14/2013] [Accepted: 02/24/2013] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION We investigated the effects of ghrelin on protein expression of the liver antioxidant enzymes superoxide dismutases (SODs), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR), nuclear factor κB (NFκB) and inducible nitric oxide synthase (iNOS). Furthermore, we aimed to investigate whether extracellular regulated protein kinase (ERK1/2) and protein kinase B (Akt) are involved in ghrelin-regulated liver antioxidant enzymes and iNOS protein expression. MATERIAL AND METHODS Male Wistar rats were treated with ghrelin (0.3 nmol/5 µl) injected into the lateral cerebral ventricle every 24 h for 5 days, and 2 h after the last treatment the animals were sacrificed and the liver excised. The Western blot method was used to determine expression of antioxidant enzymes, iNOS, phosphorylation of Akt, ERK1/2 and nuclear factor κB (NFκB) subunits 50 and 65. RESULTS There was significantly higher protein expression of CuZnSOD (p < 0.001), MnSOD (p < 0.001), CAT (p < 0.001), GPx, (p < 0.001), and GR (p < 0.01) in the liver isolated from ghrelin-treated animals compared with control animals. In contrast, ghrelin significantly (p < 0.01) reduced protein expression of iNOS. In addition, phosphorylation of NFκB subunits p65 and p50 was significantly (p < 0.001 for p65; p < 0.05 for p50) reduced by ghrelin when compared with controls. Phosphorylation of ERK1/2 and of Akt was significantly higher in ghrelin-treated than in control animals (p < 0.05 for ERK1/2; p < 0.01 for Akt). CONCLUSIONS The results show that activation of Akt and ERK1/2 is involved in ghrelin-mediated regulation of protein expression of antioxidant enzymes and iNOS in the rat liver.
Collapse
Affiliation(s)
- Branislava Dobutovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Emina Sudar
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Snezana Tepavcevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Jelena Djordjevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Marija Radojcic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Esma R. Isenovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
50
|
Pastore V, Wasowski C, Higgs J, Mangialavori IC, Bruno-Blanch LE, Marder M. A synthetic bioisoster of trimethadione and phenytoin elicits anticonvulsant effect, protects the brain oxidative damage produced by seizures and exerts antidepressant action in mice. Eur Neuropsychopharmacol 2014; 24:1405-14. [PMID: 24846538 DOI: 10.1016/j.euroneuro.2014.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/08/2014] [Accepted: 04/27/2014] [Indexed: 12/22/2022]
Abstract
Epilepsy is recognized as one of the most common and serious neurological disorder affecting 1-2% of the world׳s population. The present study demonstrates that systemic administration of 3-butyl-5,5-dimethyl-1,2,3-oxathiazolidine-4-one-2,2-dioxide (DIOXIDE), a synthetic compound bioisoster of trimethadione and phenytoin (classical anticonvulsants), elicits a dose dependent anticonvulsant response in mice submitted to the subcutaneous pentylenetetrazole seizure test (scPTZ). Among various factors supposed to play role in epilepsy, oxidative stress and reactive species have strongly emerged. The protection exerted by DIOXIDE over the extent of brain oxidative damage produced by PTZ was determined, by measuring the levels of lipid peroxidation and reduced glutathione and the activity of Na(+)/K(+)-ATPase. Psychiatric disorders represent frequent comorbidities in persons with epilepsy. In this report, the potential anxiolytic and antidepressant activities of DIOXIDE were evaluated in several widely used models for assessing anxiolytic and antidepressant activities in rodents. Although DIOXIDE did not evidence anxiolytic activity at the doses tested, it revealed a significant antidepressant-like effect. Preliminary studies of its mechanism of action, by means of its capacity to act via the GABAA receptor (using the [(3)H]flunitrazepam binding assay in vitro and the picrotoxin test in vivo) and the Na(+) channel (using the alkaloid veratrine, a voltage-Na(+) channel agonist) demonstrated that the anticonvulsant effect is not likely related to the GABAergic pathway and the antidepressant-like effect could be due to its Na(+) channel blocking properties. The results for DIOXIDE suggested it as a new anticonvulsant-antioxidant and antidepressant compound that deserves further development.
Collapse
Affiliation(s)
- Valentina Pastore
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 (C1113AAD), Buenos Aires, Argentina.
| | - Cristina Wasowski
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 (C1113AAD), Buenos Aires, Argentina.
| | - Josefina Higgs
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 (C1113AAD), Buenos Aires, Argentina.
| | - Irene C Mangialavori
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 (C1113AAD), Buenos Aires, Argentina.
| | - Luis E Bruno-Blanch
- Química Medicinal, Departamento de Ciencias Biológicas, UNLP, calle 47 y 115 (B1900BJW), La Plata, Argentina.
| | - Mariel Marder
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 (C1113AAD), Buenos Aires, Argentina.
| |
Collapse
|