1
|
Redell JB, Maynard ME, Hylin MJ, Hood KN, Sedlock A, Maric D, Zhao J, Moore AN, Roysam B, Pati S, Dash PK. A Combination of Low Doses of Lithium and Valproate Improves Cognitive Outcomes after Mild Traumatic Brain Injury. J Neurotrauma 2025; 42:437-453. [PMID: 39463282 PMCID: PMC11971536 DOI: 10.1089/neu.2024.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
The prevalence of mild traumatic brain injury (mTBI) is high compared with moderate and severe TBI, comprising almost 80% of all brain injuries. mTBI activates a complex cascade of biochemical, molecular, structural, and pathological changes that can result in neurological and cognitive impairments. These impairments can manifest even in the absence of overt brain damage. Given the complexity of changes triggered by mTBI, a combination of drugs that target multiple TBI-activated cascades may be required to improve mTBI outcomes. It has been previously demonstrated that cotreatment with the U.S. Food and Drug Administration (FDA)-approved drugs lithium plus valproate (Li + VPA) for 3 weeks after a moderate-to-severe controlled cortical impact injury reduced cortical tissue loss and improved motor function. Since both lithium and valproate can exhibit toxicity at high doses, it would be beneficial to determine if this combination treatment is effective when administered at low doses and for a shorter duration, and if it can improve cognitive function, after a mild diffuse TBI. In the present study, we tested if the combination of low doses of lithium (1 mEq/kg or 0.5 mEq/kg) plus valproate (20 mg/kg) administered for 3 days after a mild fluid percussion injury can improve hippocampal-dependent learning and memory. Our data show that the combination of low-dose Li + VPA improved spatial learning and memory, effects not seen when either drug was administered alone. In addition, postinjury Li + VPA treatment improved recognition memory and sociability and reduced fear generalization. Postinjury Li + VPA also reduced the number of anti-ionized calcium binding adaptor molecule 1 (Iba1)-positive microglia counted using a convolutional neural network, indicating a reduction in neuroinflammation. These findings indicate that low-dose Li + VPA administered acutely after mTBI may have translational utility to reduce pathology and improve cognitive function.
Collapse
Affiliation(s)
- John B. Redell
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Mark E. Maynard
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Michael J. Hylin
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Kimberly N. Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Andrea Sedlock
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, Maryland, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, Maryland, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Anthony N. Moore
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Badrinath Roysam
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Shibani Pati
- Departments of Pathology and Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Pramod K. Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
2
|
Richard SA. Elucidating the pivotal molecular mechanisms, therapeutic and neuroprotective effects of lithium in traumatic brain injury. Brain Behav 2024; 14:e3595. [PMID: 38874089 PMCID: PMC11177180 DOI: 10.1002/brb3.3595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) refers to damage to brain tissue by mechanical or blunt force via trauma. TBI is often associated with impaired cognitive abilities, like difficulties in memory, learning, attention, and other higher brain functions, that typically remain for years after the injury. Lithium is an elementary light metal that is only utilized in salt form due to its high intrinsic reactivity. This current review discusses the molecular mechanisms and therapeutic and neuroprotective effects of lithium in TBI. METHOD The "Boolean logic" was used to search for articles on the subject matter in PubMed and PubMed Central, as well as Google Scholar. RESULTS Lithium's therapeutic action is extremely complex, involving multiple effects on gene secretion, neurotransmitter or receptor-mediated signaling, signal transduction processes, circadian modulation, as well as ion transport. Lithium is able to normalize multiple short- as well as long-term modifications in neuronal circuits that ultimately result in disparity in cortical excitation and inhibition activated by TBI. Also, lithium levels are more distinct in the hippocampus, thalamus, neo-cortex, olfactory bulb, amygdala as well as the gray matter of the cerebellum following treatment of TBI. CONCLUSION Lithium attenuates neuroinflammation and neuronal toxicity as well as protects the brain from edema, hippocampal neurodegeneration, loss of hemispheric tissues, and enhanced memory as well as spatial learning after TBI.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Medicine, Princefield University, Ho, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Bortolozzi A, Fico G, Berk M, Solmi M, Fornaro M, Quevedo J, Zarate CA, Kessing LV, Vieta E, Carvalho AF. New Advances in the Pharmacology and Toxicology of Lithium: A Neurobiologically Oriented Overview. Pharmacol Rev 2024; 76:323-357. [PMID: 38697859 PMCID: PMC11068842 DOI: 10.1124/pharmrev.120.000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 05/05/2024] Open
Abstract
Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Giovanna Fico
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michael Berk
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Marco Solmi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michele Fornaro
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Joao Quevedo
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Carlos A Zarate
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Lars V Kessing
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Andre F Carvalho
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| |
Collapse
|
4
|
Shirsath KR, Patil VK, Awathale SN, Goyal SN, Nakhate KT. Pathophysiological and therapeutic implications of neuropeptide S system in neurological disorders. Peptides 2024; 175:171167. [PMID: 38325715 DOI: 10.1016/j.peptides.2024.171167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Neuropeptide S (NPS) is a 20 amino acids-containing neuroactive molecule discovered by the reverse pharmacology method. NPS is detected in specific brain regions like the brainstem, amygdala, and hypothalamus, while its receptor (NPSR) is ubiquitously expressed in the central nervous system (CNS). Besides CNS, NPS and NPSR are also expressed in the peripheral nervous system. NPSR is a G-protein coupled receptor that primarily uses Gq and Gs signaling pathways to mediate the actions of NPS. In animal models of Parkinsonism and Alzheimer's disease, NPS exerts neuroprotective effects. NPS suppresses oxidative stress, anxiety, food intake, and pain, and promotes arousal. NPSR facilitates reward, reinforcement, and addiction-related behaviors. Genetic variation and single nucleotide polymorphism in NPSR are associated with depression, schizophrenia, rheumatoid arthritis, and asthma. NPS interacts with several neurotransmitters including glutamate, noradrenaline, serotonin, corticotropin-releasing factor, and gamma-aminobutyric acid. It also modulates the immune system via augmenting pro-inflammatory cytokines and plays an important role in the pathogenesis of rheumatoid arthritis and asthma. In the present review, we discussed the distribution profile of NPS and NPSR, signaling pathways, and their importance in the pathophysiology of various neurological disorders. We have also proposed the areas where further investigations on the NPS system are warranted.
Collapse
Affiliation(s)
- Kamini R Shirsath
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Vaishnavi K Patil
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sanjay N Awathale
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| |
Collapse
|
5
|
Lu LP, Chang WH, Huang JJ, Tan P, Tsai GE. Lithium Benzoate Exerts Neuroprotective Effect by Improving Mitochondrial Function, Attenuating Reactive Oxygen Species, and Protecting Cognition and Memory in an Animal Model of Alzheimer’s Disease. J Alzheimers Dis Rep 2022; 6:557-575. [PMID: 36275418 PMCID: PMC9535606 DOI: 10.3233/adr-220025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease affecting many cellular pathways, including protein aggregation, mitochondrial dysfunction, oxidative stress (OS), and neuroinflammation. Currently, no effective treatment for AD exists. Objective: We aim to determine the effect of lithium benzoate (LiBen) in protecting neurons from amyloid-β (Aβ) or other neurotoxin insults. Methods: Primary rat cortical neurons co-treated with neurotoxins and LiBen were used to examine its effect in cell viability, reactive oxygen species (ROS) clearance, and mitochondrial functions by MTT, CellRox fluorescence staining, and seahorse assay. Then, Barnes maze and prepulse inhibition test were performed in APP/PS1 mice that received chronic LiBen treatment to assess its effect on cognitive protection. Oral bioavailability of LiBen was also assessed by pharmacokinetic study in rat plasma. Results: In this study, we discovered that LiBen can attenuate cellular ROS level, improve mitochondrial function, increase cell viability against multiple different insults of mitochondrial dysfunction, Aβ accumulation, and neuroinflammation, and promote neurogenesis. We demonstrated that LiBen has advantages over lithium or sodium benzoate alone as LiBen displays superior neuroprotective efficacy and oral bioavailability than the other two agents when being applied either alone or in combination. Furthermore, chronic administration of LiBen showed protection for cognition as well as spatial memory and reduced the senile plaque deposition in brains of AD animal models. Conclusion: LiBen stands as a promising therapeutic agent for improving cognition and delaying the progression of AD.
Collapse
Affiliation(s)
- Lu-Ping Lu
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei, Taiwan
| | - Wei-Hua Chang
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei, Taiwan
| | - Jing-Jia Huang
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei, Taiwan
| | - Peng Tan
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei, Taiwan
| | - Guochuan Emil Tsai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei, Taiwan
- UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
6
|
Holanda VAD, Didonet JJ, Costa MBB, do Nascimento Rangel AH, da Silva ED, Gavioli EC. Neuropeptide S Receptor as an Innovative Therapeutic Target for Parkinson Disease. Pharmaceuticals (Basel) 2021; 14:ph14080775. [PMID: 34451872 PMCID: PMC8401573 DOI: 10.3390/ph14080775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disease mainly characterized by the loss of nigral dopaminergic neurons in the substantia nigra pars compacta. Patients suffering from PD develop severe motor dysfunctions and a myriad of non-motor symptoms. The treatment mainly consists of increasing central dopaminergic neurotransmission and alleviating motor symptoms, thus promoting severe side effects without modifying the disease’s progress. A growing body of evidence suggests a close relationship between neuropeptide S (NPS) and its receptor (NPSR) system in PD: (i) double immunofluorescence labeling studies showed that NPSR is expressed in the nigral tyrosine hydroxylase (TH)-positive neurons; (ii) central administration of NPS increases spontaneous locomotion in naïve rodents; (iii) central administration of NPS ameliorates motor and nonmotor dysfunctions in animal models of PD; (iv) microdialysis studies showed that NPS stimulates dopamine release in naïve and parkinsonian rodents; (v) central injection of NPS decreases oxidative damage to proteins and lipids in the rodent brain; and, (vi) 7 days of central administration of NPS protects from the progressive loss of nigral TH-positive cells in parkinsonian rats. Taken together, the NPS/NPSR system seems to be an emerging therapeutic strategy for alleviating motor and non-motor dysfunctions of PD and, possibly, for slowing disease progress.
Collapse
Affiliation(s)
- Victor A. D. Holanda
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Julia J. Didonet
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Manara B. B. Costa
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | | | - Edilson D. da Silva
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Elaine C. Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
- Correspondence:
| |
Collapse
|
7
|
The Neural Network of Neuropeptide S (NPS): Implications in Food Intake and Gastrointestinal Functions. Pharmaceuticals (Basel) 2021; 14:ph14040293. [PMID: 33810221 PMCID: PMC8065993 DOI: 10.3390/ph14040293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The Neuropeptide S (NPS), a 20 amino acids peptide, is recognized as the endogenous ligand of a previously orphan G protein-coupled receptor, now termed NPS receptor (NPSR). The limited distribution of the NPS-expressing neurons in few regions of the brainstem is in contrast with the extensive expression of NPSR in the rodent central nervous system, suggesting the involvement of this receptor in several brain functions. In particular, NPS promotes locomotor activity, behavioral arousal, wakefulness, and unexpectedly, at the same time, it exerts anxiolytic-like properties. Intriguingly, the NPS system is implicated in the rewarding properties of drugs of abuse and in the regulation of food intake. Here, we focus on the anorexigenic effect of NPS, centrally injected in different brain areas, in both sated and fasted animals, fed with standard or palatable food, and, in addition, on its influence in the gastrointestinal tract. Further investigations, regarding the role of the NPS/NPSR system and its potential interaction with other neurotransmitters could be useful to understand the mechanisms underlying its action and to develop novel pharmacological tools for the treatment of aberrant feeding patterns and obesity.
Collapse
|
8
|
de Santana Souza L, de Siqueira PA, Fernandes A, Silva Martins R, Cussa Kubrusly RC, Paes-de-Carvalho R, Cunha RA, Dos Santos-Rodrigues A, Pandolfo P. Role of Neuropeptide S on Behavioural and Neurochemical Changes of an Animal Model of Attention-Deficit/Hyperactivity Disorder. Neuroscience 2020; 448:140-148. [PMID: 32976984 DOI: 10.1016/j.neuroscience.2020.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Neuropeptide S (NPS) is a recently discovered peptide signalling through its receptor NPSR, which is expressed throughout the brain. Since NPSR activation increases dopaminergic transmission, we now tested if NPSR modulates behavioural and neurochemical alterations displayed by an animal model of attention-deficit/hyperactivity disorder (ADHD), Spontaneous Hypertensive Rats (SHR), compared to its control strain, Wistar Kyoto rats (WKY). NPS (0.1 and 1 nmol, intracerebroventricularly (icv)) did not modify the performance in the open field test in both strains; however, NPSR antagonism with [tBu-d-Gly5]NPS (3 nmol, icv) increased, per se, the total distance travelled by WKY. In the elevated plus-maze, NPS (1 nmol, icv) increased the percentage of entries in the open arms (%EO) only in WKY, an effect prevented by pretreatment with [tBu-d-Gly5]NPS (3 nmol, icv), which decreased per se the %EO in WKY and increased their number of entries in the closed arms. Immunoblotting of frontal cortical extracts showed no differences of NPSR density, although SHR had a lower NPS content than WKY. SHR showed higher activity of dopamine uptake than WKY, and NPS (1 nmol, icv) did not change this profile. Overall, the present work shows that the pattern of functioning of the NPS system is distinct in WKY and SHR, suggesting that this system may contribute to the pathophysiology of ADHD.
Collapse
Affiliation(s)
| | | | - Arlete Fernandes
- Department of Physiology and Pharmacology, Universidade Federal Fluminense, Niterói, Brazil
| | - Robertta Silva Martins
- Department of Physiology and Pharmacology, Universidade Federal Fluminense, Niterói, Brazil
| | | | | | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | - Pablo Pandolfo
- Department of Neurobiology, Universidade Federal Fluminense, Niterói, Brazil.
| |
Collapse
|
9
|
Bülbül M, Sinen O, Özkan A, Aslan MA, Ağar A. Central neuropeptide-S treatment improves neurofunctions of 6-OHDA-induced Parkinsonian rats. Exp Neurol 2019; 317:78-86. [PMID: 30825442 DOI: 10.1016/j.expneurol.2019.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is characterized by degeneration of the dopaminergic neurons in substantia nigra (SN). The motor symptoms of PD include tremor, rigidity, bradykinesia and postural impairment. In rodents, central administration of neuropeptide-S (NPS) has been shown to induce locomotor activity, dopamine release and neuronal survival by decreasing lipid peroxidation, additionally, the NPS receptor (NPSR) was detected in SN. Accumulating findings suggest that central NPS may ameliorate the parkinsonian symptoms, however, this has been explored incompletely due to the scarcity of experimental studies. Therefore, the present study was designed to test whether central NPS treatment exerts protective and/or alleviative effects on 6-OHDA-induced rat experimental PD model. Adult male Wistar rats received acute (alleviate; 10 nmol, icv) or chronic (protective; 1 nmol, icv for 7 days) NPS treatment following the central injection of 6-OHDA in medial forebrain bundle. Motor performance tests and in vivo nigral microdialysis were performed before and 7 days after the central 6-OHDA injection. The immunoreactivities for tyrosine hydroxylase (TH), NPSR, 4-hydroxynonenal (4-HNE) and c-Fos were detected by immunohistochemistry in frozen SN sections. Our double immunofluorescence labeling studies demonstrated that NPSR is present in the nigral TH-positive neurons. Central NPS injection caused a remarkable c-Fos expression in SN; whereas, no change was observed following vehicle injection. In both chronic and acute treatment groups, the 6-OHDA-induced motor dysfunction and impaired nigral dopamine release were improved significantly. However, only chronic, but not acute treatment restored the loss of nigral TH-positive cells, while decreasing the 4-HNE immunoreactivity in SN. Our findings demonstrate that central NPS treatment not only exerts a neuroprotective action on nigral dopaminergic neurons, it also improves the striatal dopaminergic signaling. Therefore, the present study candidates the NPSR agonism as a novel therapeutic approach for PD treatment.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Osman Sinen
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Ayşe Özkan
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Mutay Aydın Aslan
- Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey
| | - Aysel Ağar
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
10
|
Kerr F, Bjedov I, Sofola-Adesakin O. Molecular Mechanisms of Lithium Action: Switching the Light on Multiple Targets for Dementia Using Animal Models. Front Mol Neurosci 2018; 11:297. [PMID: 30210290 PMCID: PMC6121012 DOI: 10.3389/fnmol.2018.00297] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
Lithium has long been used for the treatment of psychiatric disorders, due to its robust beneficial effect as a mood stabilizing drug. Lithium’s effectiveness for improving neurological function is therefore well-described, stimulating the investigation of its potential use in several neurodegenerative conditions including Alzheimer’s (AD), Parkinson’s (PD) and Huntington’s (HD) diseases. A narrow therapeutic window for these effects, however, has led to concerted efforts to understand the molecular mechanisms of lithium action in the brain, in order to develop more selective treatments that harness its neuroprotective potential whilst limiting contraindications. Animal models have proven pivotal in these studies, with lithium displaying advantageous effects on behavior across species, including worms (C. elegans), zebrafish (Danio rerio), fruit flies (Drosophila melanogaster) and rodents. Due to their susceptibility to genetic manipulation, functional genomic analyses in these model organisms have provided evidence for the main molecular determinants of lithium action, including inhibition of inositol monophosphatase (IMPA) and glycogen synthase kinase-3 (GSK-3). Accumulating pre-clinical evidence has indeed provided a basis for research into the therapeutic use of lithium for the treatment of dementia, an area of medical priority due to its increasing global impact and lack of disease-modifying drugs. Although lithium has been extensively described to prevent AD-associated amyloid and tau pathologies, this review article will focus on generic mechanisms by which lithium preserves neuronal function and improves memory in animal models of dementia. Of these, evidence from worms, flies and mice points to GSK-3 as the most robust mediator of lithium’s neuro-protective effect, but it’s interaction with downstream pathways, including Wnt/β-catenin, CREB/brain-derived neurotrophic factor (BDNF), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and toll-like receptor 4 (TLR4)/nuclear factor-κB (NFκB), have identified multiple targets for development of drugs which harness lithium’s neurogenic, cytoprotective, synaptic maintenance, anti-oxidant, anti-inflammatory and protein homeostasis properties, in addition to more potent and selective GSK-3 inhibitors. Lithium, therefore, has advantages as a multi-functional therapy to combat the complex molecular pathology of dementia. Animal studies will be vital, however, for comparative analyses to determine which of these defense mechanisms are most required to slow-down cognitive decline in dementia, and whether combination therapies can synergize systems to exploit lithium’s neuro-protective power while avoiding deleterious toxicity.
Collapse
Affiliation(s)
- Fiona Kerr
- Department of Life Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Ivana Bjedov
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Oyinkan Sofola-Adesakin
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
11
|
Gawlik-Kotelnicka O, Mielicki W, Rabe-Jabłońska J, Strzelecki D. Impact of lithium alone or in combination with haloperidol on selected oxidative stress parameters in human plasma in vitro. Redox Rep 2016; 21:45-49. [PMID: 26193071 DOI: 10.1179/1351000215y.0000000030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Lithium may inhibit lipid peroxidation (LP) and protein oxidation, stimulate cell proliferation, increase neurogenesis, and delay cell death. Oxidative stress (OxS) is a state of imbalance between oxidative processes and antioxidant defenses, which may play an important role in the pathophysiology and disease course of bipolar disorder (BD). The aim of this study was to estimate the influence of lithium, administered alone or in combination with haloperidol, on selected OxS parameters in human plasma in vitro. METHODS The OxS parameters evaluated were thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC). Plasma samples from healthy volunteers were incubated with drug concentrations used in psychiatry. RESULTS Incubation of plasma with lithium or haloperidol alone did not produce statistically significant changes of TBARS levels in comparison with control samples. However, significantly higher TBARS levels were observed in samples incubated with haloperidol plus lithium compared to control, haloperidol, or lithium samples. The TAC value did not differ between samples. CONCLUSIONS Lithium does not influence OxS parameters in human plasma in vitro during short-term observation when applied at concentrations used in psychiatry. However, lithium increased the TBARS level in the samples when given in combination with haloperidol, which may be one of the mechanisms behind the neurotoxicity associated with combined lithium and haloperidol administration.
Collapse
Affiliation(s)
- Oliwia Gawlik-Kotelnicka
- a Department of Affective and Psychotic Disorders , Medical University of Lodz , Czechoslowacka 8/10, 92-216 Lodz , Poland
| | - Wojciech Mielicki
- b Department of Pharmaceutical Biochemistry , Medical University of Lodz , Muszynskiego 1, 90-151 Lodz , Poland
| | - Jolanta Rabe-Jabłońska
- a Department of Affective and Psychotic Disorders , Medical University of Lodz , Czechoslowacka 8/10, 92-216 Lodz , Poland
| | - Dominik Strzelecki
- a Department of Affective and Psychotic Disorders , Medical University of Lodz , Czechoslowacka 8/10, 92-216 Lodz , Poland
| |
Collapse
|
12
|
Central adenosine A1 and A2A receptors mediate the antinociceptive effects of neuropeptide S in the mouse formalin test. Life Sci 2014; 120:8-12. [PMID: 25447449 DOI: 10.1016/j.lfs.2014.10.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 11/21/2022]
Abstract
AIMS The present study aimed to investigate the intraplantar (ipl) and central (icv) effects of neuropeptide S (NPS) in the formalin test and to evaluate the role of adenosine receptors, mainly A1 and A2A, in mediating such effects. MAIN METHODS The ipl injection of formalin was used to assess the nociceptive activity. Moreover, by pretreating mice with non-selective and selective antagonists of adenosine receptors, the effects of icv NPS on formalin-induced ongoing nociception were assessed. KEY FINDINGS Morphine-induced antinociceptive effects were observed during phases 1 and 2 of the test, while indomethacin was active only at the later nociceptive phase. The ipl injection of NPS (alone or combined with formalin) did not modify the nociceptive response. However, icv NPS significantly reduced formalin-induced nociception during both phases. Caffeine (3 mg/kg, ip), a non-selective adenosine receptor antagonist, prevented NPS-induced antinociceptive effects. Similar to caffeine, icv ZM241385 (0.01 nmol), an A2A receptor antagonist, prevented the antinociceptive effects of NPS. Moreover, icv DPCPX (0.001 nmol), an A1 receptor antagonist, blocked the effects of NPS only during phase 1. SIGNIFICANCE The above findings suggest that: (i) NPS evokes central antinociceptive effects by activating both A1 and A2A receptors during phase 1, but (ii) only the adenosine A2A receptor during phase 2 of the formalin test.
Collapse
|
13
|
Abulseoud OA, Camsari UM, Ruby CL, Mohamed K, Abdel Gawad NM, Kasasbeh A, Yüksel MY, Choi DS. Lateral hypothalamic kindling induces manic-like behavior in rats: a novel animal model. Int J Bipolar Disord 2014; 2:7. [PMID: 26092394 PMCID: PMC4452639 DOI: 10.1186/s40345-014-0007-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/30/2014] [Indexed: 01/09/2023] Open
Abstract
The lateral hypothalamus integrates critical physiological functions such as the sleep-wake cycle, energy expenditure, and sexual behaviors. These functions are severely dysregulated during mania. In this study, we successfully induced manic-like behavioral phenotypes in adult, male Wistar rats through bilateral lateral hypothalamic area kindling (LHK). To test the validity of the model, we studied the effect of standard antimanic medications lithium (47.5 mg/kg) or valproic acid (200 mg/kg) twice/day for 15 days in attenuating manic-like behaviors in the LHK rat. Compared with pre-kindling behaviors, LHK rats displayed significantly increased sexual self-stimulation (P = 0.034), excessive rearing (P = 0.0005), feeding (P = 0.013), and grooming (P = 0.007) during the kindling interval. LHK rats also drank more alcohol during the mania-induction days compared with baseline ethanol consumption levels (P = 0.01). Moreover, LHK rat exhibited increased total locomotor activity (P = 0.02) with reduced rest interval (P < 0.001) during the mania induction and post-mania days compared with baseline activity levels and rest intervals. Chronic administration of lithium or valproic acid significantly attenuated manic-like behaviors in the LHK rat model. Given the behavioral phenotype and the response to standard antimanic medications, the LHK rats may provide a model for studying manic psychopathology in humans.
Collapse
Affiliation(s)
- Osama A Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA,
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Didonet JJ, Cavalcante JC, Souza LDS, Costa MSMO, André E, Soares-Rachetti VDP, Guerrini R, Calo' G, Gavioli EC. Neuropeptide S counteracts 6-OHDA-induced motor deficits in mice. Behav Brain Res 2014; 266:29-36. [PMID: 24613977 DOI: 10.1016/j.bbr.2014.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Neuropeptide S (NPS) is a 20-aminoacid peptide that selectively activates a G-protein coupled receptor named NPSR. Preclinical studies have shown that NPSR activation promotes anxiolysis, hyperlocomotion, arousal and weakfullness. Previous findings suggest that dopamine neurotransmission plays a role in the actions of NPS. Based on the close relationship between dopamine and Parkinson disease (PD) and on the evidence that NPSR are expressed on brain dopaminergic nuclei, the present study investigated the effects of NPS in motor deficits induced by intracerebroventricular (icv) administration of the dopaminergic neurotoxin 6-OHDA in the mouse rotarod test. 6-OHDA injection evoked motor deficits and significantly reduced tyrosine hidroxylase (TH)-positive cells in the substantia nigra (SN) and ventral tegmental area. However, a positive correlation was found only between the motor performance of 6-OHDA-injected mice and the number of TH-positive cells in SN. The systemic administration of l-DOPA+benserazide (25+6.25 mg/kg) counteracted 6-OHDA-induced motor deficits in mice. Similar to L-DOPA, the icv injection of NPS (0.1 and 1 nmol) reversed motor deficits evoked by 6-OHDA. In conclusion, NPS attenuated 6-OHDA-induced motor impairments in mice assessed in the rota-rod test. We discussed the beneficial actions of NPS based on a putative facilitation of dopaminergic neurotransmission in the brain. Finally, these findings candidate NPSR agonists as a potential innovative treatment for PD.
Collapse
Affiliation(s)
- Julia J Didonet
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Judney C Cavalcante
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Lisiane de S Souza
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Miriam S M O Costa
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Eunice André
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Vanessa de P Soares-Rachetti
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Remo Guerrini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Calo'
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Elaine C Gavioli
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
15
|
Ramos SF, Mendonça BP, Leffa DD, Pacheco R, Damiani AP, Hainzenreder G, Petronilho F, Dal-Pizzol F, Guerrini R, Calo' G, Gavioli EC, Boeck CR, de Andrade VM. Effects of neuropeptide S on seizures and oxidative damage induced by pentylenetetrazole in mice. Pharmacol Biochem Behav 2012; 103:197-203. [PMID: 22960046 DOI: 10.1016/j.pbb.2012.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 08/29/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
Abstract
Neuropeptide S (NPS) and its receptor were recently discovered in the central nervous system. In rodents, NPS promotes hyperlocomotion, wakefulness, anxiolysis, anorexia, and analgesia and enhances memory when injected intracerebroventricularly (i.c.v.). Herein, NPS at different doses (0.01, 0.1 and 1nmol) was i.c.v. administered in mice challenged with pentylenetetrazole (PTZ; 60mg/kg) repeatedly injected. Aiming to assess behavioral alterations and oxidative damage to macromolecules in the brain, NPS was injected 5min prior to the last dose of PTZ. The administration of NPS only at 1nmol increased the duration of seizures evoked by PTZ, without modifying frequency and latency of seizures. Biochemical analysis revealed that NPS attenuated PTZ-induced oxidative damage to proteins and lipids in the hippocampus and cerebral cortex. In contrast, the administration of NPS to PTZ-treated mice increased DNA damage in the hippocampus, but not cerebral cortex. In conclusion, this is the first evidence of the potential proconvulsive effects of NPS in mice. The protective effects of NPS against lipid and protein oxidative damage in the mouse hippocampus and cerebral cortex evoked by PTZ-induced seizures are quite unexpected. The present findings were discussed analyzing the paradoxical effects of NPS: facilitation of convulsive behavior and protection against oxidative damage to lipids and proteins.
Collapse
Affiliation(s)
- Saulo Fábio Ramos
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense-UNESC, Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Involvement of the glycogen synthase kinase-3 signaling pathway in TBI pathology and neurocognitive outcome. PLoS One 2011; 6:e24648. [PMID: 21935433 PMCID: PMC3174188 DOI: 10.1371/journal.pone.0024648] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 08/17/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) sets in motion cascades of biochemical changes that result in delayed cell death and altered neuronal architecture. Studies have demonstrated that inhibition of glycogen synthase kinase-3 (GSK-3) effectively reduces apoptosis following a number of stimuli. The Wnt family of proteins, and growth factors are two major factors that regulate GSK-3 activity. In the absence of stimuli, GSK-3 is constitutively active and is complexed with Axin, adenomatous polyposis coli (APC), and casein kinase Iα (CK1α) and phosphorylates ß-Catenin leading to its degradation. Binding of Wnt to Frizzled receptors causes the translocation of GSK-3 to the plasma membrane, where it phosphorylates and inactivates the Frizzled co-receptor lipoprotein-related protein 6 (LRP6). Furthermore, the translocation of GSK-3 reduces ß-Catenin phosphorylation and degradation, leading to ß-Catenin accumulation and gene expression. Growth factors activate Akt, which in turn inhibits GSK-3 activity by direct phosphorylation, leading to a reduction in apoptosis. METHODOLOGY/PRINCIPAL FINDINGS Using a rodent model, we found that TBI caused a rapid, but transient, increase in LRP6 phosphorylation that is followed by a modest decrease in ß-Catenin phosphorylation. Phospho-GSK-3β immunoreactivity was found to increase three days post injury, a time point at which increased Akt activity following TBI has been observed. Lithium influences several neurochemical cascades, including inhibiting GSK-3. When the efficacy of daily lithium was assessed, reduced hippocampal neuronal cell loss and learning and memory improvements were observed. These influences were partially mimicked by administration of the GSK-3-selective inhibitor SB-216763, as this drug resulted in improved motor function, but only a modest improvement in memory retention and no overt neuroprotection. CONCLUSION/SIGNIFICANCE Taken together, our findings suggest that selective inhibition of GSK-3 may offer partial cognitive improvement. As a broad spectrum inhibitor of GSK-3, lithium offers neuroprotection and robust cognitive improvement, supporting its clinical testing as a treatment for TBI.
Collapse
|
17
|
Role of the ecto-nucleotidases in the cooperative effect of adenosine and neuropeptide-S on locomotor activity in mice. Pharmacol Biochem Behav 2011; 99:726-30. [PMID: 21741987 DOI: 10.1016/j.pbb.2011.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 06/17/2011] [Accepted: 06/24/2011] [Indexed: 02/08/2023]
Abstract
Activation of adenosine receptors modifies the action of classic neurotransmitters (i.e. dopamine, glutamate and acetylcholine) and other neuromodulators, like vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and neuropeptide S (NPS). Similarly to adenosine, NPS is involved in the regulation of stimulus and response to fear and arousal. Thus, the present study investigates the effects of NPS on locomotor activity in mice treated with or without α,β-methylene adenosine 5'-diphosphate (AOPCP), the inhibitor of ecto-5'-nucleotidase. Additionally, we evaluate the activity of ecto-5'-nucleotidase in brain slices of mice treated with or without NPS. Male adult CF-1 mice received i.c.v. NPS as 0.1 nmol injection with or without pre-treatment with 1 nmol α,β-methylene adenosine 5'-diphosphate (AOPCP), the selective inhibitor of ecto-5'-nucleotidase, to evaluate locomotor activity. In another set of experiments, mice received i.c.v. infusion of 0.1 nmol NPS to assay enzymatic activity in brain slices. The results demonstrated that the pre-treatment with AOPCP, which was inactive per se, prevented NPS-induced hyperlocomotion in mice. The dose of 0.1 nmol NPS was efficient to induce hyperlocomotion in animals during the observation period in the activity cage. Regarding enzymatic activity, i.c.v. NPS injection did not induce any significant alterations in ATP and AMP hydrolysis in striatum and hippocampus brain slices of mice. The present study shows that the hyperlocomotor effect of NPS depends on the ecto-5'-nucleotidase activity.
Collapse
|
18
|
Peng YL, Zhang JN, Chang M, Li W, Han RW, Wang R. Effects of central neuropeptide S in the mouse formalin test. Peptides 2010; 31:1878-83. [PMID: 20603169 DOI: 10.1016/j.peptides.2010.06.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/24/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
Neuropeptide S (NPS), a recently discovered bioactive peptide, was reported to regulate arousal, anxiety, locomotion, feeding behaviors, memory, and drug addiction. NPS receptor (NPSR) mRNA was found in several brain regions related to descending control system of pain, including the periaqueductal gray (PAG). Our previous study had shown that NPS could produce antinociception in mice. The present study was designed to evaluate whether NPS may produce antinociceptive effect observed in the mouse formalin test, a model of inflammatory pain. NPS (0.1-100 pmol) administrated intracerebroventricularly (i.c.v.) dose-dependently attenuated both first-phase and second-phase nociceptive behaviors induced by paw formalin injection. NPS (10 pmol, i.c.v.)-elicited antinociceptive effect was counteracted by co-injection with 1000 and 10,000 pmol [D-Val(5)]NPS, which alone induced neither hyperalgesia nor antinociception. The antinociception induced by NPS (10 pmol, i.c.v.) was not affected by naloxone (i.p., 10 mg/kg) and naloxone alone had no effect in the formalin test. In addition, compared to the saline (i.c.v.) treated group, NPS (10 pmol, i.c.v.) treated group increased c-Fos protein expression in nearly all subdivisions of the PAG in the formalin-injected mice. The above results revealed that NPS could produce antinociception in the formalin test through NPSR, which may be involved in the activation of PAG, suggesting that NPS-NPSR system may be a potential target for developing new analgesic drugs.
Collapse
Affiliation(s)
- Ya-Li Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, State Key Laboratory of Applied Organic Chemistry, and Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | | | |
Collapse
|
19
|
Delfino KR, Southey BR, Sweedler JV, Rodriguez-Zas SL. Genome-wide census and expression profiling of chicken neuropeptide and prohormone convertase genes. Neuropeptides 2010; 44:31-44. [PMID: 20006904 PMCID: PMC2814002 DOI: 10.1016/j.npep.2009.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 01/10/2023]
Abstract
Neuropeptides regulate cell-cell signaling and influence many biological processes in vertebrates, including development, growth, and reproduction. The complex processing of neuropeptides from prohormone proteins by prohormone convertases, combined with the evolutionary distance between the chicken and mammalian species that have experienced extensive neuropeptide research, has led to the empirical confirmation of only 18 chicken prohormone proteins. To expand our knowledge of the neuropeptide and prohormone convertase gene complement, we performed an exhaustive survey of the chicken genomic, EST, and proteomic databases using a list of 95 neuropeptide and 7 prohormone convertase genes known in other species. Analysis of the EST resources and 22 microarray studies offered a comprehensive portrait of gene expression across multiple conditions. Five neuropeptide genes (apelin, cocaine-and amphetamine-regulated transcript protein, insulin-like 5, neuropeptide S, and neuropeptide B) previously unknown in chicken were identified and 62 genes were confirmed. Although most neuropeptide gene families known in human are present in chicken, there are several gene not present in the chicken. Conversely, several chicken neuropeptide genes are absent from mammalian species, including C-RF amide, c-type natriuretic peptide 1 precursor, and renal natriuretic peptide. The prohormone convertases, with one exception, were found in the chicken genome. Bioinformatic models used to predict prohormone cleavages confirm that the processing of prohormone proteins into neuropeptides is similar between species. Neuropeptide genes are most frequently expressed in the brain and head, followed by the ovary and small intestine. Microarray analyses revealed that the expression of adrenomedullin, chromogranin-A, augurin, neuromedin-U, platelet-derived growth factor A and D, proenkephalin, relaxin-3, prepronociceptin, and insulin-like growth factor I was most susceptible (P-value<0.005) to changes in developmental stage, gender, and genetic line among other conditions studied. Our complete survey and characterization facilitates understanding of neuropeptides genes in the chicken, an animal of importance to biomedical and agricultural research.
Collapse
Affiliation(s)
- K. R. Delfino
- Department of Chemistry, University of Illinois, Urbana IL, USA
- Department of Animal Sciences, University of Illinois, Urbana IL, USA
| | - B. R. Southey
- Department of Chemistry, University of Illinois, Urbana IL, USA
- Department of Animal Sciences, University of Illinois, Urbana IL, USA
| | - J. V. Sweedler
- Department of Chemistry, University of Illinois, Urbana IL, USA
| | - S. L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois, Urbana IL, USA
- Corresponding author: , 1207 W Gregory Dr, Urbana, IL 61801, Phone 217-333-8810 Fax: 217-333-8286
| |
Collapse
|
20
|
Flaisher-Grinberg S, Einat H. Strain-specific battery of tests for domains of mania: effects of valproate, lithium and imipramine. Front Psychiatry 2010; 1:10. [PMID: 21423422 PMCID: PMC3059633 DOI: 10.3389/fpsyt.2010.00010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/29/2010] [Indexed: 01/11/2023] Open
Abstract
The lack of efficient animal models for bipolar disorder (BPD), especially for the manic pole, is a major factor hindering the research of its pathophysiology and the development of improved drug treatments. The present study was designed to identify an appropriate mouse strain for modeling some behavioral domains of mania and to evaluate the effects of drugs using this strain. The study compared the behavior of four strains: Black Swiss, C57Bl/6, CBA/J and A/J mice in a battery of tests that included spontaneous activity; sweet solution preference; light/dark box; resident-intruder; forced-swim and amphetamine-induced hyperactivity. Based on the 'manic-like' behavior demonstrated by the Black Swiss strain, the study evaluated the effects of the mood stabilizers valproate and lithium and of the antidepressant imipramine in the same tests using this strain. Results indicated that lithium and valproate attenuate the 'manic-like' behavior of Black Swiss mice whereas imipramine had no effects. These findings suggest that Black Swiss mice might be a good choice for modeling several domains of mania and distinguishing the effects of drugs on these specific domains. However, the relevance of the behavioral phenotype of Black Swiss mice to the biology of BPD is unknown at this time and future studies will investigate molecular differences between Black Swiss mice and other strains and asess the interaction between strain and mood stabilizing treatment.
Collapse
|