1
|
Niwczyk O, Grymowicz M, Szczęsnowicz A, Hajbos M, Kostrzak A, Budzik M, Maciejewska-Jeske M, Bala G, Smolarczyk R, Męczekalski B. Bones and Hormones: Interaction between Hormones of the Hypothalamus, Pituitary, Adipose Tissue and Bone. Int J Mol Sci 2023; 24:ijms24076840. [PMID: 37047811 PMCID: PMC10094866 DOI: 10.3390/ijms24076840] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
The bony skeleton, as a structural foundation for the human body, is essential in providing mechanical function and movement. The human skeleton is a highly specialized and dynamic organ that undergoes continuous remodeling as it adapts to the demands of its environment. Advances in research over the last decade have shone light on the various hormones that influence this process, modulating the metabolism and structural integrity of bone. More recently, novel and non-traditional functions of hypothalamic, pituitary, and adipose hormones and their effects on bone homeostasis have been proposed. This review highlights recent work on physiological bone remodeling and discusses our knowledge, as it currently stands, on the systemic interplay of factors regulating this interaction. In this review, we provide a summary of the literature on the relationship between bone physiology and hormones including kisspeptin, neuropeptide Y, follicle-stimulating hormone (FSH), prolactin (PRL), adrenocorticotropic hormone (ACTH), thyroid-stimulating hormone (TSH), growth hormone (GH), leptin, and adiponectin. The discovery and understanding of this new functionality unveils an entirely new layer of physiologic circuitry.
Collapse
Affiliation(s)
- Olga Niwczyk
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Monika Grymowicz
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Aleksandra Szczęsnowicz
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Marta Hajbos
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Anna Kostrzak
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Michał Budzik
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
- Department of Cancer Prevention, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Marzena Maciejewska-Jeske
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Gregory Bala
- UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Błażej Męczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| |
Collapse
|
2
|
Enhancement of immune maturation in suckling rats by leptin and adiponectin supplementation. Sci Rep 2019; 9:1786. [PMID: 30742004 PMCID: PMC6370875 DOI: 10.1038/s41598-018-38418-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Leptin and adiponectin, adipokines present in breast milk, have shown immunomodulatory properties. The current study aimed to ascertain whether a nutritional supplementation with leptin or adiponectin in neonatal rats was able to influence the maturation of the systemic immune response in early life. To achieve this, suckling Wistar rats were supplemented with either leptin (0.7 μg/kg/day) or adiponectin (35 μg/kg/day) during the whole suckling period. Plasmatic immunoglobulins were quantified, and spleen lymphocyte composition and their ability to proliferate and release cytokines were evaluated during (day 14) and at the end (day 21) of the suckling period. Rats fed with either adipokine showed higher plasma IgM and IgG1 concentrations and adiponectin supplementation also increased IgG2a at both studied days (P < 0.05). With regard to the lymphocyte composition, both adipokine supplementations increased T cell proportion and both CD4+ and CD8+ T cell subsets after two weeks of supplementation (P < 0.05). Moreover, only leptin administration increased NK and NKT cell proportions at the end of the suckling period. Finally, both adipokines influenced the cytokine secretion pattern by splenocytes. In conclusion, these results suggest that leptin and adiponectin play a role in the maturation of the systemic immune response during the suckling period.
Collapse
|
3
|
Francisco V, Pino J, Campos-Cabaleiro V, Ruiz-Fernández C, Mera A, Gonzalez-Gay MA, Gómez R, Gualillo O. Obesity, Fat Mass and Immune System: Role for Leptin. Front Physiol 2018; 9:640. [PMID: 29910742 PMCID: PMC5992476 DOI: 10.3389/fphys.2018.00640] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
Obesity is an epidemic disease characterized by chronic low-grade inflammation associated with a dysfunctional fat mass. Adipose tissue is now considered an extremely active endocrine organ that secretes cytokine-like hormones, called adipokines, either pro- or anti-inflammatory factors bridging metabolism to the immune system. Leptin is historically one of most relevant adipokines, with important physiological roles in the central control of energy metabolism and in the regulation of metabolism-immune system interplay, being a cornerstone of the emerging field of immunometabolism. Indeed, leptin receptor is expressed throughout the immune system and leptin has been shown to regulate both innate and adaptive immune responses. This review discusses the latest data regarding the role of leptin as a mediator of immune system and metabolism, with particular emphasis on its effects on obesity-associated metabolic disorders and autoimmune and/or inflammatory rheumatic diseases.
Collapse
Affiliation(s)
- Vera Francisco
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Jesús Pino
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Victor Campos-Cabaleiro
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Clara Ruiz-Fernández
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Antonio Mera
- Servizo Galego de Saude, Division of Rheumatology, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Miguel A Gonzalez-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Oreste Gualillo
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Takanashi M, Taira Y, Okazaki S, Takase S, Kimura T, Li CC, Xu PF, Noda A, Sakata I, Kumagai H, Ikeda Y, Iizuka Y, Yahagi N, Shimano H, Osuga JI, Ishibashi S, Kadowaki T, Okazaki H. Role of Hormone-sensitive Lipase in Leptin-Promoted Fat Loss and Glucose Lowering. J Atheroscler Thromb 2017; 24:1105-1116. [PMID: 28413180 PMCID: PMC5684476 DOI: 10.5551/jat.39552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Myriad biological effects of leptin may lead to broad therapeutic applications for various metabolic diseases, including diabetes and its complications; however, in contrast to its anorexic effect, the molecular mechanisms underlying adipopenic and glucose-lowering effects of leptin have not been fully understood. Here we aim to clarify the role of hormone-sensitive lipase (HSL) in leptin's action. Methods: Wild-type (WT) and HSL-deficient (HSLKO) mice were made hyperleptinemic by two commonly-used methods: adenovirus-mediated overexpression of leptin and continuous subcutaneous infusion of leptin by osmotic pumps. The amount of food intake, body weights, organ weights, and parameters of glucose and lipid metabolism were measured. Results: Hyperleptinemia equally suppressed the food intake in WT and HSLKO mice. On the other hand, leptin-mediated fat loss and glucose-lowering were significantly blunted in the absence of HSL when leptin was overexpressed by recombinant adenovirus carrying leptin. By osmotic pumps, the fat-losing and glucose-lowering effects of leptin were milder due to lower levels of hyperleptinemia; although the difference between WT and HSLKO mice did not reach statistical significance, HSLKO mice had a tendency to retain more fat than WT mice in the face of hyperleptinemia. Conclusions: We clarify for the first time the role of HSL in leptin's effect using a genetic model: leptin-promoted fat loss and glucose-lowering are at least in part mediated via HSL-mediated lipolysis. Further studies to define the pathophysiological role of adipocyte lipases in leptin action may lead to a new therapeutic approach to circumvent leptin resistance.
Collapse
Affiliation(s)
- Mikio Takanashi
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Yoshino Taira
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Sachiko Okazaki
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Satoru Takase
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Takeshi Kimura
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Cheng Cheng Li
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Peng Fei Xu
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Akari Noda
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University
| | - Hidetoshi Kumagai
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Yuichi Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Yoko Iizuka
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Naoya Yahagi
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Hitoshi Shimano
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Jun-Ichi Osuga
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University
| | - Takashi Kadowaki
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Hiroaki Okazaki
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
5
|
Abstract
The molecular mechanisms of body weight and body composition regulation have long been a research focus in the hopes of identifying tractable pathways for therapeutic interventions for obesity and diabetes, as well as related disorders such as nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) and polycystic ovary syndrome. The metabolic consequences of obesity and type 2 diabetes (T2D) were already a focus of the world's attention in 1994 when the discovery of leptin generated enormous enthusiasm for the potential to treat common (non-monogenic) obesity and its associated metabolic disorders with an adipokine hormone that regulated body weight as well as lipid and carbohydrate metabolism. Recombinant human leptin and many leptin analogs were developed and studied in animals and a few in human clinical trials. Overall, the opportunity for leptin as a therapeutic in unselected patients with obesity and T2D has not been substantiated in clinical trials. The potential for combination therapy suggested by clinical studies with leptin and pramlintide supports a path toward obesity treatment through the leptin pathway. The profound metabolic benefits seen with leptin in numerous forms of leptin deficiency, including lipodystrophy, provide hope for the opportunity to identify selected subsets of patients who could benefit from leptin treatment. This review provides a comprehensive overview of the clinical data on a subset of the potential utilities of leptin, specifically as a therapeutic for general or common obesity and its metabolic consequences including T2D and NAFLD/NASH.
Collapse
Affiliation(s)
- Alex M DePaoli
- NGM BiopharmaceuticalsDevelopment, 630 Gateway Boulevard, South San Francisco, California 94080, USA
| |
Collapse
|
6
|
Cummings BP. Leptin therapy in type 2 diabetes. Diabetes Obes Metab 2013; 15:607-12. [PMID: 23216672 DOI: 10.1111/dom.12048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 02/06/2023]
Abstract
There is a pressing need for new effective therapeutic strategies for addressing the epidemic of type 2 diabetes. Leptin has been shown to reduce hyperglycaemia in rodent models of type 1 diabetes and has recently been shown to normalize fasting plasma glucose concentrations in a rodent model of polygenic obesity and type 2 diabetes. Overall, these findings suggest that leptin may be an effective therapeutic option for both type 1 and type 2 diabetes. However, short-term human clinical studies in overweight and obese patients with recently diagnosed type 2 diabetes have reported minimal efficacy of leptin administration to lower blood glucose levels. Herein, the role of leptin in the maintenance of glucose homeostasis and the potential use of leptin in the treatment of type 2 diabetes are discussed.
Collapse
Affiliation(s)
- B P Cummings
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Moon HS, Dalamaga M, Kim SY, Polyzos SA, Hamnvik OP, Magkos F, Paruthi J, Mantzoros CS. Leptin's role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr Rev 2013; 34:377-412. [PMID: 23475416 PMCID: PMC3660716 DOI: 10.1210/er.2012-1053] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Leptin is an adipocyte-secreted hormone that has been proposed to regulate energy homeostasis as well as metabolic, reproductive, neuroendocrine, and immune functions. In the context of open-label uncontrolled studies, leptin administration has demonstrated insulin-sensitizing effects in patients with congenital lipodystrophy associated with relative leptin deficiency. Leptin administration has also been shown to decrease central fat mass and improve insulin sensitivity and fasting insulin and glucose levels in HIV-infected patients with highly active antiretroviral therapy (HAART)-induced lipodystrophy, insulin resistance, and leptin deficiency. On the contrary, the effects of leptin treatment in leptin-replete or hyperleptinemic obese individuals with glucose intolerance and diabetes mellitus have been minimal or null, presumably due to leptin tolerance or resistance that impairs leptin action. Similarly, experimental evidence suggests a null or a possibly adverse role of leptin treatment in nonlipodystrophic patients with nonalcoholic fatty liver disease. In this review, we present a description of leptin biology and signaling; we summarize leptin's contribution to glucose metabolism in animals and humans in vitro, ex vivo, and in vivo; and we provide insights into the emerging clinical applications and therapeutic uses of leptin in humans with lipodystrophy and/or diabetes.
Collapse
Affiliation(s)
- Hyun-Seuk Moon
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Amitani M, Asakawa A, Amitani H, Inui A. The role of leptin in the control of insulin-glucose axis. Front Neurosci 2013; 7:51. [PMID: 23579596 PMCID: PMC3619125 DOI: 10.3389/fnins.2013.00051] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/18/2013] [Indexed: 12/21/2022] Open
Abstract
Obesity and diabetes mellitus are great public health concerns throughout the world because of their increasing incidence and prevalence. Leptin, the adipocyte hormone, is well known for its role in the regulation of food intake and energy expenditure. In addition to the regulation of appetite and satiety that recently has attracted much attentions, insight has also been gained into the critical role of leptin in the control of the insulin-glucose axis, peripheral glucose and insulin responsiveness. Since the discovery of leptin, leptin has been taken for its therapeutic potential to obesity and diabetes. Recently, the therapeutic effects of central leptin gene therapy have been reported in insulin-deficient diabetes in obesity animal models such as ob/ob mise, diet-induced obese mice, and insulin-deficient type 1 diabetes mice, and also in patients with inactivating mutations in the leptin gene. Herein, we review the role of leptin in regulating feeding behavior and glucose metabolism and also the therapeutic potential of leptin in obesity and diabetes mellitus.
Collapse
Affiliation(s)
- Marie Amitani
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima, Japan
| | | | | | | |
Collapse
|
9
|
Diabetes Mellitus: New Challenges and Innovative Therapies. NEW STRATEGIES TO ADVANCE PRE/DIABETES CARE: INTEGRATIVE APPROACH BY PPPM 2013; 3. [PMCID: PMC7120768 DOI: 10.1007/978-94-007-5971-8_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes is a common chronic disease affecting an estimated 285 million adults worldwide. The rising incidence of diabetes, metabolic syndrome, and subsequent vascular diseases is a major public health problem in industrialized countries. This chapter summarizes current pharmacological approaches to treat diabetes mellitus and focuses on novel therapies for diabetes mellitus that are under development. There is great potential for developing a new generation of therapeutics that offer better control of diabetes, its co-morbidities and its complications. Preclinical results are discussed for new approaches including AMPK activation, the FGF21 target, cell therapy approaches, adiponectin mimetics and novel insulin formulations. Gene-based therapies are among the most promising emerging alternatives to conventional treatments. Therapies based on gene silencing using vector systems to deliver interference RNA to cells (i.e. against VEGF in diabetic retinopathy) are also a promising therapeutic option for the treatment of several diabetic complications. In conclusion, treatment of diabetes faces now a new era that is characterized by a variety of innovative therapeutic approaches that will improve quality of life in the near future.
Collapse
|
10
|
Soliman AT, Yasin M, Kassem A. Leptin in pediatrics: A hormone from adipocyte that wheels several functions in children. Indian J Endocrinol Metab 2012; 16:S577-S587. [PMID: 23565493 PMCID: PMC3602987 DOI: 10.4103/2230-8210.105575] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The protein leptin, a pleiotropic hormone regulates appetite and energy balance of the body and plays important roles in controlling linear growth, pubertal development, cardiovascular function, and immunity. Recent findings in the understanding of the structure, functional roles, and clinical significance of conditions with increased and decreased leptin secretion are summarized. Balance between leptin and other hormones is significantly regulated by nutritional status. This balance influences many organ systems, including the brain, liver, and skeletal muscle, to mediate the essential adaptation process. The aim of this review is to summarize the possible physiological functions of leptin and its signaling pathways during childhood and adolescence including control of food intake, energy regulation, growth and puberty, and immunity. Moreover, its secretion and possible roles in the adaptation process during different disease states (obesity, malnutrition, eating disorders, delayed puberty, congenital heart diseases and hepatic disorders) are discussed. The clinical manifestations and the successful management of patients with genetic leptin deficiency and the application of leptin therapy in other diseases including lipodystrophy, states with severe insulin resistance, and diabetes mellitus are discussed.
Collapse
Affiliation(s)
- Ashraf T. Soliman
- Department of Pediatric Endocrinology, Clinical Chemistry, Hamad Medical Center (HMC), Doha-Qatar, HMC, Qatar
- College of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mohamed Yasin
- Department of Hematology, Clinical Chemistry, Hamad Medical Center (HMC), Doha-Qatar, HMC, Qatar
| | - Ahmed Kassem
- College of Medicine, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
11
|
Minokoshi Y, Toda C, Okamoto S. Regulatory role of leptin in glucose and lipid metabolism in skeletal muscle. Indian J Endocrinol Metab 2012; 16:S562-S568. [PMID: 23565491 PMCID: PMC3602985 DOI: 10.4103/2230-8210.105573] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Leptin is a hormone secreted by adipocytes that plays a pivotal role in regulation of food intake, energy expenditure, and neuroendocrine function. Several lines of evidences indicate that independent of the anorexic effect, leptin regulates glucose and lipid metabolism in peripheral tissues in rodents and humans. It has been shown that leptin improves the diabetes phenotype in lipodystrophic patients and rodents. Moreover, leptin suppresses the development of severe, progressive impairment of glucose metabolism in insulin-deficient diabetes in rodents. We found that leptin increases glucose uptake and fatty acid oxidation in skeletal muscle in rats and mice in vivo. Leptin increases glucose uptake in skeletal muscle via the hypothalamic-sympathetic nervous system axis and β-adrenergic mechanism, while leptin stimulates fatty acid oxidation in muscle via AMP-activated protein kinase (AMPK). Leptin-induced fatty acid oxidation results in the decrease of lipid accumulation in muscle, which can lead to functional impairments called as "lipotoxicity." Activation of AMPK occurs by direct action of leptin on muscle and through the medial hypothalamus-sympathetic nervous system and α-adrenergic mechanism. Thus, leptin plays an important role in the regulation of glucose and fatty acid metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi - 444-8787, Japan
| | - Chitoku Toda
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi - 444-8787, Japan
| | - Shiki Okamoto
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi - 444-8787, Japan
| |
Collapse
|
12
|
Abstract
Diabetes is a major worldwide problem. Despite some progress in the development of new antidiabetic agents, the ability to maintain tight glycemic control in order to prevent renal, retinal, and neuropathic complications of diabetes without adverse complications still remains a challenge. Recent evidence suggests, however, that in addition to playing a key role in the regulation of energy homeostasis, the adiposity hormone leptin also plays an important role in the control of glucose metabolism via its actions in the brain. This review examines the role of leptin action in the central nervous system and the mechanisms whereby leptin mediates its effects to regulate glucose metabolism. These findings suggest that defects or dysfunction in leptin signaling may contribute to the etiology of diabetes and raise the possibility that either leptin or downstream targets of leptin may have therapeutic potential for the treatment of diabetes.
Collapse
Affiliation(s)
- Thomas H. Meek
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gregory J. Morton
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Nakano M, Asakawa A, Inui A. Long-term correction of type 1 and 2 diabetes by central leptin gene therapy independent of effects on appetite and energy expenditure. Indian J Endocrinol Metab 2012; 16:S556-S561. [PMID: 23565490 PMCID: PMC3602984 DOI: 10.4103/2230-8210.105572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adipocyte-derived leptin is a hormone associated with the regulation of energy homeostasis, including glucose metabolism. Hyperleptinemia, induced by the consumption of energy-enriched diets, inhibits leptin transport across the blood-brain barrier, and thereby produces leptin insufficiency in the hypothalamus. As a result of sustained leptin insufficiency, the hypothalamic restraint on pancreatic insulin secretion is lost. Additionally, both glucose metabolism and energy expenditure are also diminished, and both type 1 and type 2 diabetes are induced. A replication-deficient recombinant adeno-associated virus vector engineered to encode the leptin gene (rAVV-LEP) has been used in models of diabetes as a novel therapeutic approach. After rAVV-LEP injection in ob/ob mice, hypothalamic leptin expression was increased, body weight was suppressed, and hyperinsulinemia was ameliorated. Additionally injection of rAVV-LEP into the hypothalamus suppressed the expression of orexigenic neuropeptide Y (NPY) and enhanced anorexigenic pro-opiomelanocortin (POMC) in the arcuate nucleus (ARC) in rats. It is proposed that central leptin gene therapy should be tested clinically to reduce the worldwide epidemic of obesity, diabetes, and shortened life span. In this article, the information has been assembled from published review articles on this topic.
Collapse
Affiliation(s)
- Masako Nakano
- Department of Social and Behavioral Medicine, Kagoshima University Graduate Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Asakawa
- Department of Social and Behavioral Medicine, Kagoshima University Graduate Medical and Dental Sciences, Kagoshima, Japan
| | - Akio Inui
- Department of Social and Behavioral Medicine, Kagoshima University Graduate Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
14
|
Paz-Filho G, Mastronardi C, Wong ML, Licinio J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J Endocrinol Metab 2012; 16:S549-S555. [PMID: 23565489 PMCID: PMC3602983 DOI: 10.4103/2230-8210.105571] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glucose homeostasis is closely regulated not only by insulin, but also by leptin. Both hormones act centrally, regulating food intake and adiposity in humans. Leptin has several effects on the glucose-insulin homeostasis, some of which are independent of body weight and adiposity. Those effects of leptin are determined centrally in the hypothalamus and peripherally in the pancreas, muscles and liver. Leptin has beneficial effects on the glucose-insulin metabolism, by decreasing glycemia, insulinemia and insulin resistance. The understanding of the effects of leptin on the glucose-insulin homeostasis will lead to the development of leptin-based therapies against diabetes and other insulin resistance syndromes. In these review, we summarize the interactions between leptin and insulin, and their effects on the glucose metabolism.
Collapse
Affiliation(s)
- Gilberto Paz-Filho
- Department of Translational Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Claudio Mastronardi
- Department of Translational Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ma-Li Wong
- Department of Translational Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Julio Licinio
- Department of Translational Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
15
|
Affiliation(s)
- Satya P. Kalra
- Department of Neuroscience and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| |
Collapse
|
16
|
Burgos-Ramos E, Canelles S, Perianes-Cachero A, Arilla-Ferreiro E, Argente J, Barrios V. Adipose tissue promotes a serum cytokine profile related to lower insulin sensitivity after chronic central leptin infusion. PLoS One 2012; 7:e46893. [PMID: 23056516 PMCID: PMC3462753 DOI: 10.1371/journal.pone.0046893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/10/2012] [Indexed: 12/13/2022] Open
Abstract
Obesity is an inflammatory state characterized by an augment in circulating inflammatory factors. Leptin may modulate the synthesis of these factors by white adipose tissue decreasing insulin sensitivity. We have examined the effect of chronic central administration of leptin on circulating levels of cytokines and the possible relationship with cytokine expression and protein content as well as with leptin and insulin signaling in subcutaneous and visceral adipose tissues. In addition, we analyzed the possible correlation between circulating levels of cytokines and peripheral insulin resistance. We studied 18 male Wistar rats divided into controls (C), those treated icv for 14 days with a daily dose of 12 μg of leptin (L) and a pair-fed group (PF) that received the same food amount consumed by the leptin group. Serum leptin and insulin were measured by ELISA, mRNA levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-4, IL-6, IL-10 and tumor necrosis factor-α (TNF-α) by real time PCR and serum and adipose tissue levels of these cytokines by multiplexed bead immunoassay. Serum leptin, IL-2, IL-4, IFN-γ and HOMA-IR were increased in L and TNF-α was decreased in PF and L. Serum leptin and IL-2 levels correlate positively with HOMA-IR index and negatively with serum glucose levels during an ip insulin tolerance test. In L, an increase in mRNA levels of IL-2 was found in both adipose depots and IFN-γ only in visceral tissue. Activation of leptin signaling was increased and insulin signaling decreased in subcutaneous fat of L. In conclusion, leptin mediates the production of inflammatory cytokines by adipose tissue independent of its effects on food intake, decreasing insulin sensitivity.
Collapse
Affiliation(s)
- Emma Burgos-Ramos
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa and Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa and Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Arancha Perianes-Cachero
- Grupo de Neurobioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Eduardo Arilla-Ferreiro
- Grupo de Neurobioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa and Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa and Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
17
|
Ueda M, Ashida H. Green tea prevents obesity by increasing expression of insulin-like growth factor binding protein-1 in adipose tissue of high-fat diet-fed mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8917-8923. [PMID: 22416799 DOI: 10.1021/jf2053788] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
It is known that green tea has the ability to prevent obesity, but the underlying molecular mechanism is not fully understood to date. A preventive mechanism of green tea on obesity in C57BL/6 mice fed a high-fat (HF) diet was investigated by evaluating the expression levels of obesity-related proteins in mesenteric white adipose tissue by using protein array. An increase in the expression level of insulin-like growth factor binding protein (IGFBP)-1 by green tea was found in the white adipose tissues of both control and HF diet-fed mice by protein array and confirmed by Western blot. Moreover, the expression level was negatively correlated with adipose tissue weight. In 3T3-L1 adipocytes, treatment with green tea and its major polyphenol, (-)-epigallocatechin gallate, induced the expression of IGFBP-1 in a dose-dependent manner by Western blot. In conclusion, IGFBP-1 in adipose tissue is a novel molecule target for the prevention of obesity by green tea.
Collapse
Affiliation(s)
- Manabu Ueda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | | |
Collapse
|
18
|
De Solís AJ, Fernández-Agulló T, García-SanFrutos M, Pérez-Pardo P, Bogónez E, Andrés A, Ros M, Carrascosa JM. Impairment of skeletal muscle insulin action with aging in Wistar rats: Role of leptin and caloric restriction. Mech Ageing Dev 2012; 133:306-16. [DOI: 10.1016/j.mad.2012.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/13/2012] [Accepted: 03/06/2012] [Indexed: 01/04/2023]
|
19
|
Vatier C, Gautier JF, Vigouroux C. Therapeutic use of recombinant methionyl human leptin. Biochimie 2012; 94:2116-25. [PMID: 22464954 DOI: 10.1016/j.biochi.2012.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/13/2012] [Indexed: 01/11/2023]
Abstract
Recombinant methionyl human leptin (r-metHuLeptin) was first used as a replacement therapy in patients bearing inactivating mutations in the leptin gene. In this indication, it was shown since 1999 to be very efficient in inducing a dramatic weight loss in rare children and adults with severe obesity due to the lack of leptin. These first clinical trials clearly showed that r-metHuLeptin acted centrally to reduce food intake, inducing loss of fat mass, and to correct metabolic alterations, immune and neuroendocrine defects. A few years later, r-metHuLeptin was also shown to reverse the metabolic complications associated with lipodystrophic syndromes, due to primary defects in fat storage, which induce leptin deficiency. The beneficial effects, which could be mediated by central and/or peripheral mechanisms, are thought to mainly involve the lowering effects of leptin on ectopic lipid storage, in particular in liver and muscles, reducing insulin resistance. Interestingly, r-metHuLeptin therapy also reversed the hypothalamic-pituitary-gonadal axis dysfunctions associated with hypothalamic amenorrhea. However, if r-metHuLeptin treatment has been shown to be dramatically efficient in leptin-deficient states, its very limited effect in inducing weight loss in common obese patients revealed that, in patients with adequate leptin secretion, mechanisms of leptin resistance and leptin tolerance prevent r-metHuLeptin from inducing any additional effects. This review will present the current data about the effects of r-metHuLeptin therapy in humans, and discuss the recent perspectives of this therapy in new indications.
Collapse
Affiliation(s)
- Camille Vatier
- INSERM, UMR_S938, Centre de Recherches Saint-Antoine, Paris F-75012, France.
| | | | | |
Collapse
|
20
|
Verspohl EJ. Novel Pharmacological Approaches to the Treatment of Type 2 Diabetes. Pharmacol Rev 2012; 64:188-237. [DOI: 10.1124/pr.110.003319] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
21
|
Unger RH, Cherrington AD. Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover. J Clin Invest 2012; 122:4-12. [PMID: 22214853 DOI: 10.1172/jci60016] [Citation(s) in RCA: 497] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The hormone glucagon has long been dismissed as a minor contributor to metabolic disease. Here we propose that glucagon excess, rather than insulin deficiency, is the sine qua non of diabetes. We base this on the following evidence: (a) glucagon increases hepatic glucose and ketone production, catabolic features present in insulin deficiency; (b) hyperglucagonemia is present in every form of poorly controlled diabetes; (c) the glucagon suppressors leptin and somatostatin suppress all catabolic manifestations of diabetes during total insulin deficiency; (d) total β cell destruction in glucagon receptor-null mice does not cause diabetes; and (e) perfusion of normal pancreas with anti-insulin serum causes marked hyperglucagonemia. From this and other evidence, we conclude that glucose-responsive β cells normally regulate juxtaposed α cells and that without intraislet insulin, unregulated α cells hypersecrete glucagon, which directly causes the symptoms of diabetes. This indicates that glucagon suppression or inactivation may provide therapeutic advantages over insulin monotherapy.
Collapse
Affiliation(s)
- Roger H Unger
- Touchstone Center for Diabetes Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8854, USA.
| | | |
Collapse
|
22
|
Bobbert P, Eisenreich A, Weithäuser A, Schultheiss HP, Rauch U. Leptin and resistin induce increased procoagulability in diabetes mellitus. Cytokine 2011; 56:332-7. [PMID: 21733717 DOI: 10.1016/j.cyto.2011.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/26/2011] [Accepted: 05/25/2011] [Indexed: 11/27/2022]
Abstract
BACKGROUND Patients with diabetes mellitus (DM) suffer from an increased risk of cardiovascular events caused by thrombotic conditions. Adipose tissue might play a crucial role in this pathogenesis by synthesis of procoagulant mediators. This study was performed to elucidate the role of the adipocytokines leptin and resistin in the development of hypercoagulability and hypofibrinolysis under diabetic conditions. METHODS Sixty two patients with or without DM were included in our study to measure leptin, resistin and tissue factor (TF) plasma concentrations. Moreover, flow chamber experiments were performed to assess factor Xa and plasmin activity on the surface of HUVECs. Western blot and real-time PCR were performed to determine mRNA and protein expression of main factors of the coagulation and fibrinolytic system. RESULTS Patients with diabetes showed increased levels of leptin and resistin (leptin: 25.69±13.9 vs. 15.98±17.5 ng/mL, p<0.05; resistin: 2.61±0.6 vs. 1.19±0.7 ng/mL, p<0.05), which were positively correlated with TF. In vitro, leptin and resistin induced increased factor Xa activity (leptin: 4.29±0.57-fold, p<0.05; resistin 4.19±0.7-fold, p<0.05 vs. control) on HUVECs as also reflected by elevated TF mRNA and protein expression. Moreover, stimulatory (plasminogen activator inhibitor 1) and inhibitory (tissue plasminogen activator) mediators of the fibrinolytic cascade were induced by leptin and resistin, leading to a balanced plasmin activity regulation. CONCLUSIONS Leptin and resistin lead to a procoagulant state in HUVECs by inducing TF expression. This mechanism might be one explanation for the prothrombotic state observed under diabetic conditions.
Collapse
Affiliation(s)
- Peter Bobbert
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | | | | | | | | |
Collapse
|
23
|
Berthou F, Rouch C, Gertler A, Gerozissis K, Taouis M. Chronic central leptin infusion differently modulates brain and liver insulin signaling. Mol Cell Endocrinol 2011; 337:89-95. [PMID: 21320568 DOI: 10.1016/j.mce.2011.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/04/2011] [Accepted: 02/04/2011] [Indexed: 01/08/2023]
Abstract
Recent studies reported the impact of leptin on peripheral insulin sensitivity and glucose utilization. However, little is known concerning the effect of central leptin on hypothalamic and hepatic insulin efficiency. This study aimed to determine the consequence of chronic intra-cerebroventricular (ICV) leptin or murine leptin antagonist (MLA) infusion on hypothalamic and hepatic insulin signaling pathways, in rats. A 2-week central leptin infusion enhanced insulin-dependent Akt phosphorylation in the liver without changing PTP-1B protein expression, associated to insulin receptor (IR) upregulation and reduced IRS-1 phosphorylation on Ser302 residue. In the hypothalamus, a chronic ICV leptin infusion induced PTP-1B associated with a specific decrease in insulin-dependent Akt phosphorylation. In contrast, a chronic MLA infusion did not alter IR and PTP-1B expressions in hypothalamus and liver. Our results underline a brain leptin-dependent increase in hepatic insulin efficiency as mirrored by IR up-regulation, increased insulin-dependent Akt phosphorylation and reduced IRS-1 phosphorylation on Ser302 residue.
Collapse
Affiliation(s)
- Flavien Berthou
- Neuroendocrinologie Moléculaire de la Prise Alimentaire, University of Paris-Sud, France
| | | | | | | | | |
Collapse
|
24
|
Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B. Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 2011; 54:773-94. [PMID: 21145849 DOI: 10.1016/j.jhep.2010.11.006] [Citation(s) in RCA: 366] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/05/2010] [Accepted: 11/09/2010] [Indexed: 02/08/2023]
Abstract
Numerous investigations have shown that mitochondrial dysfunction is a major mechanism of drug-induced liver injury, which involves the parent drug or a reactive metabolite generated through cytochromes P450. Depending of their nature and their severity, the mitochondrial alterations are able to induce mild to fulminant hepatic cytolysis and steatosis (lipid accumulation), which can have different clinical and pathological features. Microvesicular steatosis, a potentially severe liver lesion usually associated with liver failure and profound hypoglycemia, is due to a major inhibition of mitochondrial fatty acid oxidation (FAO). Macrovacuolar steatosis, a relatively benign liver lesion in the short term, can be induced not only by a moderate reduction of mitochondrial FAO but also by an increased hepatic de novo lipid synthesis and a decreased secretion of VLDL-associated triglycerides. Moreover, recent investigations suggest that some drugs could favor lipid deposition in the liver through primary alterations of white adipose tissue (WAT) homeostasis. If the treatment is not interrupted, steatosis can evolve toward steatohepatitis, which is characterized not only by lipid accumulation but also by necroinflammation and fibrosis. Although the mechanisms involved in this aggravation are not fully characterized, it appears that overproduction of reactive oxygen species by the damaged mitochondria could play a salient role. Numerous factors could favor drug-induced mitochondrial and metabolic toxicity, such as the structure of the parent molecule, genetic predispositions (in particular those involving mitochondrial enzymes), alcohol intoxication, hepatitis virus C infection, and obesity. In obese and diabetic patients, some drugs may induce acute liver injury more frequently while others may worsen the pre-existent steatosis (or steatohepatitis).
Collapse
Affiliation(s)
- Karima Begriche
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | | | |
Collapse
|
25
|
Burgos-Ramos E, Chowen JA, Arilla-Ferreiro E, Canelles S, Argente J, Barrios V. Chronic central leptin infusion modifies the response to acute central insulin injection by reducing the interaction of the insulin receptor with IRS2 and increasing its association with SOCS3. J Neurochem 2011; 117:175-85. [PMID: 21255014 DOI: 10.1111/j.1471-4159.2011.07191.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leptin and insulin have overlapping intracellular signaling mechanisms and exert anorexigenic actions in the hypothalamus. We aimed to determine how chronic exposure to increased leptin affects the hypothalamic response to a rise in insulin. We analyzed the activation and interactions of components of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in the hypothalamus of rats treated icv for 14 days with leptin followed by a central injection of insulin and killed 15 min later. Insulin increased glycemia and chronic leptin reduced this insulin induced rise in glucose. Leptin decreased the association between the insulin receptor beta chain (IRβ) and insulin receptor substrate 2 (IRS2), augmented the association between Janus kinase 2 and IRS2, increased levels of the catalytic subunit of PI3K and pAkt-Ser473 and decreased forkhead box O number 1 levels. Insulin reduced the association between suppressor of the cytokine signaling 3 and IRβ, increased IRβ-IRS2 association and pAkt-Thr308 levels, with chronic leptin exposure blunting these effects. In conclusion, chronic exposure to leptin decreases the central response to insulin by increasing suppressor of the cytokine signaling 3 association to IR, which inhibits insulin signaling at the level of interaction of its receptor with IRS2 and activates PI3K by promoting Janus kinase 2-IRS2 association. Thus, these results suggest that this mechanism could be a target for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Emma Burgos-Ramos
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto Investigación Sanitaria Princesa, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Wang Y, Asakawa A, Inui A, Kosai KI. Leptin gene therapy in the fight against diabetes. Expert Opin Biol Ther 2011; 10:1405-14. [PMID: 20690892 DOI: 10.1517/14712598.2010.512286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IMPORTANCE OF THE FIELD The incidence of diabetes is increasing worldwide, yet current treatments are not always effective for all patient or disease types. AREAS COVERED IN THIS REVIEW Here, we summarize the biologic and clinical roles of leptin in diabetes, and discuss candidate viral vectors that may be employed in the clinical use of central leptin gene therapy for diabetes. WHAT THE READER WILL GAIN We discuss how studies on leptin, a regulator of the insulin-glucose axis, have significantly advanced our understanding of the roles of energy homeostasis and insulin resistance in the pathogeneses of metabolic syndrome and diabetes. Recent studies have demonstrated the long-term therapeutic effects of central leptin gene therapy in obesity and diabetes via decreased insulin resistance and increased glucose metabolism. Many of these studies have employed viral vectors, which afford high in vivo gene transduction efficiencies compared with non-viral vectors. TAKE HOME MESSAGE Adeno-associated viral vectors are particularly well suited for central leptin gene therapy owing to their low toxicity and ability to drive transgene expression for extended periods.
Collapse
Affiliation(s)
- Yuqing Wang
- Kagoshima University Graduate School of Medical and Dental Sciences, Department of Gene Therapy and Regenerative Medicine, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | | | | | | |
Collapse
|
27
|
Kalra SP. Pivotal role of leptin-hypothalamus signaling in the etiology of diabetes uncovered by gene therapy: a new therapeutic intervention? Gene Ther 2011; 18:319-25. [PMID: 21209624 DOI: 10.1038/gt.2010.164] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The incidence of diabetes mellitus has soared to epidemic proportion worldwide. The debilitating chronic hyperglycemia is caused by either lack of insulin as in diabetes type 1 or its ineffectiveness as in diabetes type 2. Frequent replacement of insulin with or without insulin analogs for optimum glycemic control are the conventional cumbersome therapies. Recent application of leptin gene transfer technology has uncovered the participation of adipocytes-derived leptin-dependent hypothalamic neural signaling in glucose homeostasis and demonstrated that a breakdown in this communication due to leptin insufficiency in the hypothalamus underlies the etiology of chronic hyperglycemia. Reinstatement of central leptin sufficiency by hyperleptinemia produced either by intravenous leptin infusion or a single systemic injection of recombinant adenovirus vector encoding leptin gene suppressed hyperglycemia and evoked euglycemia only transiently in rodent models of diabetes type 1. In contrast, stable restoration of leptin sufficiency, solely in the hypothalamus, with biologically active leptin transduced by an intracerebroventicular injection of recombinant adeno-associated virus vector encoding leptin gene (rAAV-lep) abolished hyperglycemia and imposed euglycemia through the extended duration of experiment by stimulating glucose disposal in the periphery in models of diabetes type 1. Further, similar hypothalamic leptin transgene expression abrogated chronic hyperglycemia and hyperinsulinemia, the predisposing risk factors of the age and environmentally acquired diabetes type 2, and instituted euglycemia by independently activating relays that stimulate glucose metabolism and repress hyperinsulinemia and improve insulin sensitivity in the periphery. Consequently, this durable antidiabetic efficacy of one time rAAV-lep neurotherapy offers a potential novel substitute for insulin therapy following preclinical trials in subhuman primates and humans.
Collapse
Affiliation(s)
- S P Kalra
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610-0244, USA.
| |
Collapse
|
28
|
Wang YY, Lin SY, Chuang YH, Chen CJ, Tung KC, Sheu WHH. Adipose proinflammatory cytokine expression through sympathetic system is associated with hyperglycemia and insulin resistance in a rat ischemic stroke model. Am J Physiol Endocrinol Metab 2011; 300:E155-63. [PMID: 20978230 DOI: 10.1152/ajpendo.00301.2010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Patients who experience acute ischemic stroke may develop hyperglycemia, even in the absence of diabetes, but the exact mechanisms are still unclear. Adipose tissue secretes numerous proinflammatory cytokines and is involved in the regulation of glucose metabolism. This study aimed to determine the effects of acute stroke on adipose inflammatory cytokine expression. In addition, because sympathetic activity is activated after acute stroke and catecholamines can regulate the expression of several adipocytokines, this study also evaluated whether alterations in adipose proinflammatory cytokines following acute stroke, if any, were medicated by sympathetic system. Acute ischemic brain injury was induced by ligating the right middle cerebral artery and bilateral common carotid arteries in male adult Sprague-Dawley rats. Adipose tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) mRNA and protein levels were determined by RT-PCR and enzyme-linked immunoassay, respectively. The stroke rats developed glucose intolerance on days 1 and 2 after cerebral ischemic injury. The fasting blood insulin levels and insulin resistance index measured by homeostasis model assessment were higher in the stroke rats compared with the sham group. Epididymal adipose TNF-α and MCP-1 mRNA and protein levels were elevated one- to twofold, in association with increased macrophage infiltration into the adipose tissue. When the rats were treated with a nonselective β-adrenergic receptor blocker, propranolol, before induction of cerebral ischemic injury, the acute stroke-induced increase in TNF-α and MCP-1 was blocked, and fasting blood insulin concentration and homeostasis model assessment-insulin resistance were decreased. These results suggest a potential role of adipose proinflammatory cytokines induced by the sympathetic nervous system in the pathogenesis of glucose metabolic disorder in rats with acute ischemic stroke.
Collapse
Affiliation(s)
- Ya-Yu Wang
- Division of Family Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Inflammation perturbs normal bone homeostasis and is known to induce bone loss, as it promotes both local cartilage degradation and local and systemic bone destruction by osteoclasts, as well as inhibits bone formation by osteoblasts. Thus, not surprisingly, inflammatory autoimmune diseases often lead to local and/or general bone loss. However, the mechanisms that target the bone in autoimmune disease are complex and diverse, as they range from a direct attack on the bone and cartilage by the immune cells to indirect consequences of disturbances of the systemic control of bone remodeling. This Review discusses current understanding of the mechanisms of autoimmune-mediated bone loss in view of new insight from two new fields of research: osteoimmunology, which analyzes the direct effect of immune cells on bone, and the integrative metabolism approach, which established the existence of neuroendocrine loops that regulate bone remodeling.
Collapse
Affiliation(s)
- Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, University of Erlangen-Nuremberg, Krankenhausstraβe 12, D-91054 Erlangen, Germany
| | | |
Collapse
|
30
|
Affiliation(s)
- Erik Renström
- Lund University, Department of Clinical Sciences Malmö, SE-205 02 Malmö, Sweden.
| |
Collapse
|
31
|
Leptin therapy improves insulin-deficient type 1 diabetes by CNS-dependent mechanisms in mice. Proc Natl Acad Sci U S A 2010; 107:17391-6. [PMID: 20855609 DOI: 10.1073/pnas.1008025107] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Leptin monotherapy reverses the deadly consequences and improves several of the metabolic imbalances caused by insulin-deficient type 1 diabetes (T1D) in rodents. However, the mechanism(s) underlying these effects is totally unknown. Here, we report that intracerebroventricular (icv) infusion of leptin reverses lethality and greatly improves hyperglycemia, hyperglucagonemia, hyperketonemia, and polyuria caused by insulin deficiency in mice. Notably, icv leptin administration leads to increased body weight while suppressing food intake, thus correcting the catabolic consequences of T1D. Also, icv leptin delivery improves expression of the metabolically relevant hypothalamic neuropeptides proopiomelanocortin, neuropeptide Y, and agouti-related peptide in T1D mice. Furthermore, this treatment normalizes phosphoenolpyruvate carboxykinase 1 contents without affecting glycogen levels in the liver. Pancreatic β-cell regeneration does not underlie these beneficial effects of leptin, because circulating insulin levels were undetectable at basal levels and following a glucose overload. Also, pancreatic preproinsulin mRNA was completely absent in these icv leptin-treated T1D mice. Furthermore, the antidiabetic effects of icv leptin administration rapidly vanished (i.e., within 48 h) after leptin treatment was interrupted. Collectively, these results unveil a key role for the brain in mediating the antidiabetic actions of leptin in the context of T1D.
Collapse
|
32
|
|
33
|
Neuroendocrine Control of Energy Homeostasis: Update on New Insights. PROGRESS IN BRAIN RESEARCH 2010; 181:17-33. [DOI: 10.1016/s0079-6123(08)81002-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|