1
|
Choi PP, Wang Q, Brenner LA, Li AJ, Ritter RC, Appleyard SM. Lesion of NPY Receptor-expressing Neurons in Perifornical Lateral Hypothalamus Attenuates Glucoprivic Feeding. Endocrinology 2024; 165:bqae021. [PMID: 38368624 PMCID: PMC11043786 DOI: 10.1210/endocr/bqae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Glucoprivic feeding is one of several counterregulatory responses (CRRs) that facilitates restoration of euglycemia following acute glucose deficit (glucoprivation). Our previous work established that glucoprivic feeding requires ventrolateral medullary (VLM) catecholamine (CA) neurons that coexpress neuropeptide Y (NPY). However, the connections by which VLM CA/NPY neurons trigger increased feeding are uncertain. We have previously shown that glucoprivation, induced by an anti-glycolygic agent 2-deoxy-D-glucose (2DG), activates perifornical lateral hypothalamus (PeFLH) neurons and that expression of NPY in the VLM CA/NPY neurons is required for glucoprivic feeding. We therefore hypothesized that glucoprivic feeding and possibly other CRRs require NPY-sensitive PeFLH neurons. To test this, we used the ribosomal toxin conjugate NPY-saporin (NPY-SAP) to selectively lesion NPY receptor-expressing neurons in the PeFLH of male rats. We found that NPY-SAP destroyed a significant number of PeFLH neurons, including those expressing orexin, but not those expressing melanin-concentrating hormone. The PeFLH NPY-SAP lesions attenuated 2DG-induced feeding but did not affect 2DG-induced increase in locomotor activity, sympathoadrenal hyperglycemia, or corticosterone release. The 2DG-induced feeding response was also significantly attenuated in NPY-SAP-treated female rats. Interestingly, PeFLH NPY-SAP lesioned male rats had reduced body weights and decreased dark cycle feeding, but this effect was not seen in female rats. We conclude that a NPY projection to the PeFLH is necessary for glucoprivic feeding, but not locomotor activity, hyperglycemia, or corticosterone release, in both male and female rats.
Collapse
Affiliation(s)
- Pique P Choi
- Neuroscience Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Qing Wang
- Neuroscience Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Lynne A Brenner
- Neuroscience Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Ai-Jun Li
- Neuroscience Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Robert C Ritter
- Neuroscience Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Suzanne M Appleyard
- Neuroscience Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
2
|
Bolshakov AP, Stepanichev MY, Dobryakova YV, Spivak YS, Markevich VA. Saporin from Saponaria officinalis as a Tool for Experimental Research, Modeling, and Therapy in Neuroscience. Toxins (Basel) 2020; 12:toxins12090546. [PMID: 32854372 PMCID: PMC7551693 DOI: 10.3390/toxins12090546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 01/06/2023] Open
Abstract
Saporin, which is extracted from Saponaria officinalis, is a protein toxin that inactivates ribosomes. Saporin itself is non-selective toxin but acquires high specificity after conjugation with different ligands such as signaling peptides or antibodies to some surface proteins expressed in a chosen cell subpopulation. The saporin-based conjugated toxins were widely adopted in neuroscience as a convenient tool to induce highly selective degeneration of desired cell subpopulation. Induction of selective cell death is one of approaches used to model neurodegenerative diseases, study functions of certain cell subpopulations in the brain, and therapy. Here, we review studies where saporin-based conjugates were used to analyze cell mechanisms of sleep, general anesthesia, epilepsy, pain, and development of Parkinson’s and Alzheimer’s diseases. Limitations and future perspectives of use of saporin-based toxins in neuroscience are discussed.
Collapse
Affiliation(s)
- Alexey P. Bolshakov
- Laboratory of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Correspondence:
| | - Mikhail Yu. Stepanichev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Yulia V. Dobryakova
- Laboratory of Neurophysiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.V.D.); (V.A.M.)
| | - Yulia S. Spivak
- Laboratory of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Vladimir A. Markevich
- Laboratory of Neurophysiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.V.D.); (V.A.M.)
| |
Collapse
|
3
|
Theisen CC, Reyes BA, Sabban E, Van Bockstaele EJ. Ultrastructural Characterization of Corticotropin-Releasing Factor and Neuropeptide Y in the Rat Locus Coeruleus: Anatomical Evidence for Putative Interactions. Neuroscience 2018; 384:21-40. [DOI: 10.1016/j.neuroscience.2018.04.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
|
4
|
Shimizu T, Minami C, Mitani A. Effect of electrical stimulation of the infralimbic and prelimbic cortices on anxiolytic-like behavior of rats during the elevated plus-maze test, with particular reference to multiunit recording of the behavior-associated neural activity. Behav Brain Res 2018; 353:168-175. [PMID: 30057351 DOI: 10.1016/j.bbr.2018.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022]
Abstract
Fear and anxiety affect the activities of daily living and require concerted management, such as coping strategies, to preserve quality of life. The infralimbic (IL) and prelimbic (PL) medial prefrontal cortices have been implicated in the regulation of fear- and anxiety-like behavior, but their roles in overcoming fear- and anxiety-like behavior remain unknown. We investigated the anxiolytic-like effects of electrical stimulation of the IL and PL cortices in rats during the elevated plus-maze test. IL stimulation led to a significantly higher percentage of time spent and entries in the open arms, whereas PL stimulation did not have any significant behavioral effects. Subsequently, we recorded multiunit activity from the IL and PL cortices in rats using a wireless telemetry device, to determine whether activation of the IL occurs when rats enter the open arms in the elevated plus-maze test. The firing rate of IL neurons increased 1-3 s prior to entry from the closed arm to the open arm, whereas there were no corresponding changes in the firing rate of PL neurons. Taken together, the present findings suggest that the IL plays a key role in exerting active action to overcome anxiety-like behavior.
Collapse
Affiliation(s)
- Tomoko Shimizu
- Laboratory of Physiology, Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chihiro Minami
- Laboratory of Physiology, Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Mitani
- Laboratory of Physiology, Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Toxins as tools: Fingerprinting neuronal pharmacology. Neurosci Lett 2018; 679:4-14. [DOI: 10.1016/j.neulet.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/09/2018] [Accepted: 02/02/2018] [Indexed: 12/30/2022]
|
6
|
Tanaka T, Shimizu S, Ueno M, Fujihara Y, Ikawa M, Miyata S. MARCKSL1 Regulates Spine Formation in the Amygdala and Controls the Hypothalamic-Pituitary-Adrenal Axis and Anxiety-Like Behaviors. EBioMedicine 2018; 30:62-73. [PMID: 29580842 PMCID: PMC5952351 DOI: 10.1016/j.ebiom.2018.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 11/25/2022] Open
Abstract
Abnormalities in limbic neural circuits have been implicated in the onset of anxiety disorders. However, the molecular pathogenesis underlying anxiety disorders remains poorly elucidated. Here, we demonstrate that myristoylated alanine-rich C-kinase substrate like 1 (MARCKSL1) regulates amygdala circuitry to control the activity of the hypothalamic-pituitary-adrenal (HPA) axis, as well as induces anxiety-like behaviors in mice. MARCKSL1 expression was predominantly localized in the prefrontal cortex (PFC), hypothalamus, hippocampus, and amygdala of the adult mouse brain. MARCKSL1 transgenic (Tg) mice exhibited anxiety-like behaviors dependent on corticotropin-releasing hormone. MARCKSL1 increased spine formation in the central amygdala, and downregulation of MARCKSL1 in the amygdala normalized both increased HPA axis activity and elevated anxiety-like behaviors in Tg mice. Furthermore, MARCKSL1 expression was increased in the PFC and amygdala in a brain injury model associated with anxiety-like behaviors. Our findings suggest that MARCKSL1 expression in the amygdala plays an important role in anxiety-like behaviors. MARCKSL1 induces spine formation in the amygdala, HPA axis activation, and anxiety-like behaviors. Downregulation of MARCKSL1 in the amygdala ameliorates anxiety-like behaviors MARCKSL1 is increased in a brain injury model associated with anxiety.
The molecular pathogenesis underlying anxiety disorders is still unclear. Here, we demonstrate that myristoylated alanine-rich C-kinase substrate like 1 (MARCKSL1) overexpression in mice increases spine formation in the amygdala and induces stress hormone upregulation and anxiety-like behaviors. Suppression of MARCKSL1 in the amygdala ameliorates both the increase in stress hormones and the elevated anxiety-like behaviors. Our results indicate that MARCKSL1 expression in the amygdala plays an important role in anxiety-like behaviors.
Collapse
Affiliation(s)
- Takashi Tanaka
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan; Department of Anatomy II, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan.
| | - Shoko Shimizu
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masaki Ueno
- Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Yoshitaka Fujihara
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shingo Miyata
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
7
|
Pizzo E, Di Maro A. A new age for biomedical applications of Ribosome Inactivating Proteins (RIPs): from bioconjugate to nanoconstructs. J Biomed Sci 2016; 23:54. [PMID: 27439918 PMCID: PMC4955249 DOI: 10.1186/s12929-016-0272-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/13/2016] [Indexed: 12/17/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are enzymes (3.2.2.22) that possess N-glycosilase activity that irreversibly inhibits protein synthesis. RIPs have been found in plants, fungi, algae, and bacteria; their biological role is still under investigation, even if it has been recognized their role in plant defence against predators and viruses. Nevertheless, several studies on these toxins have been performed to evaluate their applicability in the biomedical field making RIPs selectively toxic towards target cells. Indeed, these molecules are extensively used to produce chimeric biomolecules, such as immunotoxins or protein/peptides conjugates. However, to date, clinical use of most of these bioconiujates has been limited by toxicity and immunogenicity. More recently, material sciences have provided a wide range of nanomaterials to be used as excellent vehicles for toxin-delivery, since they are characterized by improved stability, solubility, and in vivo pharmacokinetics. This review discusses progresses in the development of RIPs bioconjugates, with particular attention to the recent use of nanomaterials, whose appropriate design opens up a broad range of different possibilities to the use of RIPs in novel therapeutic approaches in human diseases.
Collapse
Affiliation(s)
- Elio Pizzo
- Department of Biology, University of Naples "Federico II", Via Cintia, I-80126, Napoli, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Second University of Naples, Via Vivaldi 43, 81100, Caserta, Italy.
| |
Collapse
|
8
|
Wu X, Zhang JT, Liu J, Yang S, Chen T, Chen JG, Wang F. Calcitonin gene-related peptide erases the fear memory and facilitates long-term potentiation in the central nucleus of the amygdala in rats. J Neurochem 2015; 135:787-98. [PMID: 26179152 DOI: 10.1111/jnc.13246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/10/2015] [Accepted: 07/01/2015] [Indexed: 12/29/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37 amino acid neuropeptide, which plays a critical role in the central nervous system. CGRP binds to G protein-coupled receptors, including CGRP1, which couples positively to adenylyl cyclase (AC) and protein kinase A (PKA) activation. CGRP and CGRP1 receptors are enriched in central nucleus of the amygdala (CeA), the main part of the amygdala, which regulates conditioned fear memories. Here, we reported the importance of CGRP and CGRP1 receptor for synaptic plasticity in the CeA and the extinction of fear memory in rats. Our electrophysiological and behavioral in vitro and in vivo results showed exogenous application of CGRP induced an immediate and lasting long-term potentiation in the basolateral nucleus of amygdala-CeA pathway, but not in the lateral nucleus of amygdala-CeA pathway, while bilateral intra-CeA infusion CGRP (0, 5, 13 and 21 μM/side) dose dependently enhanced fear memory extinction. The effects were blocked by CGRP1 receptor antagonist (CGRP8-37 ), N-methyl-d-aspartate receptors antagonist MK801 and PKA inhibitor H89. These results demonstrate that CGRP can lead to long-term potentiation of basolateral nucleus of amygdala-CeA pathway through a PKA-dependent postsynaptic mechanism that involved N-methyl-d-aspartate receptors and enhance the extinction of fear memory in rats. Together, the results strongly support a pivotal role of CGRP in the synaptic plasticity of CeA and extinction of fear memory. Calcitonin gene-related peptide (CGRP) plays an essential role in synaptic plasticity in the amygdala and fear memory. We found that CGRP-induced chemical long-term potentiation (LTP) in a dose-dependent way in the BLA-CeA (basolateral and central nucleus of amygdala, respectively) pathway and enhanced fear memory extinction in rats through a protein kinase A (PKA)-dependent postsynaptic mechanism that involved NMDA receptors. These results support a pivotal role of CGRP in amygdala.
Collapse
Affiliation(s)
- Xin Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie-Ting Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Jiang J, He Z, Peng Y, Jin W, Mu J, Xue H, Wang Z, Chang M, Wang R. Effects of Phoenixin-14 on anxiolytic-like behavior in mice. Behav Brain Res 2015; 286:39-48. [DOI: 10.1016/j.bbr.2015.02.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 01/31/2015] [Accepted: 02/05/2015] [Indexed: 01/21/2023]
|
10
|
Enman NM, Sabban EL, McGonigle P, Van Bockstaele EJ. Targeting the Neuropeptide Y System in Stress-related Psychiatric Disorders. Neurobiol Stress 2015; 1:33-43. [PMID: 25506604 PMCID: PMC4260418 DOI: 10.1016/j.ynstr.2014.09.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Repeated, extreme, or traumatic stressors can elicit pathological effects leading to many negative physical and psychological outcomes. Stressors can precipitate the onset of psychiatric diseases, or exacerbate pre-existing disorders including various anxiety and mood disorders. As stressors can negatively impact human psychiatric health, it is essential to identify neurochemicals that may confer protection from the negative sequelae of repeated or extreme stress exposure. Elucidating the neurobiological underpinnings of stress resilience will enhance our ability to promote resilience to, or recovery from, stress-related psychiatric disease. Herein, we will review the evidence for neuropeptide Y as an endogenous mediator of resilience and its potential relevance for the treatment of stress-related psychiatric diseases. Overview of neuropeptide Y and receptor subtypes in the central nervous system. Alterations of neuropeptide Y in human stress-related psychiatric disorders. Evidence for neuropeptide Y in resilience to stress-related emotionality in rodent behavioral models. Pharmacotherapeutic implications for neuropeptide Y in the treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Nicole M Enman
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, 19102, USA
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Paul McGonigle
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, 19102, USA
| | | |
Collapse
|
11
|
Keen-Rhinehart E, Ondek K, Schneider JE. Neuroendocrine regulation of appetitive ingestive behavior. Front Neurosci 2013; 7:213. [PMID: 24298235 PMCID: PMC3828638 DOI: 10.3389/fnins.2013.00213] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/25/2013] [Indexed: 01/08/2023] Open
Abstract
Food availability in nature is often irregular, and famine is commonplace. Increased motivation to engage in ingestive behaviors increases the chance of survival, providing additional potential opportunities for reproduction. Because of the advantages conferred by entraining ingestive behavior to environmental conditions, neuroendocrine mechanisms regulating the motivation to acquire and ingest food have evolved to be responsive to exogenous (i.e., food stored for future consumption) and endogenous (i.e., body fat stores) fuel availability. Motivated behaviors like eating occur in two phases. The appetitive phase brings animals into contact with food (e.g., foraging, food hoarding), and the more reflexive consummatory phase results in ingestion (e.g., chewing, swallowing). Quantifiable appetitive behaviors are part of the natural ingestive behavioral repertoire of species such as hamsters and humans. This review summarizes current knowledge about neuroendocrine regulators of ingestive behavior, with an emphasis appetitive behavior. We will discuss hormonal regulators of appetitive ingestive behaviors, including the orexigenic hormone ghrelin, which potently stimulates foraging and food hoarding in Siberian hamsters. This section includes a discussion of the hormone leptin, its relation to endogenous fat stores, and its role in food deprivation-induced increases in appetitive ingestive behaviors. Next, we discuss how hormonal regulators interact with neurotransmitters involved in the regulation of ingestive behaviors, such as neuropeptide Y (NPY), agouti-related protein (AgRP) and α-melanocyte stimulating hormone (α-MSH), to regulate ingestive behavior. Finally, we discuss the potential impact that perinatal nutrient availability can have on the neuroendocrine regulation of ingestive behavior. Understanding the hormonal mechanisms that connect metabolic fuel availability to central appetite regulatory circuits should provide a better understanding of the neuroendocrine regulation of the motivation to engage in ingestive behavior.
Collapse
|
12
|
Byerly MS, Swanson RD, Wong GW, Blackshaw S. Estrogen-related receptor β deficiency alters body composition and response to restraint stress. BMC PHYSIOLOGY 2013; 13:10. [PMID: 24053666 PMCID: PMC3850731 DOI: 10.1186/1472-6793-13-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/17/2013] [Indexed: 12/29/2022]
Abstract
Background Estrogen-related receptors (ERRs) are orphan nuclear hormone receptors expressed in metabolically active tissues and modulate numerous homeostatic processes. ERRs do not bind the ligand estrogen, but they are able to bind the estrogen response element (ERE) embedded within the ERR response elements (ERREs) to regulate transcription of genes. Previous work has demonstrated that adult mice lacking Errβ have altered metabolism and meal patterns. To further understand the biological role of Errβ, we characterized the stress response of mice deficient for one or both alleles of Errβ. Results Sox2-Cre:Errβ mice lack Errβ expression in all tissues of the developing embryo. Sox2-Cre:Errβ+/lox heterozygotes were obese, had increased Npy and Agrp gene expression in the arcuate nucleus of the hypothalamus, and secreted more corticosterone in response to stress. In contrast, Sox2-Cre:Errβlox/lox homozygotes were lean and, despite increased Npy and Agrp gene expression, did not secrete more corticosterone in response to stress. Sox2-Cre:Errβ+/lox and Sox2-Cre:Errβlox/lox mice treated with the Errβ and Errγ agonist DY131 demonstrated increased corticotropin-releasing hormone (Crh) expression in the paraventricular nucleus of the hypothalamus, although corticosterone levels were not affected. Nes-Cre:Errβlox/lox mice, which selectively lack Errβ expression in the nervous system, also demonstrated elevated stress response during an acoustic startle response test and decreased expression of both Crh and corticotropin-releasing hormone receptor 2 (Crhr2). Conclusions Loss of Errβ affects body composition, neuropeptide levels, stress hormones, and centrally-modulated startle responses of mice. These results indicate that Errβ alters the function of the hypothalamic-pituitary-adrenocortical axis and indicates a role for Errβ in regulating stress response.
Collapse
Affiliation(s)
- Mardi S Byerly
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
13
|
Schneider JE, Wise JD, Benton NA, Brozek JM, Keen-Rhinehart E. When do we eat? Ingestive behavior, survival, and reproductive success. Horm Behav 2013; 64:702-28. [PMID: 23911282 DOI: 10.1016/j.yhbeh.2013.07.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
Abstract
The neuroendocrinology of ingestive behavior is a topic central to human health, particularly in light of the prevalence of obesity, eating disorders, and diabetes. The study of food intake in laboratory rats and mice has yielded some useful hypotheses, but there are still many gaps in our knowledge. Ingestive behavior is more complex than the consummatory act of eating, and decisions about when and how much to eat usually take place in the context of potential mating partners, competitors, predators, and environmental fluctuations that are not present in the laboratory. We emphasize appetitive behaviors, actions that bring animals in contact with a goal object, precede consummatory behaviors, and provide a window into motivation. Appetitive ingestive behaviors are under the control of neural circuits and neuropeptide systems that control appetitive sex behaviors and differ from those that control consummatory ingestive behaviors. Decreases in the availability of oxidizable metabolic fuels enhance the stimulatory effects of peripheral hormones on appetitive ingestive behavior and the inhibitory effects on appetitive sex behavior, putting a new twist on the notion of leptin, insulin, and ghrelin "resistance." The ratio of hormone concentrations to the availability of oxidizable metabolic fuels may generate a critical signal that schedules conflicting behaviors, e.g., mate searching vs. foraging, food hoarding vs. courtship, and fat accumulation vs. parental care. In species representing every vertebrate taxa and even in some invertebrates, many putative "satiety" or "hunger" hormones function to schedule ingestive behavior in order to optimize reproductive success in environments where energy availability fluctuates.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | | | | | | | | |
Collapse
|
14
|
Hendriksen H, Bink DI, Daniels EG, Pandit R, Piriou C, Slieker R, Westphal KG, Olivier B, Oosting RS. Re-exposure and environmental enrichment reveal NPY-Y1 as a possible target for post-traumatic stress disorder. Neuropharmacology 2012; 63:733-42. [DOI: 10.1016/j.neuropharm.2012.05.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
|
15
|
Avolio E, Alò R, Mele M, Carelli A, Canonaco A, Bucarelli L, Canonaco M. Amygdalar excitatory/inhibitory circuits interacting with orexinergic neurons influence differentially feeding behaviors in hamsters. Behav Brain Res 2012; 234:91-9. [DOI: 10.1016/j.bbr.2012.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/13/2012] [Indexed: 12/29/2022]
|
16
|
Sparrow AM, Lowery-Gionta EG, Pleil KE, Li C, Sprow GM, Cox BR, Rinker JA, Jijon AM, Peňa J, Navarro M, Kash TL, Thiele TE. Central neuropeptide Y modulates binge-like ethanol drinking in C57BL/6J mice via Y1 and Y2 receptors. Neuropsychopharmacology 2012; 37:1409-21. [PMID: 22218088 PMCID: PMC3327846 DOI: 10.1038/npp.2011.327] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Frequent binge drinking has been linked to heart disease, high blood pressure, type 2 diabetes, and the development of ethanol dependence. Thus, identifying pharmaceutical targets to treat binge drinking is of paramount importance. Here we employed a mouse model of binge-like ethanol drinking to study the role of neuropeptide Y (NPY). To this end, the present set of studies utilized pharmacological manipulation of NPY signaling, immunoreactivity (IR) mapping of NPY and NPY receptors, and electrophysiological recordings from slice preparations of the amygdala. The results indicated that central infusion of NPY, a NPY Y1 receptor (Y1R) agonist, and a Y2R antagonist significantly blunted binge-like ethanol drinking in C57BL/6J mice (that achieved blood ethanol levels >80 mg/dl in control conditions). Binge-like ethanol drinking reduced NPY and Y1R IR in the central nucleus of the amygdala (CeA), and 24 h of ethanol abstinence after a history of binge-like drinking promoted increases of Y1R and Y2R IR. Electrophysiological recordings of slice preparations from the CeA showed that binge-like ethanol drinking augmented the ability of NPY to inhibit GABAergic transmission. Thus, binge-like ethanol drinking in C57BL/6J mice promoted alterations of NPY signaling in the CeA, and administration of exogenous NPY compounds protected against binge-like drinking. The current data suggest that Y1R agonists and Y2R antagonists may be useful for curbing and/or preventing binge drinking, protecting vulnerable individuals from progressing to the point of ethanol dependence.
Collapse
Affiliation(s)
- Angela M Sparrow
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Kristen E Pleil
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Chia Li
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Gretchen M Sprow
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin R Cox
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Jennifer A Rinker
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Ana M Jijon
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - José Peňa
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Montserrat Navarro
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Todd E Thiele
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Psychology, University of North Carolina Davie Hall, CB #3270 Chapel Hill, NC 27599-3270, USA, Tel: +1 919 966 1519, Fax: +1 919-962-2537, E-mail:
| |
Collapse
|
17
|
Tye KM, Prakash R, Kim SY, Fenno LE, Grosenick L, Zarabi H, Thompson KR, Gradinaru V, Ramakrishnan C, Deisseroth K. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 2011; 471:358-62. [PMID: 21389985 DOI: 10.1038/nature09820] [Citation(s) in RCA: 911] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 01/14/2011] [Indexed: 11/09/2022]
Abstract
Anxiety--a sustained state of heightened apprehension in the absence of immediate threat--becomes severely debilitating in disease states. Anxiety disorders represent the most common of psychiatric diseases (28% lifetime prevalence) and contribute to the aetiology of major depression and substance abuse. Although it has been proposed that the amygdala, a brain region important for emotional processing, has a role in anxiety, the neural mechanisms that control anxiety remain unclear. Here we explore the neural circuits underlying anxiety-related behaviours by using optogenetics with two-photon microscopy, anxiety assays in freely moving mice, and electrophysiology. With the capability of optogenetics to control not only cell types but also specific connections between cells, we observed that temporally precise optogenetic stimulation of basolateral amygdala (BLA) terminals in the central nucleus of the amygdala (CeA)--achieved by viral transduction of the BLA with a codon-optimized channelrhodopsin followed by restricted illumination in the downstream CeA--exerted an acute, reversible anxiolytic effect. Conversely, selective optogenetic inhibition of the same projection with a third-generation halorhodopsin (eNpHR3.0) increased anxiety-related behaviours. Importantly, these effects were not observed with direct optogenetic control of BLA somata, possibly owing to recruitment of antagonistic downstream structures. Together, these results implicate specific BLA-CeA projections as critical circuit elements for acute anxiety control in the mammalian brain, and demonstrate the importance of optogenetically targeting defined projections, beyond simply targeting cell types, in the study of circuit function relevant to neuropsychiatric disease.
Collapse
Affiliation(s)
- Kay M Tye
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|