1
|
Goudsward HJ, Ruiz-Velasco V, Stella SL, Herold PB, Holmes GM. Ghrelin Modulates Voltage-Gated Ca 2+ Channels through Voltage-Dependent and Voltage-Independent Pathways in Rat Gastric Vagal Afferent Neurons. Mol Pharmacol 2024; 106:253-263. [PMID: 39187389 PMCID: PMC11493335 DOI: 10.1124/molpharm.124.000957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
The orexigenic gut peptide ghrelin is an endogenous ligand for the growth hormone secretagogue receptor type 1a (GHSR1a). Systemic ghrelin administration has previously been shown to increase gastric motility and emptying. While these effects are known to be mediated by the vagus nerve, the cellular mechanism underlying these effects remains unclear. Therefore, the purpose of the present study was to investigate the signaling mechanism by which GHSR1a inhibits voltage-gated Ca2+ channels in isolated rat gastric vagal afferent neurons using whole-cell patch-clamp electrophysiology. The ghrelin pharmacological profile indicated that Ca2+ currents were inhibited with a log (Ic50) = -2.10 ± 0.44 and a maximal inhibition of 42.8 ± 5.0%. Exposure to the GHSR1a receptor antagonist (D-Lys3)-GHRP-6 reduced ghrelin-mediated Ca2+ channel inhibition (29.4 ± 16.7% vs. 1.9 ± 2.5%, n = 6, P = 0.0064). Interestingly, we observed that activation of GHSR1a inhibited Ca2+ currents through both voltage-dependent and voltage-independent pathways. We also treated the gastric neurons with either pertussis toxin (PTX) or YM-254890 to examine whether the Ca2+ current inhibition was mediated by the Gα i/o or Gα q/11 family of subunits. Treatment with both PTX (Ca2+ current inhibition = 15.7 ± 10.6%, n = 8, P = 0.0327) and YM-254890 (15.2 ± 11.9%, n = 8, P = 0.0269) blocked ghrelin's effects on Ca2+ currents, as compared with control neurons (34.3 ± 18.9%, n = 8). These results indicate GHSR1a can couple to both Gα i/o and Gα q/11 in gastric vagal afferent neurons. Overall, our findings suggest GHSR1a-mediated inhibition of Ca2+ currents occurs through two distinct pathways, offering necessary insights into the cellular mechanisms underlying ghrelin's regulation of gastric vagal afferents. SIGNIFICANCE STATEMENT: This study demonstrated that in gastric vagal afferent neurons, activation of GHSR1a by ghrelin inhibits voltage-gated Ca2+ channels through both voltage-dependent and voltage-independent signaling pathways. These results provide necessary insights into the cellular mechanism underlying ghrelin regulation of gastric vagal afferent activity, which may benefit future studies investigating ghrelin mimetics to treat gastric motility disorders.
Collapse
Affiliation(s)
- Hannah J Goudsward
- Departments of Neural and Behavioral Sciences (H.J.G., S.L.S., G.M.H.) and Anesthesiology and Perioperative Medicine (V.R.-V., P.B.H.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Victor Ruiz-Velasco
- Departments of Neural and Behavioral Sciences (H.J.G., S.L.S., G.M.H.) and Anesthesiology and Perioperative Medicine (V.R.-V., P.B.H.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Salvatore L Stella
- Departments of Neural and Behavioral Sciences (H.J.G., S.L.S., G.M.H.) and Anesthesiology and Perioperative Medicine (V.R.-V., P.B.H.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Paul B Herold
- Departments of Neural and Behavioral Sciences (H.J.G., S.L.S., G.M.H.) and Anesthesiology and Perioperative Medicine (V.R.-V., P.B.H.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Gregory M Holmes
- Departments of Neural and Behavioral Sciences (H.J.G., S.L.S., G.M.H.) and Anesthesiology and Perioperative Medicine (V.R.-V., P.B.H.), Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
2
|
Perelló M, Cornejo MP, De Francesco PN, Fernandez G, Gautron L, Valdivia LS. The controversial role of the vagus nerve in mediating ghrelin´s actions: gut feelings and beyond. IBRO Neurosci Rep 2022; 12:228-239. [PMID: 35746965 PMCID: PMC9210457 DOI: 10.1016/j.ibneur.2022.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/26/2022] Open
Abstract
Ghrelin is a stomach-derived peptide hormone that acts via the growth hormone secretagogue receptor (GHSR) and displays a plethora of neuroendocrine, metabolic, autonomic and behavioral actions. It has been proposed that some actions of ghrelin are exerted via the vagus nerve, which provides a bidirectional communication between the central nervous system and peripheral systems. The vagus nerve comprises sensory fibers, which originate from neurons of the nodose and jugular ganglia, and motor fibers, which originate from neurons of the medulla. Many anatomical studies have mapped GHSR expression in vagal sensory or motor neurons. Also, numerous functional studies investigated the role of the vagus nerve mediating specific actions of ghrelin. Here, we critically review the topic and discuss the available evidence supporting, or not, a role for the vagus nerve mediating some specific actions of ghrelin. We conclude that studies using rats have provided the most congruent evidence indicating that the vagus nerve mediates some actions of ghrelin on the digestive and cardiovascular systems, whereas studies in mice resulted in conflicting observations. Even considering exclusively studies performed in rats, the putative role of the vagus nerve in mediating the orexigenic and growth hormone (GH) secretagogue properties of ghrelin remains debated. In humans, studies are still insufficient to draw definitive conclusions regarding the role of the vagus nerve mediating most of the actions of ghrelin. Thus, the extent to which the vagus nerve mediates ghrelin actions, particularly in humans, is still uncertain and likely one of the most intriguing unsolved aspects of the field.
Collapse
|
3
|
Sukhotnik I, Ben-Shahar Y, Pollak Y, Cohen S, Moran-Lev H, Koppelmann T, Gorenberg M. Intestinal dysmotility after bowel resection in rats is associated with decreased ghrelin and vimentin expression and loss of intestinal cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2021; 320:G283-G294. [PMID: 33325807 PMCID: PMC8609566 DOI: 10.1152/ajpgi.00223.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study provides novel insight into the mechanisms of intestinal dysmotility following massive small bowel resection. We show that 2 wk after bowel resection in rats, impaired intestinal motility was associated with loss of interstitial cells of Cajal (ICC; downregulation of transmembrane member 16A (TMEM16A) and c-kit expression) as well as with decreased vimentin, desmin, and ghrelin levels. Impaired intestinal motility led to a decrease in final body weight, suggesting less effective nutrient absorption. The purpose of this study was to evaluate the mechanisms of intestinal motility in a rat model of short bowel syndrome (SBS). Rats were divided into three groups: Sham rats underwent bowel transection; SBS-NSI rats underwent a 75% bowel resection and presented with normal intestinal size (NSI) at euthanasia and hypermotility patterns; SBS-DYS showed dysmotile (DYS) enlarged intestine and inhibited motility patterns. Animals were euthanized after 2 wk. Illumina's digital gene expression (DGE) analysis was used to determine the intestinal motility-related gene expression profiling in mucosal samples. Intestinal motility-related and ICC genes and protein expression in intestinal muscle layer were determined using real-time PCR, Western blotting, and immunohistochemistry. Gastrointestinal tract motility was studied by microcomputer tomography. From 10 Ca2+ signaling pathway-related genes, six genes in jejunum and seven genes in ileum were downregulated in SBS vs. Sham animals. Downregulation of TMEM16A mRNA and protein was confirmed by real-time PCR. Rapid intestinal transit time in SBS-NSI rats correlated with a mild decrease in TMEM16A, c-kit, and vimentin mRNA and protein expression (vs/. Sham animals). SBS-DYS rats demonstrated enlarged intestinal loops and delayed small intestinal emptying (on imaging studies) that were correlated with marked downregulation in TMEM16A, c-kit, vimentin, and ghrelin mRNA and protein levels compared with the other two groups. In conclusion, 2 wk following massive bowel resection in rats, impaired intestinal motility was associated with decreased vimentin and ghrelin gene and protein levels as well as loss of ICC (c-kit and TMEM16A).NEW & NOTEWORTHY This study provides novel insight into the mechanisms of intestinal dysmotility following massive small bowel resection. We show that 2 weeks after bowel resection in rats, impaired intestinal motility was associated with loss of interstitial cells of Cajal (downregulation of TMEM 16A, and c-kit expression) as well as with decreased vimentin, desmin, and ghrelin levels. Impaired intestinal motility led to decrease in final body weight, suggesting less effective nutrient absorption.
Collapse
Affiliation(s)
- Igor Sukhotnik
- 1Laboratory of Intestinal Adaptation and Recovery, Department of Pediatric Surgery, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel,3Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoav Ben-Shahar
- 1Laboratory of Intestinal Adaptation and Recovery, Department of Pediatric Surgery, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel,4The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yulia Pollak
- 1Laboratory of Intestinal Adaptation and Recovery, Department of Pediatric Surgery, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shlomi Cohen
- 2Pediatric Gastroenterology Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel,3Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Moran-Lev
- 2Pediatric Gastroenterology Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel,3Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Koppelmann
- 1Laboratory of Intestinal Adaptation and Recovery, Department of Pediatric Surgery, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Migel Gorenberg
- 4The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
4
|
Meister AL, Burkholder CR, Doheny KK, Travagli RA. Ghrelin ameliorates the phenotype of newborn rats induced with mild necrotizing enterocolitis. Neurogastroenterol Motil 2019; 31:e13682. [PMID: 31386261 PMCID: PMC6791725 DOI: 10.1111/nmo.13682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND We have shown previously that an attenuated rodent model of mild necrotizing enterocolitis (NEC) increases intestinal histopathological severity grade, prevents typical developmental increases in the high-frequency spectrum of heart rate variability (HF-HRV), alters the nitrergic myenteric phenotype, and increases IL-6 and IL-1β when combined with anterior subdiaphragmatic vagotomy. The aims of the present study were to test the hypotheses that in mild NEC-induced pups, administration of the orexigenic hormone ghrelin (a) reduces the histopathological score, (b) increases the HF-HRV power, (c) improves the altered myenteric phenotype, and (d) subdiaphragmatic vagotomy prevents the effects of ghrelin. METHODS Newborn Sprague Dawley rats were subjected to seven days of brief periods of cold stress and hypoxia to induce mild NEC with or without anterior subdiaphragmatic vagotomy. HRV was measured at postnatal days one, five, and ten; intraperitoneal ghrelin (0.05 mg kg-1 ) was administered postnatal days five through ten b.i.d. Pups were sacrificed at day 12, and whole brains, gastrointestinal tissues, and blood were collected for immunohistochemical, corticosterone, and cytokine analysis. KEY RESULTS Ghrelin treatment reduced the intestinal histopathological score, increased the HF-HRV power, improved the altered intestinal myenteric phenotype, and subdiaphragmatic vagotomy prevented the effects of ghrelin. There were no differences in serum cytokines or corticosterone between groups. CONCLUSIONS AND INFERENCES Our data suggest that ghrelin administration is able to recover the mild NEC-induced changes to the histology, HF-HRV, and myenteric phenotype in a vagally dependent manner.
Collapse
Affiliation(s)
- Alissa L. Meister
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey PA
| | | | - Kim K. Doheny
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey PA,Neonatal-Perinatal Medicine, Penn State College of Medicine, Hershey PA
| | - R. Alberto Travagli
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey PA,Corresponding author: Dr. R. Alberto Travagli, Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive, MC H109, Hershey, PA 17033,
| |
Collapse
|
5
|
Holmes GM, Blanke EN. Gastrointestinal dysfunction after spinal cord injury. Exp Neurol 2019; 320:113009. [PMID: 31299180 PMCID: PMC6716787 DOI: 10.1016/j.expneurol.2019.113009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/13/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract of vertebrates is a heterogeneous organ system innervated to varying degrees by a local enteric neural network as well as extrinsic parasympathetic and sympathetic neural circuits located along the brainstem and spinal axis. This diverse organ system serves to regulate the secretory and propulsive reflexes integral to the digestion and absorption of nutrients. The quasi-segmental distribution of the neural circuits innervating the gastrointestinal (GI) tract produces varying degrees of dysfunction depending upon the level of spinal cord injury (SCI). At all levels of SCI, GI dysfunction frequently presents life-long challenges to individuals coping with injury. Growing attention to the profound changes that occur across the entire physiology of individuals with SCI reveals profound knowledge gaps in our understanding of the temporal dimensions and magnitude of organ-specific co-morbidities following SCI. It is essential to understand and identify these broad pathophysiological changes in order to develop appropriate evidence-based strategies for management by clinicians, caregivers and individuals living with SCI. This review summarizes the neurophysiology of the GI tract in the uninjured state and the pathophysiology associated with the systemic effects of SCI.
Collapse
Affiliation(s)
- Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United states of America.
| | - Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United states of America
| |
Collapse
|
6
|
Meister AL, Jiang Y, Doheny KK, Travagli RA. Correlation between the motility of the proximal antrum and the high-frequency power of heart rate variability in freely moving rats. Neurogastroenterol Motil 2019; 31:e13633. [PMID: 31119854 PMCID: PMC6639127 DOI: 10.1111/nmo.13633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/18/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cardiac vagal tone can be monitored non-invasively via electrocardiogram measurements of the high-frequency power spectrum of heart rate variability (HF-HRV). Vagal inputs to the upper GI tract are cumbersome to measure non-invasively. Although cardiac and GI vagal outputs arise from distinct brainstem nuclei, the nucleus ambiguus, and the dorsal motor nucleus of the vagus, respectively, we aim to test the hypotheses that in freely moving rats HF-HRV power is correlated to proximal antral motility and can be altered by high levels of circulating estrogen and vagal-selective treatments known to affect antral motility. METHODS Male and female Sprague-Dawley rats were implanted with a miniaturized strain gauge on the proximal gastric antrum and ECG electrodes to collect simultaneous antral motility and electrocardiogram. After recovery, male rats underwent baseline recordings before and after administration of saline (N = 8), cholecystokinin (CCK; N = 7), ghrelin (N = 6), or food (N = 6). Female rats (N = 6) underwent twice-daily recordings to determine baseline correlations during estrous cycle stages. KEY RESULTS There was a significant positive correlation between HF-HRV and proximal antral motility at baseline in males and females with low, but not high, estrogen levels. In male rats, the significant positive correlation was maintained following CCK, but not ghrelin or food administration. CONCLUSIONS AND INFERENCES Our data suggest that in rodents, HF-HRV positively correlates to proximal antral motility at baseline conditions in males and low-estrogen females or following interventions, such as CCK, known to affect vagal tone. This correlation is not observed when antral motility is influenced by more complex events.
Collapse
Affiliation(s)
- Alissa L. Meister
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey PA
| | - Yanyan Jiang
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey PA
| | - Kim K. Doheny
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey PA,Division of Neonatal-Perinatal Medicine, Penn State College of Medicine, Hershey PA
| | - R. Alberto Travagli
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey PA,Corresponding author: Dr. R. Alberto Travagli, Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive, MC H109, Hershey, PA 17033,
| |
Collapse
|
7
|
Minalyan A, Gabrielyan L, Pietra C, Taché Y, Wang L. Multiple Beneficial Effects of Ghrelin Agonist, HM01 on Homeostasis Alterations in 6-Hydroxydopamine Model of Parkinson's Disease in Male Rats. Front Integr Neurosci 2019; 13:13. [PMID: 31031602 PMCID: PMC6474391 DOI: 10.3389/fnint.2019.00013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/25/2019] [Indexed: 12/17/2022] Open
Abstract
Background and objective: Developing therapy for non-motor symptoms of Parkinson’s disease (PD) is important for improving patients’ quality of life. Previously, we reported that the ghrelin receptor agonist, HM01 normalized the decreased 4-h fecal output and levodopa-inhibited gastric emptying in 6-OHDA rats, and activated selective areas in brain and spinal cord. In this study, we evaluated whether chronic HM01 treatment influences motor functions and/or has beneficial effects on non-motor symptoms including alterations of body weight and composition, defecation, feeding and water intake in 6-OHDA rats. Methods: Male rats were microinjected unilaterally into the medial forebrain bundle with either vehicle or 6-OHDA. Three weeks later, we assessed basal body weight, and 24-h fecal output (pellets, weight, dry weight and water content), water intake and food intake (ingested and spillage). Then, HM01 (3 mg/kg) or vehicle was given per gavage daily for 10–12 days and the same parameters were re-assessed daily. Motor behavior (stepping and rotations tests), body composition were monitored before and after the HM01 treatment. Results: 6-OHDA rats showed motor deficits in rotation test induced by apomorphine and stepping test. They also displayed a significant reduction in body weight, water consumption, fecal weight and water content and an increase in food spillage compared to vehicle microinjected rats. Daily oral treatment of HM01 did not modify motor alterations compared to vehicle but significantly increased the body weight, fat mass, and 24-h fecal weight, fecal water content, food and water intake in 6-OHDA rats, while HM01 had no significant effect in vehicle microinjected rats. Fecal weight and water content were both correlated with water intake, but not with food intake. Fat mass, but not body weight, was correlated with food intake. HM01 effects were significant after 24 h and remained similar during the treatment. Conclusions: Chronic treatment with ghrelin agonist, HM01 improved several non-motor symptoms in the rat PD model induced by 6-OHDA lesion including the decrease in body weight, water consumption, fecal weight and water content, and increased food intake while not improving the motor deficits. These findings provide pre-clinical evidence of potential benefits of ghrelin agonists to alleviate non-motor symptoms in PD patients.
Collapse
Affiliation(s)
- Artem Minalyan
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Lilit Gabrielyan
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | | | - Yvette Taché
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,CURE/Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lixin Wang
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,CURE/Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Koutouratsas T, Kalli T, Karamanolis G, Gazouli M. Contribution of ghrelin to functional gastrointestinal disorders’ pathogenesis. World J Gastroenterol 2019; 25:539-551. [PMID: 30774270 PMCID: PMC6371003 DOI: 10.3748/wjg.v25.i5.539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/20/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
Functional gastrointestinal disorders (FGID) are heterogeneous disorders with a variety of clinical manifestations, primarily defined by signs and symptoms rather than a definite underlying cause. Their pathophysiology remains obscure and, although it is expected to differ according to the specific FGID, disruptions in the brain-gut axis are now thought to be a common denominator in their pathogenesis. The hormone ghrelin is an important component of this axis, exerting a wide repertoire of physiological actions, including regulation of gastrointestinal motility and protection of mucosal tissue. Ghrelin’s gene shows genetic polymorphism, while its protein product undergoes complex regulation and metabolism in the human body. Numerous studies have studied ghrelin’s relation to the emergence of FGIDs, its potential value as an index of disease severity and as a predictive marker for symptom relief during attempted treatment. Despite the mixed results currently available in scientific literature, the plethora of statistically significant findings shows that disruptions in ghrelin genetics and expression are plausibly related to FGID pathogenesis. The aim of this paper is to review current literature studying these associations, in an effort to uncover certain patterns of alterations in both genetics and expression, which could delineate its true contribution to FGID emergence, either as a causative agent or as a pathogenetic intermediate.
Collapse
Affiliation(s)
- Tilemachos Koutouratsas
- Department of Basic Medical Science, Laboratory of Biology, School of Medicine, University of Athens, Athens 11527, Greece
| | - Theodora Kalli
- Gastroenterology Department, Larnaca General Hospital, Larnaca 6301, Cyprus
| | - Georgios Karamanolis
- Gastroenterology Unit, 2nd Department of Surgery, “Aretaieio” University Hospital, School of Medicine, University of Athens, Athens 11527, Greece
| | - Maria Gazouli
- Department of Basic Medical Science, Laboratory of Biology, School of Medicine, University of Athens, Athens 11527, Greece
| |
Collapse
|
9
|
Kitazawa T, Kaiya H. Regulation of Gastrointestinal Motility by Motilin and Ghrelin in Vertebrates. Front Endocrinol (Lausanne) 2019; 10:278. [PMID: 31156548 PMCID: PMC6533539 DOI: 10.3389/fendo.2019.00278] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
The energy balance of vertebrates is regulated by the difference in energy input and energy expenditure. Generally, most vertebrates obtain their energy from nutrients of foods through the gastrointestinal (GI) tract. Therefore, food intake and following food digestion, including motility of the GI tract, secretion and absorption, are crucial physiological events for energy homeostasis. GI motility changes depending on feeding, and GI motility is divided into fasting (interdigestive) and postprandial (digestive) contraction patterns. GI motility is controlled by contractility of smooth muscles of the GI tract, extrinsic and intrinsic neurons (motor and sensory) and some hormones. In mammals, ghrelin (GHRL) and motilin (MLN) stimulate appetite and GI motility and contribute to the regulation of energy homeostasis. GHRL and MLN are produced in the mucosal layer of the stomach and upper small intestine, respectively. GHRL is a multifunctional peptide and is involved in glucose metabolism, endocrine/exocrine functions and cardiovascular and reproductive functions, in addition to feeding and GI motility in mammals. On the other hand, the action of MLN is restricted and species such as rodentia, including mice and rats, lack MLN peptide and its receptor. From a phylogenetic point of view, GHRL and its receptor GHS-R1a have been identified in various vertebrates, and their structural features and various physiological functions have been revealed. On the other hand, MLN or MLN-like peptide (MLN-LP) and its receptors have been found only in some fish, birds and mammals. Here, we review the actions of GHRL and MLN with a focus on contractility of the GI tract of species from fish to mammals.
Collapse
Affiliation(s)
- Takio Kitazawa
- Comparative Animal Pharmacology, Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Japan
- *Correspondence: Takio Kitazawa
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|
10
|
Zan J, Song L, Wang J, Zou R, Hong F, Zhao J, Cheng Y, Xu M. Role of ghrelin in small intestinal motility following pediatric intracerebral hemorrhage in mice. Mol Med Rep 2017; 16:6958-6966. [DOI: 10.3892/mmr.2017.7468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 04/25/2017] [Indexed: 11/06/2022] Open
|
11
|
Tillman EM, Smetana KS, Bantu L, Buckley MG. Pharmacologic Treatment for Pediatric Gastroparesis: A Review of the Literature. J Pediatr Pharmacol Ther 2016; 21:120-32. [PMID: 27199619 DOI: 10.5863/1551-6776-21.2.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There have been a number of agents that have been tried for treatment of gastroparesis over the past 3 decades, with varying levels of success. Guidelines exist for the management of gastroparesis in adults; however, even though the cause of gastroparesis in children is similar to that in adults, no guidelines exist for treating pediatric gastroparesis as studies on the topic are limited. With what little information we have on pediatric gastroparesis, medications used in children's studies do not seem to demonstrate the same results as in adult patients with gastroparesis; thus, future studies of whether certain medications are effective for treating pediatric gastroparesis and at what dose still need to be conducted. Pharmacological treatment options for pediatric gastroparesis do not show a clear correlation of resolving or even maintaining gastroparesis-associated symptoms or disease state. This article reviews the available studies of drugs that have shown some efficacy, with an emphasis on pediatric studies.
Collapse
Affiliation(s)
- Emma M Tillman
- Department of Clinical Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Keaton S Smetana
- Department of Pharmacy, University of Kentucky Heathcare, Lexington, Kentucky
| | - Likeselam Bantu
- Department of Clinical Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Merrion G Buckley
- Department of Clinical Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
12
|
Wang L, Mogami S, Yakabi S, Karasawa H, Yamada C, Yakabi K, Hattori T, Taché Y. Patterns of Brain Activation and Meal Reduction Induced by Abdominal Surgery in Mice and Modulation by Rikkunshito. PLoS One 2015; 10:e0139325. [PMID: 26421719 PMCID: PMC4589401 DOI: 10.1371/journal.pone.0139325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/11/2015] [Indexed: 12/15/2022] Open
Abstract
Abdominal surgery inhibits food intake and induces c-Fos expression in the hypothalamic and medullary nuclei in rats. Rikkunshito (RKT), a Kampo medicine improves anorexia. We assessed the alterations in meal microstructure and c-Fos expression in brain nuclei induced by abdominal surgery and the modulation by RKT in mice. RKT or vehicle was gavaged daily for 1 week. On day 8 mice had no access to food for 6–7 h and were treated twice with RKT or vehicle. Abdominal surgery (laparotomy-cecum palpation) was performed 1–2 h before the dark phase. The food intake and meal structures were monitored using an automated monitoring system for mice. Brain sections were processed for c-Fos immunoreactivity (ir) 2-h after abdominal surgery. Abdominal surgery significantly reduced bouts, meal frequency, size and duration, and time spent on meals, and increased inter-meal interval and satiety ratio resulting in 92–86% suppression of food intake at 2–24 h post-surgery compared with control group (no surgery). RKT significantly increased bouts, meal duration and the cumulative 12-h food intake by 11%. Abdominal surgery increased c-Fos in the prelimbic, cingulate and insular cortexes, and autonomic nuclei, such as the bed nucleus of the stria terminalis, central amygdala, hypothalamic supraoptic (SON), paraventricular and arcuate nuclei, Edinger-Westphal nucleus (E-W), lateral periaqueduct gray (PAG), lateral parabrachial nucleus, locus coeruleus, ventrolateral medulla and nucleus tractus solitarius (NTS). RKT induced a small increase in c-Fos-ir neurons in the SON and E-W of control mice, and in mice with surgery there was an increase in the lateral PAG and a decrease in the NTS. These findings indicate that abdominal surgery inhibits food intake by increasing both satiation (meal duration) and satiety (meal interval) and activates brain circuits involved in pain, feeding behavior and stress that may underlie the alterations of meal pattern and food intake inhibition. RKT improves food consumption post-surgically that may involve modulation of pain pathway.
Collapse
Affiliation(s)
- Lixin Wang
- CURE/Digestive Diseases Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, University of California at Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, California, United States of America
- * E-mail:
| | - Sachiko Mogami
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - Seiichi Yakabi
- CURE/Digestive Diseases Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, University of California at Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, California, United States of America
| | - Hiroshi Karasawa
- CURE/Digestive Diseases Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, University of California at Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, California, United States of America
| | - Chihiro Yamada
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - Koji Yakabi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tomohisa Hattori
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - Yvette Taché
- CURE/Digestive Diseases Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, University of California at Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, California, United States of America
| |
Collapse
|
13
|
Sessenwein JL, Lomax AE. Ghrelin receptors as targets for novel motility drugs. Neurogastroenterol Motil 2015; 27:589-93. [PMID: 25903396 DOI: 10.1111/nmo.12562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 12/17/2022]
Abstract
Constipation arises from a multitude of causes, including aging, spinal cord injury (SCI), and dietary issues. The heterogeneity of inciting factors has made the treatment of constipation particularly challenging. Agonists of ghrelin receptors have beneficial effects on delayed gastric emptying, but less is known about their ability to improve colorectal motility. Recent publications indicate that the activation of the ghrelin receptors in the spinal cord can alleviate constipation due to dietary causes, Parkinsonism, and SCI in rodents. Ghrelin-responsive neurons in the intermediolateral cell column of the lumbosacral spinal cord can activate enteric microcircuits that coordinate propulsive colorectal contractions, leading to defecation. Learning more about the properties of neurons in the spinal defecation center and the roles of ghrelin receptors in the defecation reflex will accelerate the development of improved treatments of constipation.
Collapse
Affiliation(s)
- J L Sessenwein
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, ON, Canada
| | | |
Collapse
|
14
|
Qu Z, Zhang J, Gao W, Guo H, Liu C. Bidirectional effects of methanol extract of Wei-Chang-An pill on gastrointestinal transit and the spasmolytic activity on isolated rat jejunum. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:203-212. [PMID: 24928825 DOI: 10.1016/j.jep.2014.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/14/2014] [Accepted: 05/17/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wei-Chang-An pill (WCA pill), a traditional Chinese medicine, has been used for treating various gastrointestinal diseases for several decades. Despite the popular medicinal use of WCA pill, less data was available to its activity and mechanism in gastrointestinal disorders. To examine the effects of the methanol extract of WCA pill (ME) on gastrointestinal tract so as to assess some of the possible mechanisms involved in the clinical treatment. MATERIALS AND METHODS ME was studied on gastrointestinal transit in vivo including gastric emptying and small intestinal motility in normal and neostigmine-induced mice, as well as on the isolated tissue preparations of rat jejunum in vitro. RESULTS In vivo, the gastric emptying decreased and intestinal transit increased after administration of ME in normal mice. However, administration of ME accelerated the intestinal transit ranging from 0.01 to 0.8 mg/mL and reduced it at the concentration of 1.6 and 3.2 mg/mL, while the gastric emptying was inhibited throughout the concentrations in neostigmine-induced mice. in vitro, ME caused inhibitory effect on the spontaneous contraction of rat-isolated jejunum in dose-dependent manner ranging from 0.01 to 6 mg/mL and also relaxed the acetylcholine chloride (Ach, 10(-6) M)-induced and K+ (60 mM)-induced contractions. ME shifted the Ca2+ concentration-response curves to right, similar to that caused by verapamil (0.025 mM). CONCLUSIONS These results indicated that ME might play a bidirectional role in gastrointestinal transit modulation and the effects on isolated tissue are probably mediated through calcium influx and muscarinic receptors, which provides pharmacological basis for the clinical use of WCA pill in gastrointestinal tract disorders.
Collapse
Affiliation(s)
- Zhuo Qu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingze Zhang
- Department of Pharmacy, Logistics College of Chinese People's Armed Police Forces, Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin 300162, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Huimin Guo
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Changxiao Liu
- The State Key Laboratories of Pharmacodynamics and Pharmacokinetics, Tianjin, China
| |
Collapse
|
15
|
Abstract
INTRODUCTION Over the past 3 years, several patents appeared dealing with the discovery of compounds able to modulate ghrelin actions: agonists for the treatment of cachexia, as diagnostic agents for GH deficiency or for the increase in gastrointestinal motility, antagonists and inverse agonists as anorexigenic agents for the treatment of obesity and type 2 diabetes. This research has been conducted by several pharmaceutical companies and some compounds have entered clinical trials, but, to date, compounds acting on the ghrelin receptor do not represent clinical options yet. AREAS COVERED A comprehensive description and categorization of patents related to each type of compounds is provided, together with data related to these compounds that appeared in the scientific literature. EXPERT OPINION Ghrelin appears to mediate a myriad of actions, and some of these appear to be due to unknown mechanisms (a second putative ghrelin receptor, putative receptors for unacylated ghrelin); several agonists, antagonists and inverse agonists at ghrelin receptor have been developed but their mechanism of action into CNS is poorly understood. The therapeutic potential of compounds acting on ghrelin receptor is still to be fully assessed, but the results obtained to date are encouraging for the successful clinical translation of compounds able to treat several pathologies.
Collapse
Affiliation(s)
- Luca Costantino
- University of Modena and Reggio Emilia, Dipartimento di Scienze della Vita , Via Campi 183, 41100 Modena , Italy +39 059 2055749 ; +39 059 2055131 ;
| | | |
Collapse
|
16
|
Abstract
Gastroesophageal reflux (GER) is a common occurrence in critically ill, mechanically ventilated patients. Reflux can lead to pulmonary aspiration of gastric contents and subsequent pneumonia. Several characteristics of patients, interventions provided in the intensive care unit setting, and factors associated with feeding increase a patient's risk for reflux. Critical care nurses and clinical nurse specialists can identify patients at highest risk for GER by utilizing the patient's history, reviewing the medications, and assessing the current status to provide interventions to reduce the risk of GER and its sequelae of aspiration pneumonia. This article reviews the physiology of GER, risk factors, and interventions to decrease GER in the critically ill patient.
Collapse
|
17
|
Cheung CK, Wu JCY. Role of ghrelin in the pathophysiology of gastrointestinal disease. Gut Liver 2013; 7:505-12. [PMID: 24073306 PMCID: PMC3782663 DOI: 10.5009/gnl.2013.7.5.505] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/19/2013] [Accepted: 05/20/2013] [Indexed: 12/11/2022] Open
Abstract
Ghrelin is a 28-amino-acid peptide that plays multiple roles in humans and other mammals. The functions of ghrelin include food intake regulation, gastrointestinal (GI) motility, and acid secretion by the GI tract. Many GI disorders involving infection, inflammation, and malignancy are also correlated with altered ghrelin production and secretion. Although suppressed ghrelin responses have already been observed in various GI disorders, such as chronic gastritis, Helicobacter pylori infection, irritable bowel syndrome, functional dyspepsia, and cachexia, elevated ghrelin responses have also been reported in celiac disease and inflammatory bowel disease. Moreover, we recently reported that decreased fasting and postprandial ghrelin levels were observed in female patients with functional dyspepsia compared with healthy subjects. These alterations of ghrelin responses were significantly correlated with meal-related symptoms (bloating and early satiation) in female functional dyspepsia patients. We therefore support the notion that abnormal ghrelin responses may play important roles in various GI disorders. Furthermore, human clinical trials and animal studies involving the administration of ghrelin or its receptor agonists have shown promising improvements in gastroparesis, anorexia, and cancer. This review summarizes the impact of ghrelin, its family of peptides, and its receptors on GI diseases and proposes ghrelin modulation as a potential therapy.
Collapse
Affiliation(s)
- Cynthia K Cheung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
18
|
Changes in plasma ghrelin and serum leptin levels after Cisplatin-based transcatheter arterial infusion chemotherapy for hepatocellular carcinoma. ISRN GASTROENTEROLOGY 2013; 2013:415450. [PMID: 23533792 PMCID: PMC3606724 DOI: 10.1155/2013/415450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/17/2013] [Indexed: 02/07/2023]
Abstract
Background and Objective. Cisplatin-based chemotherapy is widely recognized to cause severe gastrointestinal disorders like nausea, vomiting, and appetite loss. The aim of this study was to assess whether cisplatin-based transcatheter arterial infusion (TAI) chemotherapy reduces plasma ghrelin levels and food intake in hepatocellular carcinoma (HCC) patients. Methods. Seventeen patients with HCC who underwent cisplatin-based TAI chemotherapy (80-100 mg/body) were enrolled in this study. Changes in peptide hormones, including ghrelin and leptin, as well as cytokines, were measured before and after chemotherapy. Appetite was evaluated by visual analog scale (VAS) and food intake was scored by eleven stages (0-10). Results. Appetite and food intake were significantly decreased after chemotherapy (P < 0.05). Plasma acylated ghrelin levels before therapy and at day 1, day 7, and day 14 after chemotherapy were 10.4 ± 7.2, 4.7 ± 4.7, 11.7 ± 8.9, and 9.3 ± 6.6 fmol/mL, respectively. The level on day 1 was decreased significantly (P < 0.05). In contrast, the levels of leptin, granulocyte colony-stimulating factor (G-CSF), and monocyte chemotactic protein-1 (MCP-1) on day 1 were increased significantly (P < 0.05). Conclusions. TAI for HCC reduced plasma acylated ghrelin levels, appetite, and food intake significantly. In addition, it increased serum leptin levels.
Collapse
|
19
|
Thazhath SS, Jones KL, Horowitz M, Rayner CK. Diabetic gastroparesis: recent insights into pathophysiology and implications for management. Expert Rev Gastroenterol Hepatol 2013; 7:127-39. [PMID: 23363262 DOI: 10.1586/egh.12.82] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Delayed gastric emptying affects a substantial proportion of patients with long-standing diabetes, and when associated with symptoms and/or disordered glycemic control, affects quality of life adversely. Important clinicopathological insights have recently been gained by the systematic analysis of gastric biopsies from patients with severe diabetic gastroparesis, which may stimulate the development of new therapies in the coming decade. Experience with prokinetic therapies and treatments, such as pyloric botulinum toxin injection and gastric electrical stimulation, has established that relief of symptoms does not correlate closely with acceleration of delayed gastric emptying, and that well-designed controlled trials are essential to determine the efficacy of emerging therapies.
Collapse
Affiliation(s)
- Sony S Thazhath
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, North Terrace, Adelaide 5000, Australia Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, University of Adelaide, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
20
|
Ma XB, Xu WH. Ghrelin in gastrointestinal diseases. Shijie Huaren Xiaohua Zazhi 2013; 21:239-243. [DOI: 10.11569/wcjd.v21.i3.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is an endogenous ligand of the growth hormone secretagogue receptor (GHSR). Upon binding to its receptor, Ghrelin can produce a variety of biological effects, such as promoting the release of growth hormone and maintaining energy balance. Besides, it also promotes gastrointestinal motility, increases gastric acid secretion, and is involved in the genesis of tumors. This article reviews the role of Ghrelin in gastrointestinal system disease.
Collapse
|
21
|
Greenwood-Van Meerveld B, Tyler K, Mohammadi E, Pietra C. Efficacy of ipamorelin, a ghrelin mimetic, on gastric dysmotility in a rodent model of postoperative ileus. J Exp Pharmacol 2012; 4:149-55. [PMID: 27186127 PMCID: PMC4863553 DOI: 10.2147/jep.s35396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Delayed gastric emptying is a common disorder with few effective therapeutic options. The goal of this study was to investigate whether ipamorelin, a synthetic peptidomimetic that acts on the ghrelin receptor, accelerates gastric emptying in a rodent model of gastroparesis induced by abdominal surgery and intestinal manipulation. Methods Fasted adult male rats were subjected to laparotomy and intestinal manipulation. Following the surgery rats received ipamorelin (0.014–0.14 µmol/kg) or vehicle control via intravenous administration. Gastric emptying was measured by the percent of total recovered radioactivity remaining in the stomach 15 minutes after intragastric gavage of 1.5 mL of 99mTc (technicium-99m) sulfur colloid in 0.5% methylcellulose. In a separate group of rats subjected to laparotomy and intestinal manipulation, the gastric fundus was isolated and tissue segments were suspended in an organ bath to assess the effect of ipamorelin (1 µM) on gastric smooth muscle contractility induced by acetylcholine and electrical field stimulation. Results Abdominal surgery caused a delay in gastric emptying with 78% ± 5% of the meal remaining in the stomach in vehicle controls. Ipamorelin (0.014 µmol/kg intravenous) resulted in a significant acceleration (P < 0.05 vs vehicle-treated rat) of gastric emptying with 52% ± 11% of the meal remaining in the stomach compared to nonsurgical control animals with 44% ± 6%. Following abdominal surgery and intestinal manipulation, isolated preparations of gastric smooth muscle exhibited a marked inhibition of acetylcholine and electrical field stimulation-induced contractile responses, which were reversed by ipamorelin and ghrelin. Conclusion These results suggest that ipamorelin accelerates gastric emptying in a rodent model of postoperative ileus through the stimulation of gastric contractility by activating a ghrelin receptor-mediated mechanism involving cholinergic excitatory neurons.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- VA Medical Center, University of Oklahoma Health Science Center, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Karl Tyler
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Ehsan Mohammadi
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | | |
Collapse
|
22
|
Fujimiya M, Ataka K, Asakawa A, Chen CY, Kato I, Inui A. Ghrelin, des-acyl ghrelin and obestatin on the gastrointestinal motility. Peptides 2011; 32:2348-51. [PMID: 21835213 DOI: 10.1016/j.peptides.2011.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 06/21/2011] [Accepted: 07/22/2011] [Indexed: 12/11/2022]
Abstract
Ghrelin, des-acyl ghrelin and obestatin are derived from a common prohormone, preproghrelin by posttranslational processing, originating from endocrine cells in the stomach. Ghrelin exerts stimulatory effects on the motility of antrum and duodenum in both fed and fasted state of animals. On the other hand, des-acyl ghrelin exerts inhibitory effects on the motility of antrum but not on the motility of duodenum in the fasted state of animals. Obestatin exerts inhibitory effects on the motility of antrum and duodenum in the fed state but not in the fasted state of animals. NPY Y2 and Y4 receptors in the brain may mediate the action of ghrelin, CRF type 2 receptor in the brain may mediate the action of des-acyl ghrelin, whereas CRF type 1 and type 2 receptors in the brain may mediate the action of obestatin.
Collapse
Affiliation(s)
- Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | | | | | | | | | | |
Collapse
|