1
|
Qian K, Yang P, Li Y, Meng R, Cheng Y, Zhou L, Wu J, Xu S, Bao X, Guo Q, Wang P, Xu M, Sheng D, Zhang Q. Rational fusion design inspired by cell-penetrating peptide: SS31/S-14 G Humanin hybrid peptide with amplified multimodal efficacy and bio-permeability for the treatment of Alzheimer's disease. Asian J Pharm Sci 2024; 19:100938. [PMID: 39253611 PMCID: PMC11382307 DOI: 10.1016/j.ajps.2024.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/26/2023] [Accepted: 05/16/2024] [Indexed: 09/11/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease induced by multiple interconnected mechanisms. Peptide drug candidates with multi-modal efficacy generated from fusion strategy are suitable for addressing multi-facet pathology. However, clinical translation of peptide drugs is greatly hampered by their low permeability into brain. Herein, a hybrid peptide HNSS is generated by merging two therapeutic peptides (SS31 and S-14 G Humanin (HNG)), using a different approach from the classical shuttle-therapeutic peptide conjugate design. HNSS demonstrated increased bio-permeability, with a 2-fold improvement in brain distribution over HNG, thanks to its structure mimicking the design of signal peptide-derived cell-penetrating peptides. HNSS efficiently alleviated mitochondrial dysfunction through the combined effects of mitochondrial targeting, ROS scavenging and p-STAT3 activation. Meanwhile, HNSS with increased Aβ affinity greatly inhibited Aβ oligomerization/fibrillation, and interrupted Aβ interaction with neuron/microglia by reducing neuronal mitochondrial Aβ deposition and promoting microglial phagocytosis of Aβ. In 3× Tg-AD transgenic mice, HNSS treatment efficiently inhibited brain neuron loss and improved the cognitive performance. This work validates the rational fusion design-based strategy for bio-permeability improvement and efficacy amplification, providing a paradigm for developing therapeutic peptide candidates against neurodegenerative disease.
Collapse
Affiliation(s)
- Kang Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Peng Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yixian Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ran Meng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yunlong Cheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lingling Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jing Wu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuting Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiaoyan Bao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qian Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Pengzhen Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Minjun Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Dongyu Sheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
2
|
Huang S, Gao Y, Ma L, Jia B, Zhao W, Yao Y, Li W, Lin T, Wang R, Song J, Zhang W. Design of pH-responsive antimicrobial peptide melittin analog-camptothecin conjugates for tumor therapy. Asian J Pharm Sci 2024; 19:100890. [PMID: 38419760 PMCID: PMC10900806 DOI: 10.1016/j.ajps.2024.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Melittin, a classical antimicrobial peptide, is a highly potent antitumor agent. However, its significant toxicity seriously hampers its application in tumor therapy. In this study, we developed novel melittin analogs with pH-responsive, cell-penetrating and membrane-lytic activities by replacing arginine and lysine with histidine. After conjugation with camptothecin (CPT), CPT-AAM-1 and CPT-AAM-2 were capable of killing tumor cells by releasing CPT at low concentrations and disrupting cell membranes at high concentrations under acidic conditions. Notably, we found that the C-terminus of the melittin analogs was more suitable for drug conjugation than the N-terminus. CPT-AAM-1 significantly suppressed melanoma growth in vivo with relatively low toxicity. Collectively, the present study demonstrates that the development of antitumor drugs based on pH-responsive antimicrobial peptide-drug conjugates is a promising strategy.
Collapse
Affiliation(s)
- Sujie Huang
- Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuxuan Gao
- Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ling Ma
- Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bo Jia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenhao Zhao
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730000, China
| | - Yufan Yao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenyuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tongyi Lin
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingjing Song
- Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Grohn K, Parella K, Lumen E, Colegrove H, Bjork V, Franceski A, Wolfe A, Moody K. Comparative transport analysis of cell penetrating peptides and Lysosomal sequences for selective tropism towards RPE cells. RESEARCH SQUARE 2023:rs.3.rs-3651531. [PMID: 38234750 PMCID: PMC10793506 DOI: 10.21203/rs.3.rs-3651531/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Cell penetrating peptides are typically nonspecific, targeting multiple cell types without discrimination. However, subsets of Cell penetrating peptides (CPP) have been found, which show a 'homing' capacity or increased likelihood of internalizing into specific cell types and subcellular locations. Therapeutics intended to be delivered to tissues with a high degree of cellular diversity, such as the intraocular space, would benefit from delivery using CPP that can discriminate across multiple cell types. Lysosomal storage diseases in the retinal pigment epithelium (RPE) can impair cargo clearance, leading to RPE atrophy and blindness. Characterizing CPP for their capacity to effectively deliver cargo to the lysosomes of different cell types may expand treatment options for lysosomal storage disorders. We developed a combinatorial library of CPP and lysosomal sorting signals, applied to ARPE19 and B3 corneal lens cells, for the purpose of determining cell line specificity and internal targeting. Several candidate classes of CPP were found to have as much as 4 times the internalization efficiency in ARPE19 compared to B3. Follow-up cargo transport studies were also performed, which demonstrate effective internalization and lysosomal targeting in ARPE19 cells.
Collapse
Affiliation(s)
- Kris Grohn
- SUNY-ESF: SUNY College of Environmental Science and Forestry
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Lozada C, Gonzalez S, Agniel R, Hindie M, Manciocchi L, Mazzanti L, Ha-Duong T, Santoro F, Carotenuto A, Ballet S, Lubin-Germain N. Introduction of constrained Trp analogs in RW9 modulates structure and partition in membrane models. Bioorg Chem 2023; 139:106731. [PMID: 37480815 DOI: 10.1016/j.bioorg.2023.106731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Over the past decades, many cell-penetrating peptides (CPP) have been studied for their capacity to cross cellular membranes, mostly in order to improve cellular uptake of therapeutic agents. Even though hydrophobic and anionic CPPs have been described, many of them are polycationic, due to the presence of several arginine (Arg) residues. Noteworthy, however, the presence of aromatic amino acids such as tryptophan (Trp) within CPPs seems to play an important role to reach high membranotropic activity. RW9 (RRWWRRWRR) is a designed CPP derived from the polyarginine R9 presenting both features. In general, when interacting with membranes, CPPs adopt an optimal conformation for membrane interactions - an amphipathic helical secondary structure in the case of RW9. Herein, we assumed that the incorporation of a locally constrained amino acid in the peptide sequence could improve the membranotropic activity of RW9, by facilitating its structuration upon contact with a membrane, while leaving a certain plasticity. Therefore, two cyclized Trp derivatives (Tcc and Aia) were synthesized to be incorporated in RW9 as surrogates of Trp residues. Thus, a series of peptides containing these building blocks has been synthesized by varying the type, position, and number of modifications. The membranotropic activity of the RW9 analogs was studied by spectrofluorescence titration of the peptides in presence of liposomes (DMPG), allowing to calculate partition coefficients (Kp). Our results indicate that the partitioning of the modified peptides depends on the type, the number and the position of the modification, with the best sequence being [Aia4]RW9. Interestingly, both NMR analysis and molecular dynamic (MD) simulations indicate that this analog presents an extended conformation similar to the native RW9, but with a much-reduced structural flexibility. Finally, cell internalization properties were also confirmed by confocal microscopy.
Collapse
Affiliation(s)
- Camille Lozada
- CNRS, BioCIS, CY Cergy-Paris Université, 95000 Neuville sur Oise, France; CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France; Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Simon Gonzalez
- CNRS, BioCIS, CY Cergy-Paris Université, 95000 Neuville sur Oise, France; CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Rémy Agniel
- ERRMECe, Institut des Matériaux I-MAT (FD4122), CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Mathilde Hindie
- ERRMECe, Institut des Matériaux I-MAT (FD4122), CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Luca Manciocchi
- CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Liuba Mazzanti
- CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Tap Ha-Duong
- CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Federica Santoro
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Nadège Lubin-Germain
- CNRS, BioCIS, CY Cergy-Paris Université, 95000 Neuville sur Oise, France; CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France.
| |
Collapse
|
5
|
Ouyang J, Sheng Y, Wang W. Recent Advances of Studies on Cell-Penetrating Peptides Based on Molecular Dynamics Simulations. Cells 2022; 11:cells11244016. [PMID: 36552778 PMCID: PMC9776715 DOI: 10.3390/cells11244016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
With the ability to transport cargo molecules across cell membranes with low toxicity, cell-penetrating peptides (CPPs) have become promising candidates for next generation peptide-based drug delivery vectors. Over the past three decades since the first CPP was discovered, a great deal of work has been done on the cellular uptake mechanisms and the applications for the delivery of therapeutic molecules, and significant advances have been made. But so far, we still do not have a precise and unified understanding of the structure-activity relationship of the CPPs. Molecular dynamics (MD) simulations provide a method to reveal peptide-membrane interactions at the atomistic level and have become an effective complement to experiments. In this paper, we review the progress of the MD simulations on CPP-membrane interactions, including the computational methods and technical improvements in the MD simulations, the research achievements in the CPP internalization mechanism, CPP decoration and coupling, and the peptide-induced membrane reactions during the penetration process, as well as the comparison of simulated and experimental results.
Collapse
Affiliation(s)
- Jun Ouyang
- School of Public Courses, Bengbu Medical College, Bengbu 233030, China
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yuebiao Sheng
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- High Performance Computing Center, Nanjing University, Nanjing 210093, China
- Correspondence: (Y.S.); (W.W.)
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Correspondence: (Y.S.); (W.W.)
| |
Collapse
|
6
|
Brankiewicz W, Okońska J, Serbakowska K, Lica J, Drab M, Ptaszyńska N, Łęgowska A, Rolka K, Szweda P. New Peptide Based Fluconazole Conjugates with Expanded Molecular Targets. Pharmaceutics 2022; 14:pharmaceutics14040693. [PMID: 35456526 PMCID: PMC9026428 DOI: 10.3390/pharmaceutics14040693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Infections of Candida spp. etiology are frequently treated with azole drugs. Among azoles, the most widely used in the clinical scenario remains fluconazole (FLC). Promising results in treatment of dangerous, systemic Candida infections demonstrate the advantages of combined therapies carried out with combinations of at least two different antifungal agents. Here, we report five conjugates composed of covalently linked FLC and cell penetrating or antimicrobial peptide: TP10-7-NH2, TP10-NH2, LFcinB(2-11)-NH2, LFcinB[Nle1,11]-NH2, and HLopt2-NH2, with aspects of design, chemical synthesis and their biological activities. Two of these compounds, namely FLCpOH-TP10-NH2 and FLCpOH-TP10-7-NH2, exhibit high activity against reference strains and fluconazole-resistant clinical isolates of C. albicans, including strains overproducing drug transporters. Moreover, both of them demonstrate higher fungicidal effects compared to fluconazole. Analysis performed with fluorescence and scanning electron microscopy as well as flow cytometry indicated the cell membrane as a molecular target of synthesized conjugates. An important advantage of FLCpOH-TP10-NH2 and FLCpOH-TP10-7-NH2 is their low cytotoxicity. The IC90 value for the human cells after 72 h treatment was comparable to the MIC50 value after 24 h treatment for most strains of C. albicans. In reported conjugates, FLC was linked to the peptide by its hydroxyl group. It is worth noting that conjugation of FLC by the nitrogen atom of the triazole ring led to practically inactive compounds. Two compounds produced by us and reported herein appear to be potential candidates for novel antifungal agents.
Collapse
Affiliation(s)
- Wioletta Brankiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (W.B.); (K.S.)
| | - Joanna Okońska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
| | - Katarzyna Serbakowska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (W.B.); (K.S.)
| | - Jan Lica
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
| | - Marek Drab
- Unit of Nanostructural Bio-Interactions, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla-Street, 53-114 Wrocław, Poland;
| | - Natalia Ptaszyńska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
- Correspondence: (N.P.); (P.S.); Tel.: +48-58-523-5092 (N.P.); +48-58-347-2440 (P.S.); Fax: +48-58-523-5012 (N.P.)
| | - Anna Łęgowska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (W.B.); (K.S.)
- Correspondence: (N.P.); (P.S.); Tel.: +48-58-523-5092 (N.P.); +48-58-347-2440 (P.S.); Fax: +48-58-523-5012 (N.P.)
| |
Collapse
|
7
|
Rusiecka I, Gągało I, Kocić I. Cell-penetrating peptides improve pharmacokinetics and pharmacodynamics of anticancer drugs. Tissue Barriers 2022; 10:1965418. [PMID: 34402743 PMCID: PMC8794253 DOI: 10.1080/21688370.2021.1965418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022] Open
Abstract
This review concentrates on the research concerning conjugates of anticancer drugs with versatile cell-penetrating peptides (CPPs). For a better insight into the relationship between the components of the constructs, it starts with the characteristic of the peptides and considers its following aspects: mechanisms of cellular internalization, interaction with cancer-modified membranes, selectivity against tumor tissue. Also, CPPs with anticancer activity have been distinguished and summarized with their mechanisms of action. With respect to the conjugates, the preclinical studies (in vitro, in vivo) indicated that they possess several merits in comparison to the parent drugs. They concerned not only better cellular internalization but also other improvements in pharmacokinetics (e.g. access to the brain tissue) and pharmacodynamics (e.g. overcoming drug resistance). The anticancer activity of the conjugates was usually superior to that of the unconjugated drug. Certain anticancer CPPs and conjugates entered clinical trials.
Collapse
Affiliation(s)
- Izabela Rusiecka
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| | - Iwona Gągało
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| | - Ivan Kocić
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
8
|
Hong Z, Sun X, Sun X, Cao J, Yang Z, Pan Z, Yu T, Dong J, Zhou B, Bai J. Enzyme-induced morphological transformation of drug carriers: Implications for cytotoxicity and the retention time of antitumor agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112389. [PMID: 34579908 DOI: 10.1016/j.msec.2021.112389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/09/2023]
Abstract
Nanocarriers have been widely employed to deliver chemotherapeutic drugs for cancer treatment. However, the insufficient accumulation of nanoparticles in tumors is an important reason for the poor efficacy of nanodrugs. In this study, a novel drug delivery system with a self-assembled amphiphilic peptide was designed to respond specifically to alkaline phosphatase (ALP), a protease overexpressed in cancer cells. The amphiphilic peptide self-assembled into spherical and fibrous nanostructures, and it easily assembled into spherical drug-loaded peptide nanoparticles after loading of a hydrophobic chemotherapeutic drug. The cytotoxicity of the drug carriers was enhanced against tumor cells over time. These spherical nanoparticles transformed into nanofibers under the induction of ALP, leading to efficient release of the encapsulated drug. This drug delivery strategy relying on responsiveness to an enzyme present in the tumor microenvironment can enhance local drug accumulation at the tumor site. The results of live animal imaging showed that the residence time of the morphologically transformable drug-loaded peptide nanoparticles at the tumor site was prolonged in vivo, confirming their potential use in antitumor therapy. These findings can contribute to a better understanding of the influence of drug carrier morphology on intracellular retention.
Collapse
Affiliation(s)
- Zexin Hong
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Xirui Sun
- Department of Oncology, Weifang Medical University, Weifang 261053, China
| | - Xiumei Sun
- Department of Oncology, Weifang Medical University, Weifang 261053, China
| | - Juanjuan Cao
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Zhengqiang Yang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Zhifang Pan
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Tao Yu
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Jinhua Dong
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
9
|
Cell-Penetrating Peptides and Transportan. Pharmaceutics 2021; 13:pharmaceutics13070987. [PMID: 34210007 PMCID: PMC8308968 DOI: 10.3390/pharmaceutics13070987] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
In the most recent 25–30 years, multiple novel mechanisms and applications of cell-penetrating peptides (CPP) have been demonstrated, leading to novel drug delivery systems. In this review, I present a brief introduction to the CPP area with selected recent achievements. This is followed by a nostalgic journey into the research in my own laboratories, which lead to multiple CPPs, starting from transportan and paving a way to CPP-based therapeutic developments in the delivery of bio-functional materials, such as peptides, proteins, vaccines, oligonucleotides and small molecules, etc.
Collapse
|
10
|
Boisguérin P, Konate K, Josse E, Vivès E, Deshayes S. Peptide-Based Nanoparticles for Therapeutic Nucleic Acid Delivery. Biomedicines 2021; 9:583. [PMID: 34065544 PMCID: PMC8161338 DOI: 10.3390/biomedicines9050583] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Gene therapy offers the possibility to skip, repair, or silence faulty genes or to stimulate the immune system to fight against disease by delivering therapeutic nucleic acids (NAs) to a patient. Compared to other drugs or protein treatments, NA-based therapies have the advantage of being a more universal approach to designing therapies because of the versatility of NA design. NAs (siRNA, pDNA, or mRNA) have great potential for therapeutic applications for an immense number of indications. However, the delivery of these exogenous NAs is still challenging and requires a specific delivery system. In this context, beside other non-viral vectors, cell-penetrating peptides (CPPs) gain more and more interest as delivery systems by forming a variety of nanocomplexes depending on the formulation conditions and the properties of the used CPPs/NAs. In this review, we attempt to cover the most important biophysical and biological aspects of non-viral peptide-based nanoparticles (PBNs) for therapeutic nucleic acid formulations as a delivery system. The most relevant peptides or peptide families forming PBNs in the presence of NAs described since 2015 will be presented. All these PBNs able to deliver NAs in vitro and in vivo have common features, which are characterized by defined formulation conditions in order to obtain PBNs from 60 nm to 150 nm with a homogeneous dispersity (PdI lower than 0.3) and a positive charge between +10 mV and +40 mV.
Collapse
Affiliation(s)
| | | | | | | | - Sébastien Deshayes
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier, France; (P.B.); (K.K.); (E.J.); (E.V.)
| |
Collapse
|
11
|
Giribaldi J, Smith JJ, Schroeder CI. Recent developments in animal venom peptide nanotherapeutics with improved selectivity for cancer cells. Biotechnol Adv 2021; 50:107769. [PMID: 33989705 DOI: 10.1016/j.biotechadv.2021.107769] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Animal venoms are a rich source of bioactive peptides that efficiently modulate key receptors and ion channels involved in cellular excitability to rapidly neutralize their prey or predators. As such, they have been a wellspring of highly useful pharmacological tools for decades. Besides targeting ion channels, some venom peptides exhibit strong cytotoxic activity and preferentially affect cancer over healthy cells. This is unlikely to be driven by an evolutionary impetus, and differences in tumor cells and the tumor microenvironment are probably behind the serendipitous selectivity shown by some venom peptides. However, strategies such as bioconjugation and nanotechnologies are showing potential to improve their selectivity and potency, thereby paving the way to efficiently harness new anticancer mechanisms offered by venom peptides. This review aims to highlight advances in nano- and chemotherapeutic tools and prospective anti-cancer drug leads derived from animal venom peptides.
Collapse
Affiliation(s)
- Julien Giribaldi
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jennifer J Smith
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Christina I Schroeder
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
12
|
Rádis-Baptista G. Cell-Penetrating Peptides Derived from Animal Venoms and Toxins. Toxins (Basel) 2021; 13:147. [PMID: 33671927 PMCID: PMC7919042 DOI: 10.3390/toxins13020147] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-penetrating peptides (CPPs) comprise a class of short polypeptides that possess the ability to selectively interact with the cytoplasmic membrane of certain cell types, translocate across plasma membranes and accumulate in the cell cytoplasm, organelles (e.g., the nucleus and mitochondria) and other subcellular compartments. CPPs are either of natural origin or de novo designed and synthesized from segments and patches of larger proteins or designed by algorithms. With such intrinsic properties, along with membrane permeation, translocation and cellular uptake properties, CPPs can intracellularly convey diverse substances and nanomaterials, such as hydrophilic organic compounds and drugs, macromolecules (nucleic acids and proteins), nanoparticles (nanocrystals and polyplexes), metals and radionuclides, which can be covalently attached via CPP N- and C-terminals or through preparation of CPP complexes. A cumulative number of studies on animal toxins, primarily isolated from the venom of arthropods and snakes, have revealed the cell-penetrating activities of venom peptides and toxins, which can be harnessed for application in biomedicine and pharmaceutical biotechnology. In this review, I aimed to collate examples of peptides from animal venoms and toxic secretions that possess the ability to penetrate diverse types of cells. These venom CPPs have been chemically or structurally modified to enhance cell selectivity, bioavailability and a range of target applications. Herein, examples are listed and discussed, including cysteine-stabilized and linear, α-helical peptides, with cationic and amphipathic character, from the venom of insects (e.g., melittin, anoplin, mastoparans), arachnids (latarcin, lycosin, chlorotoxin, maurocalcine/imperatoxin homologs and wasabi receptor toxin), fish (pardaxins), amphibian (bombesin) and snakes (crotamine and cathelicidins).
Collapse
Affiliation(s)
- Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Fortaleza 60165-081, Brazil
| |
Collapse
|
13
|
Chang L, Bao H, Yao J, Liu H, Gou S, Zhong C, Zhang Y, Ni J. New designed pH-responsive histidine-rich peptides with antitumor activity. J Drug Target 2021; 29:651-659. [PMID: 33428507 DOI: 10.1080/1061186x.2021.1873351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Anticancer peptides have received widespread attention as alternative antitumor therapeutics due to their unique action mode. However, the systemic toxicity hampers their successful utilisation in tumour therapy. Here, the tumour acidic environment was used as a trigger to design a series of histidine-rich peptides by optimising the distribution of histidine and leucine based on the amphiphilic peptide LK, in hoping to achieve desirable acid-activate anticancer peptides. Among all the obtained peptides, L9H5-1 showed enhanced antitumor activity at acidic pH concomitant with low toxicity at normal pH, exhibiting excellent pH-response. At acidic pH, protonated L9H5-1 could rapidly kill tumour cells by efficient membrane disruption as evidenced by in vitro experiments, including increasing intracellular PI uptake and LDH release, dramatic membrane damage and increase of later apoptotic/necrotic cells. Moreover, no cell cycle arrest was observed after treated with L9H5-1. Interestingly, this study found that the new peptides with the same number of histidines and leucines displayed different pH-dependent antitumor activity, indicating that the position of amino acid alteration is extremely important for the design of acid-activated histidine-rich peptides. In short, our work provides a new avenue to develop new acid-activated anticancer peptides as promising antitumor drugs with high efficiency and good selectivity.
Collapse
Affiliation(s)
- Linlin Chang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hexin Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jia Yao
- The First Hospital, Lanzhou University, Lanzhou, China
| | - Hui Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Sanhu Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yun Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| |
Collapse
|
14
|
Ptaszyńska N, Gucwa K, Olkiewicz K, Heldt M, Serocki M, Stupak A, Martynow D, Dębowski D, Gitlin-Domagalska A, Lica J, Łęgowska A, Milewski S, Rolka K. Conjugates of Ciprofloxacin and Levofloxacin with Cell-Penetrating Peptide Exhibit Antifungal Activity and Mammalian Cytotoxicity. Int J Mol Sci 2020; 21:ijms21134696. [PMID: 32630159 PMCID: PMC7369900 DOI: 10.3390/ijms21134696] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Seven conjugates composed of well-known fluoroquinolone antibacterial agents, ciprofloxacin (CIP) or levofloxacin (LVX), and a cell-penetrating peptide transportan 10 (TP10-NH2) were synthesised. The drugs were covalently bound to the peptide via an amide bond, methylenecarbonyl moiety, or a disulfide bridge. Conjugation of fluoroquinolones to TP10-NH2 resulted in congeners demonstrating antifungal in vitro activity against human pathogenic yeasts of the Candida genus (MICs in the 6.25–100 µM range), whereas the components were poorly active. The antibacterial in vitro activity of most of the conjugates was lower than the activity of CIP or LVX, but the antibacterial effect of CIP-S-S-TP10-NH2 was similar to the mother fluoroquinolone. Additionally, for two representative CIP and LVX conjugates, a rapid bactericidal effect was shown. Compared to fluoroquinolones, TP10-NH2 and the majority of its conjugates generated a relatively low level of reactive oxygen species (ROS) in human embryonic kidney cells (HEK293) and human myeloid leukemia cells (HL-60). The conjugates exhibited cytotoxicity against three cell lines, HEK293, HepG2 (human liver cancer cell line), and LLC-PK1 (old male pig kidney cells), with IC50 values in the 10–100 µM range and hemolytic activity. The mammalian toxicity was due to the intrinsic cytoplasmic membrane disruption activity of TP10-NH2 since fluoroquinolones themselves were not cytotoxic. Nevertheless, the selectivity index values of the conjugates, both for the bacteria and human pathogenic yeasts, remained favourable.
Collapse
Affiliation(s)
- Natalia Ptaszyńska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (N.P.); (K.G.); (K.O.); (D.D.); (A.G.-D.); (A.Ł.); (K.R.)
| | - Katarzyna Gucwa
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (N.P.); (K.G.); (K.O.); (D.D.); (A.G.-D.); (A.Ł.); (K.R.)
| | - Katarzyna Olkiewicz
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (N.P.); (K.G.); (K.O.); (D.D.); (A.G.-D.); (A.Ł.); (K.R.)
| | - Mateusz Heldt
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland; (M.H.); (M.S.); (D.M.); (S.M.)
| | - Marcin Serocki
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland; (M.H.); (M.S.); (D.M.); (S.M.)
| | - Anna Stupak
- Laboratory of Bacterial Genetics, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland;
| | - Dorota Martynow
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland; (M.H.); (M.S.); (D.M.); (S.M.)
| | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (N.P.); (K.G.); (K.O.); (D.D.); (A.G.-D.); (A.Ł.); (K.R.)
| | - Agata Gitlin-Domagalska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (N.P.); (K.G.); (K.O.); (D.D.); (A.G.-D.); (A.Ł.); (K.R.)
| | - Jan Lica
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (N.P.); (K.G.); (K.O.); (D.D.); (A.G.-D.); (A.Ł.); (K.R.)
- Correspondence:
| | - Anna Łęgowska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (N.P.); (K.G.); (K.O.); (D.D.); (A.G.-D.); (A.Ł.); (K.R.)
| | - Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland; (M.H.); (M.S.); (D.M.); (S.M.)
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (N.P.); (K.G.); (K.O.); (D.D.); (A.G.-D.); (A.Ł.); (K.R.)
| |
Collapse
|
15
|
Song J, Huang S, Zhang Z, Jia B, Xie H, Kai M, Zhang W. SPA: a peptide antagonist that acts as a cell-penetrating peptide for drug delivery. Drug Deliv 2020; 27:91-99. [PMID: 31870182 PMCID: PMC6968712 DOI: 10.1080/10717544.2019.1706669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although cell-penetrating peptides (CPPs) has been proven to be efficient transporter for drug delivery, ideal peptide vectors for tumor therapy are still being urgently sought. Peptide antagonists have attracted substantial attention as targeting molecules because of their high tumor accumulation and antitumor activity compared with agonists. SPA, a derivative of substance P, is a potent antagonist that exhibits antitumor activity. Based on the amino acid composition of SPA, we speculate that it can translocate across cell membranes as CPPs do. In this study, our results demonstrated that SPA could enter cells similarly to a CPP. As a vector, SPA could efficiently deliver camptothecin and plasmids into cells. In addition, our results showed that SPA exhibited low toxicity to normal cells and high enzymatic stability. Taken together, our results validated the ability of SPA for efficient drug delivery. More importantly, our study opens a new avenue for designing ideal CPPs based on peptide antagonists.
Collapse
Affiliation(s)
- Jingjing Song
- Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Sujie Huang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhengzheng Zhang
- Institute of Physiology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bo Jia
- Institute of Physiology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Huan Xie
- Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ming Kai
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wei Zhang
- Institute of Physiology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Shuma ML, Moghal MMR, Yamazaki M. Detection of the Entry of Nonlabeled Transportan 10 into Single Vesicles. Biochemistry 2020; 59:1780-1790. [DOI: 10.1021/acs.biochem.0c00102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Madhabi Lata Shuma
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Md. Mizanur Rahman Moghal
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Masahito Yamazaki
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
- Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka 422-8529, Japan
- Department of Physics, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
17
|
Chen C, Richter F, Guerrero-Sanchez C, Traeger A, Schubert US, Feng A, Thang SH. Cell-Penetrating, Peptide-Based RAFT Agent for Constructing Penetration Enhancers. ACS Macro Lett 2020; 9:260-265. [PMID: 35638688 DOI: 10.1021/acsmacrolett.9b00647] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptide-polymer conjugates represent a promising class of compounds that can be used to overcome some of the limitations associated with peptides intended for therapeutic and diagnostic applications. The efficient generation of well-defined peptide/protein-polymer conjugates can promote the development of the design and synthesis of functional drugs and gene delivery platforms. In this research, a sequence defined cell penetrating peptide (i.e., Transportan 10 (TP 10))-based chain transfer agent (TP-CTA) was designed and synthesized in an automated peptide synthesizer. Thereafter, amphiphilic block copolymers poly[oligo(ethylene glycol) methyl ether acrylate]-b-poly(n-butyl acrylate) (TP-POEGA-b-PBA) were synthesized using the TP-CTA via reversible addition-fragmentation chain transfer (RAFT) polymerization. Circular dichroism (CD) spectroscopy confirmed the preservation of α-helix structure of TP 10, which is crucial for its bioactivity. Transmission electron microscopy (TEM) revealed the formation of self-assembled rod-like and vesicle nanostructures in an aqueous environment. Finally, the obtained peptide-conjugated block copolymers were demonstrated to be effective compounds for cell penetration. This method opens up a way for accessing peptide-polymer conjugates with cell-penetrating abilities.
Collapse
Affiliation(s)
- Chao Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 7743 Jena, Germany
| | - Carlos Guerrero-Sanchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 7743 Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 7743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 7743 Jena, Germany
| | - Anchao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - San H. Thang
- School of Chemistry, Monash University, Clayton Campus, Victoria 3800, Australia
| |
Collapse
|
18
|
Ji K, Xiao Y, Zhang W. Acid-activated nonviral peptide vector for gene delivery. J Pept Sci 2019; 26:e3230. [PMID: 31696619 DOI: 10.1002/psc.3230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 01/21/2023]
Abstract
Nonviral vector-based gene therapy is a promising strategy for treating a myriad of diseases. Cell-penetrating peptides are gaining increasing attention as vectors for nucleic acid delivery. However, most studies have focused more on the transfection efficiency of these vectors than on their specificity and toxicity. To obtain ideal vectors with high efficiency and safety, we constructed the vector stearyl-TH by attaching a stearyl moiety to the N-terminus of the acid-activated cell penetrating peptide TH in this study. Under acidic conditions, stearyl-TH could bind to and condense plasmids into nanoparticle complexes, which displayed significantly enhanced cellular uptake and transfection efficiencies. In contrast, stearyl-TH lost the capacities of DNA binding and transfection at physiological pH. More importantly, stearyl-TH and the complexes formed by stearyl-TH and plasmids displayed no obvious toxicity at physiological pH. Consequently, the high transfection efficiency under acidic conditions and low toxicity make stearyl-TH a potential nucleic acid delivery vector for gene therapy.
Collapse
Affiliation(s)
- Kun Ji
- The First Hospital, Lanzhou University, Lanzhou, China
| | - Yi Xiao
- The First Hospital, Lanzhou University, Lanzhou, China
| | - Wei Zhang
- Institute of Physiology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
19
|
Abstract
The integration of drugs into nanocarriers favorably altered their pharmacodynamics and pharmacokinetics compared to free drugs, and increased their therapeutic index. However, selective cellular internalization in diseased tissues rather than normal tissues still presents a formidable challenge. In this chapter I will cover solutions involving environment-responsive cell-penetrating peptides (CPPs). I will discuss properties of CPPs as universal cellular uptake enhancers, and the modifications imparted to CPP-modified nanocarriers to confine CPP activation to diseased tissues.
Collapse
|
20
|
Zhang Y, Li L, Chang L, Liu H, Song J, Liu Y, Bao H, Liu B, Wang R, Ni J. Design of a new pH-activatable cell-penetrating peptide for drug delivery into tumor cells. Chem Biol Drug Des 2019; 94:1884-1893. [PMID: 31062442 DOI: 10.1111/cbdd.13537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 01/31/2023]
Abstract
Cell-penetrating peptides (CPPs) have been considered as potential drug delivery vectors due to their remarkable membrane translocation capacity. However, lack of specificity and extreme systemic toxicity hamper their successful application for drug delivery. Here, we designed a new pH-activatable CPP, LHHLLHHLHHLLHH-NH2 (LH), by substitution of all lysines and two leucines of LKKLLKLLKKLLKL-NH2 (LK) with histidines. As expected, histidine-rich LH could be activated and penetrate into cells at pH 6.0, whereas its membrane transduction activity could be shielded at pH 7.4. In contrast, LK showed no obviously different cellular uptake at both pH conditions. Importantly, LH was significantly less cytotoxicity compared with LK at both pH values, suggesting a better safety for further application. In addition, after conjugation of camptothecin (CPT) with LH, this conjugate displayed remarkably pH-dependent antitumor activity than free CPT and LK-CPT. This study provides a new tumor pH-responsive CPP with low toxicity for selective anticancer drug delivery.
Collapse
Affiliation(s)
- Yun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Li Li
- Department of Pharmacy, Daping Hospital and Research Institute of Surgery, Army Medical University, Chongqin, China
| | - Linlin Chang
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hui Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingjing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yue Liu
- Department of Pharmacy, Lanzhou General Hospital of People's Liberation Army, Lanzhou, China
| | - Hexin Bao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Beijun Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingman Ni
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
Ruczyński J, Rusiecka I, Turecka K, Kozłowska A, Alenowicz M, Gągało I, Kawiak A, Rekowski P, Waleron K, Kocić I. Transportan 10 improves the pharmacokinetics and pharmacodynamics of vancomycin. Sci Rep 2019; 9:3247. [PMID: 30824786 PMCID: PMC6397271 DOI: 10.1038/s41598-019-40103-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/11/2019] [Indexed: 12/23/2022] Open
Abstract
In the presented study, transportan 10 (TP10), an amphipathic cell penetrating peptide (CPP) with high translocation activity, was conjugated with vancomycin (Van), which is known for poor access to the intracellular bacteria and the brain. The antibacterial activity of the conjugates was tested on selected clinical strains of methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus sp. It turned out that all of them had superior antimicrobial activity in comparison to that of free Van, which became visible particularly against clinical MRSA strains. Furthermore, one of the conjugates was tested against MRSA - infected human cells. With respect to them, this compound showed high bactericidal activity. Next, the same conjugate was screened for its capacity to cross the blood brain barrier (BBB). Therefore, qualitative and quantitative analyses of the conjugate's presence in the mouse brain slices were carried out after its iv administration. They indicated the conjugate's presence in the brain in amount >200 times bigger than that of Van. The conjugates were safe with respect to erythrocyte toxicity (erythrocyte lysis assay). Van in the form of a conjugate with TP10 acquires superior pharmacodynamic and pharmacokinetic.
Collapse
Affiliation(s)
- Jarosław Ruczyński
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Izabela Rusiecka
- Department of Pharmacology, Medical University of Gdansk, Debowa 23, 80-204, Gdansk, Poland.
| | - Katarzyna Turecka
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Agnieszka Kozłowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Magdalena Alenowicz
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Iwona Gągało
- Department of Pharmacology, Medical University of Gdansk, Debowa 23, 80-204, Gdansk, Poland
| | - Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Piotr Rekowski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Ivan Kocić
- Department of Pharmacology, Medical University of Gdansk, Debowa 23, 80-204, Gdansk, Poland
| |
Collapse
|
22
|
Rusiecka I, Ruczyński J, Kozłowska A, Backtrog E, Mucha P, Kocić I, Rekowski P. TP10-Dopamine Conjugate as a Potential Therapeutic Agent in the Treatment of Parkinson's Disease. Bioconjug Chem 2019; 30:760-774. [PMID: 30653302 DOI: 10.1021/acs.bioconjchem.8b00894] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disorder for which the current treatment is not fully satisfactory. One of the major drawbacks of current PD therapy is poor penetration of drugs across the blood-brain barrier (BBB). In recent years, cell-penetrating peptides (CPPs) such as Tat, SynB, or TP10 have gained great interest due to their ability to penetrate cell membranes and to deliver different cargos to their targets including the central nervous system (CNS). However, there is no data with respect to the use of CPPs as drug carriers to the brain for the treatment of PD. In the presented research, the covalent TP10-dopamine conjugate was synthesized and its pharmacological properties were characterized in terms of its ability to penetrate the BBB and anti-parkinsonian activity. The results showed that dopamine (DA) in the form of a conjugate with TP10 evidently gained access to the brain tissue, exhibited low susceptibility to O-methylation reaction by catechol- O-methyltransferase (lower than that of DA), possessed a relatively high affinity to both dopamine D1 and D2 receptors (in the case of D1, a much higher than that of DA), and showed anti-parkinsonian activity (higher than that of l-DOPA) in the MPTP-induced preclinical animal model of PD. The presented results prove that the conjugation of TP10 with DA may be a good starting point for the development of a new strategy for the treatment of PD.
Collapse
Affiliation(s)
- Izabela Rusiecka
- Department of Pharmacology , Medical University of Gdańsk , Dębowa 23 , 80-204 Gdańsk , Poland
| | - Jarosław Ruczyński
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Agnieszka Kozłowska
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Ewelina Backtrog
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Piotr Mucha
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Ivan Kocić
- Department of Pharmacology , Medical University of Gdańsk , Dębowa 23 , 80-204 Gdańsk , Poland
| | - Piotr Rekowski
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| |
Collapse
|
23
|
Falanga A, Iachetta G, Lombardi L, Perillo E, Lombardi A, Morelli G, Valiante S, Galdiero S. Enhanced uptake of gH625 by blood brain barrier compared to liver in vivo: characterization of the mechanism by an in vitro model and implications for delivery. Sci Rep 2018; 8:13836. [PMID: 30218088 PMCID: PMC6138628 DOI: 10.1038/s41598-018-32095-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022] Open
Abstract
We have investigated the crossing of the blood brain barrier (BBB) by the peptide gH625 and compared to the uptake by liver in vivo. We clearly observed that in vivo administration of gH625 allows the crossing of the BBB, although part of the peptide is sequestered by the liver. Furthermore, we used a combination of biophysical techniques to gain insight into the mechanism of interaction with model membranes mimicking the BBB and the liver. We observed a stronger interaction for membranes mimicking the BBB where gH625 clearly undergoes a change in secondary structure, indicating the key role of the structural change in the uptake mechanism. We report model studies on liposomes which can be exploited for the optimization of delivery tools.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Pharmacy, Via Mezzocannone 16, 80134, Napoli, Italy.,CiRPEB- University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy
| | - Giuseppina Iachetta
- Department of Biology, University of Naples "Federico II", Via Mezzocannone 8, 80134, Napoli, Italy
| | - Lucia Lombardi
- Department of Pharmacy, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Emiliana Perillo
- Department of Pharmacy, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Assunta Lombardi
- Department of Biology, University of Naples "Federico II", Via Mezzocannone 8, 80134, Napoli, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Via Mezzocannone 16, 80134, Napoli, Italy.,CiRPEB- University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy
| | - Salvatore Valiante
- Department of Biology, University of Naples "Federico II", Via Mezzocannone 8, 80134, Napoli, Italy.,National Institute of Biostructures and Biosystems (INBB), V. le Medaglie d'Oro, 00136, Rome, Italy
| | - Stefania Galdiero
- Department of Pharmacy, Via Mezzocannone 16, 80134, Napoli, Italy. .,CiRPEB- University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy.
| |
Collapse
|
24
|
Kai M, Zhang W, Xie H, Liu L, Huang S, Li X, Zhang Z, Liu Y, Zhang B, Song J, Wang R. Effects of linker amino acids on the potency and selectivity of dimeric antimicrobial peptides. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Yao J, Ma Y, Zhang W, Li L, Zhang Y, Zhang L, Liu H, Ni J, Wang R. Design of new acid-activated cell-penetrating peptides for tumor drug delivery. PeerJ 2017; 5:e3429. [PMID: 28603674 PMCID: PMC5465999 DOI: 10.7717/peerj.3429] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/17/2017] [Indexed: 11/20/2022] Open
Abstract
TH(AGYLLGHINLHHLAHL(Aib)HHIL-NH2), a histidine-rich, cell-penetrating peptide with acid-activated pH response, designed and synthesized by our group, can effectively target tumor tissues with an acidic extracellular environment. Since the protonating effect of histidine plays a critical role in the acid-activated, cell-penetrating ability of TH, we designed a series of new histidine substituents by introducing electron donating groups (Ethyl, Isopropyl, Butyl) to the C-2 position of histidine. This resulted in an enhanced pH-response and improved the application of TH in tumor-targeted delivery systems. The substituents were further utilized to form the corresponding TH analogs (Ethyl-TH, Isopropyl-TH and Butyl-TH), making them easier to protonate for positive charge in acidic tumor microenvironments. The pH-dependent cellular uptake efficiencies of new TH analogs were further evaluated using flow cytometry and confocal laser scanning microscopy, demonstrating that ethyl-TH and butyl-TH had an optimal pH-response in an acidic environment. Importantly, the new TH analogs exhibited relatively lower toxicity than TH. In addition, these new TH analogs were linked to the antitumor drug camptothecin (CPT), while butyl-TH modified conjugate presented a remarkably stronger pH-dependent cytotoxicity to cancer cells than TH and the other conjugates. In short, our work opens a new avenue for the development of improved acid-activated, cell-penetrating peptides as efficient anticancer drug delivery vectors.
Collapse
Affiliation(s)
- Jia Yao
- The First Hospital, Lanzhou University, Lan Zhou, Gansu Province, China
| | - Yinyun Ma
- School of Pharmacy, Lanzhou University, Lan Zhou, Gansu Province, China
| | - Wei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lan Zhou, Gansu Province, China
| | - Li Li
- School of Pharmacy, Lanzhou University, Lan Zhou, Gansu Province, China
| | - Yun Zhang
- School of Pharmacy, Lanzhou University, Lan Zhou, Gansu Province, China
| | - Li Zhang
- School of Pharmacy, Lanzhou University, Lan Zhou, Gansu Province, China
| | - Hui Liu
- School of Pharmacy, Lanzhou University, Lan Zhou, Gansu Province, China
| | - Jingman Ni
- School of Pharmacy, Lanzhou University, Lan Zhou, Gansu Province, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lan Zhou, Gansu Province, China
| |
Collapse
|
26
|
Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: Mechanisms and challenges. Adv Drug Deliv Rev 2017; 110-111:52-64. [PMID: 27313077 DOI: 10.1016/j.addr.2016.06.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/27/2016] [Accepted: 06/06/2016] [Indexed: 12/12/2022]
Abstract
Peptides are emerging as a new tool in drug and gene delivery. Peptide-drug conjugates and peptide-modified drug delivery systems provide new opportunities to avoid macrophage recognition and subsequent phagocytosis, cross endothelial and epithelial barriers, and enter the cytoplasm of target cells. Peptides are relatively small, low-cost, and are stable in a wide range of biological conditions. In this review, we summarize recent work in designing peptides to enhance penetration of biological barriers, increase cell uptake, and avoid the immune system. We highlight recent successes and contradictory results, and outline common emerging concepts and design rules. The development of sequence-structure-function relationships and standard protocols for benchmarking will be a key to progress in the field.
Collapse
|
27
|
Freimann K, Arukuusk P, Kurrikoff K, Vasconcelos LDF, Veiman KL, Uusna J, Margus H, Garcia-Sosa AT, Pooga M, Langel Ü. Optimization of in vivo DNA delivery with NickFect peptide vectors. J Control Release 2016; 241:135-143. [PMID: 27664329 DOI: 10.1016/j.jconrel.2016.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/21/2023]
Abstract
As the field of gene therapy progresses, an increasingly urgent need has arisen for efficient and non-toxic vectors for the in vivo delivery of nucleic acids. Cell-penetrating peptides (CPP) are very efficient transfection reagents in vitro, however, their application in vivo needs improvement. To enhance in vivo transfection we designed various CPPs based on previous knowledge of internalization studies and physiochemical properties of NickFect (NF) nanoparticles. We show that increment of the helicity of these Transportan10 analogues improves the transfection efficiency. We rationally design by modifying the net charge and the helicity of the CPP a novel amphipathic α-helical peptide NF55 for in vivo application. NF55 condenses DNA into stable nanoparticles that are resistant to protease degradation, promotes endosomal escape, and transfects the majority of cells in a large cell population. We demonstrate that NF55 mediates DNA delivery in vivo with gene induction efficiency that is comparable to commercial transfection reagents. In addition to gene induction in healthy mice, NF55/DNA nanoparticles showed promising tumor transfection in various mouse tumor models, including an intracranial glioblastoma model. The efficiency of NF55 to convey DNA specifically into tumor tissue increased even further after coupling a PEG2000 to the peptide via a disulphide-bond. Furthermore, a solid formulation of NF55/DNA displayed an excellent stability profile without additives or special storage conditions. Together, its high transfection efficacy and stability profile make NF55 an excellent vector for the delivery of DNA in vivo.
Collapse
Affiliation(s)
- Krista Freimann
- Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Nooruse, 50411 Tartu, Estonia.
| | - Piret Arukuusk
- Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Nooruse, 50411 Tartu, Estonia
| | - Kaido Kurrikoff
- Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Nooruse, 50411 Tartu, Estonia
| | | | - Kadi-Liis Veiman
- Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Nooruse, 50411 Tartu, Estonia
| | - Julia Uusna
- Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Nooruse, 50411 Tartu, Estonia
| | - Helerin Margus
- Department of Developmental Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | | | - Margus Pooga
- Department of Developmental Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Ülo Langel
- Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Nooruse, 50411 Tartu, Estonia; Department of Neurochemistry, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
28
|
Cell penetrating peptides as an innovative approach for drug delivery; then, present and the future. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0253-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Izabela R, Jarosław R, Magdalena A, Piotr R, Ivan K. Transportan 10 improves the anticancer activity of cisplatin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2016. [PMID: 26899863 DOI: 10.1007/s00210-016-1219-5/figures/8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
The aim of this paper was to examine whether cell-penetrating peptides (CPPs) such as transportan 10 (TP10) or protein transduction domain (PTD4) may improve the anticancer activity of cisplatin (cPt). The complexes of TP10 or PTD4 with cPt were used in the experiments. They were carried out on two non-cancer (HEK293 (human embryonic kidney) and HEL299 (human embryo lung)) and two cancer (HeLa (human cervical cancer) and OS143B (human osteosarcoma 143B)) cell lines. Both complexes were tested (MTT assay) with respect to their anticancer or cytotoxic actions. TAMRA (fluorescent dye)-stained preparations were visualized in a fluorescence microscope. The long-term effect of TP10 + cPt and its components on non-cancer and cancer cell lines was observed in inverted phase contrast microscopy. In the MTT test (cell viability assay), the complex of TP10 + cPt produced a more potent effect on the cancer cell lines (HeLa, OS143B) in comparison to that observed after separate treatment with TP10 or cPt. At the same time, the action of the complex and its components was rather small on non-cancer cell lines. On the other hand, a complex of another CPP with cPt, i.e., PTD4 + cPt, was without a significant effect on the cancer cell line (OS143B). The images of the fluorescent microscopy showed TAMRA-TP10 or TAMRA-TP10 + cPt in the interior of the HeLa cells. In the case of TAMRA-PTD4 or TAMRA-PTD4 + cPt, only the first compound was found inside the cancer cell line. In contrast, none of the tested compounds gained access to the interior of the non-cancer cells (HEK293, HEL299). Long-term incubation with the TP10 + cPt (estimated by inverted phase contrast microscopy) lead to an enhanced action of the complex on cell viability (decrease in the number of cells and change in their morphology) as compared with that produced by each single agent. With regard to the tested CPPs, only TP10 improved the anticancer activity of cisplatin if both compounds were used in the form of a complex. Additionally, the complex was relatively safe for non-cancer cells. What is more, TP10 also produced an anticancer effect on HeLa and OS143B cell lines.
Collapse
Affiliation(s)
- Rusiecka Izabela
- Department of Pharmacology, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | - Rekowski Piotr
- Department of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Kocić Ivan
- Department of Pharmacology, Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
30
|
Izabela R, Jarosław R, Magdalena A, Piotr R, Ivan K. Transportan 10 improves the anticancer activity of cisplatin. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:485-97. [PMID: 26899863 PMCID: PMC4823340 DOI: 10.1007/s00210-016-1219-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/08/2016] [Indexed: 11/22/2022]
Abstract
The aim of this paper was to examine whether cell-penetrating peptides (CPPs) such as transportan 10 (TP10) or protein transduction domain (PTD4) may improve the anticancer activity of cisplatin (cPt). The complexes of TP10 or PTD4 with cPt were used in the experiments. They were carried out on two non-cancer (HEK293 (human embryonic kidney) and HEL299 (human embryo lung)) and two cancer (HeLa (human cervical cancer) and OS143B (human osteosarcoma 143B)) cell lines. Both complexes were tested (MTT assay) with respect to their anticancer or cytotoxic actions. TAMRA (fluorescent dye)-stained preparations were visualized in a fluorescence microscope. The long-term effect of TP10 + cPt and its components on non-cancer and cancer cell lines was observed in inverted phase contrast microscopy. In the MTT test (cell viability assay), the complex of TP10 + cPt produced a more potent effect on the cancer cell lines (HeLa, OS143B) in comparison to that observed after separate treatment with TP10 or cPt. At the same time, the action of the complex and its components was rather small on non-cancer cell lines. On the other hand, a complex of another CPP with cPt, i.e., PTD4 + cPt, was without a significant effect on the cancer cell line (OS143B). The images of the fluorescent microscopy showed TAMRA-TP10 or TAMRA-TP10 + cPt in the interior of the HeLa cells. In the case of TAMRA-PTD4 or TAMRA-PTD4 + cPt, only the first compound was found inside the cancer cell line. In contrast, none of the tested compounds gained access to the interior of the non-cancer cells (HEK293, HEL299). Long-term incubation with the TP10 + cPt (estimated by inverted phase contrast microscopy) lead to an enhanced action of the complex on cell viability (decrease in the number of cells and change in their morphology) as compared with that produced by each single agent. With regard to the tested CPPs, only TP10 improved the anticancer activity of cisplatin if both compounds were used in the form of a complex. Additionally, the complex was relatively safe for non-cancer cells. What is more, TP10 also produced an anticancer effect on HeLa and OS143B cell lines.
Collapse
Affiliation(s)
- Rusiecka Izabela
- Department of Pharmacology, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | - Rekowski Piotr
- Department of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Kocić Ivan
- Department of Pharmacology, Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
31
|
Stalmans S, Bracke N, Wynendaele E, Gevaert B, Peremans K, Burvenich C, Polis I, De Spiegeleer B. Cell-Penetrating Peptides Selectively Cross the Blood-Brain Barrier In Vivo. PLoS One 2015; 10:e0139652. [PMID: 26465925 PMCID: PMC4605843 DOI: 10.1371/journal.pone.0139652] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/16/2015] [Indexed: 11/24/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are a group of peptides, which have the ability to cross cell membrane bilayers. CPPs themselves can exert biological activity and can be formed endogenously. Fragmentary studies demonstrate their ability to enhance transport of different cargoes across the blood-brain barrier (BBB). However, comparative, quantitative data on the BBB permeability of different CPPs are currently lacking. Therefore, the in vivo BBB transport characteristics of five chemically diverse CPPs, i.e. pVEC, SynB3, Tat 47-57, transportan 10 (TP10) and TP10-2, were determined. The results of the multiple time regression (MTR) analysis revealed that CPPs show divergent BBB influx properties: Tat 47-57, SynB3, and especially pVEC showed very high unidirectional influx rates of 4.73 μl/(g × min), 5.63 μl/(g × min) and 6.02 μl/(g × min), respectively, while the transportan analogs showed a negligible to low brain influx. Using capillary depletion, it was found that 80% of the influxed peptides effectively reached the brain parenchyma. Except for pVEC, all peptides showed a significant efflux out of the brain. Co-injection of pVEC with radioiodinated bovine serum albumin (BSA) did not enhance the brain influx of radiodionated BSA, indicating that pVEC does not itself significantly alter the BBB properties. A saturable mechanism could not be demonstrated by co-injecting an excess dose of non-radiolabeled CPP. No significant regional differences in brain influx were observed, with the exception for pVEC, for which the regional variations were only marginal. The observed BBB influx transport properties cannot be correlated with their cell-penetrating ability, and therefore, good CPP properties do not imply efficient brain influx.
Collapse
Affiliation(s)
- Sofie Stalmans
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Nathalie Bracke
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Bert Gevaert
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Kathelijne Peremans
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Christian Burvenich
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ingeborgh Polis
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Zhang Q, Gao H, He Q. Taming Cell Penetrating Peptides: Never Too Old To Teach Old Dogs New Tricks. Mol Pharm 2015; 12:3105-18. [PMID: 26237247 DOI: 10.1021/acs.molpharmaceut.5b00428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qianyu Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems,
West China School of Pharmacy, and State
Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy,
West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin
Road, Chengdu 610041, P. R. China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems,
West China School of Pharmacy, and State
Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy,
West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin
Road, Chengdu 610041, P. R. China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems,
West China School of Pharmacy, and State
Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy,
West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin
Road, Chengdu 610041, P. R. China
| |
Collapse
|
33
|
Xie J, Gou Y, Zhao Q, Li S, Zhang W, Song J, Mou L, Li J, Wang K, Zhang B, Yang W, Wang R. Antimicrobial activities and action mechanism studies of transportan 10 and its analogues against multidrug-resistant bacteria. J Pept Sci 2015; 21:599-607. [PMID: 25891396 DOI: 10.1002/psc.2781] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 12/31/2022]
Abstract
The increased emergence of multidrug-resistant bacteria is perceived as a critical public health threat, creating an urgent need for the development of novel classes of antimicrobials. Cell-penetrating peptides that share common features with antimicrobial peptides have been found to have antimicrobial activity and are currently being considered as potential alternatives to antibiotics. Transportan 10 is a chimeric cell-penetrating peptide that has been reported to transport biologically relevant cargoes into mammalian cells and cause damage to microbial membranes. In this study, we designed a series of TP10 analogues and studied their structure-activity relationships. We first evaluated the antimicrobial activities of these compounds against multidrug-resistant bacteria, which are responsible for most nosocomial infections. Our results showed that several of these compounds had potent antimicrobial and biofilm-inhibiting activities. We also measured the toxicity of these compounds, finding that Lys substitution could increase the antimicrobial activity but significantly enhanced the cytotoxicity. Pro introduction could reduce the cytotoxicity but disrupted the helical structure, resulting in a loss of activity. In the mechanistic studies, TP10 killed bacteria by membrane-active and DNA-binding activities. In conclusion, TP10 and its analogues could be developed into promising antibiotic candidates for the treatment of infections caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yuanmei Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qian Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Sisi Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingjing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lingyun Mou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingyi Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
34
|
Xue G, Liu Z, Wang L, Zu L. The role of basic residues in the fragmentation process of the lysine rich cell-penetrating peptide TP10. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:220-227. [PMID: 25601696 DOI: 10.1002/jms.3524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/12/2014] [Accepted: 10/07/2014] [Indexed: 06/04/2023]
Abstract
Selective cleavage effect of basic residues in the fragmentation of short peptides has been studied intensively. In contrast, the role of basic residues in the degradation of large peptides, such as cell-penetrating peptides, is largely unknown. In this work, the fragmentation of a 21 residues cell-penetrating peptide TP10 containing four lysine residues was studied by collision-induced dissociation mass spectrometry and computation methods. The influence of lysine residues on amide bond cleavage and fragmentation products was investigated. The results revealed that the selective cleavage effect of lysine residue did not present when the adjacent lysine residues in TP10 were both protonated. The localized high positive charge density might be the reason of preventing the mobile proton from migrating to the amide bonds in this part of the peptide. In contrast, the mobile proton preferred to reside in the N-terminal part of TP10 which had less positive charge. This preference gave more information of the peptide sequence in the mass spectrometry study and was helpful for stabilizing the C-terminal part of TP10, in which the basic lysine residues were preserved and crucial to the cell-penetrating process.
Collapse
Affiliation(s)
- Gaiqing Xue
- Beijing Normal University, Department of Chemistry, Beijing, 100875, China
| | | | | | | |
Collapse
|
35
|
Soler M, González-Bártulos M, Soriano-Castell D, Ribas X, Costas M, Tebar F, Massaguer A, Feliu L, Planas M. Identification of BP16 as a non-toxic cell-penetrating peptide with highly efficient drug delivery properties. Org Biomol Chem 2014; 12:1652-63. [PMID: 24480922 DOI: 10.1039/c3ob42422g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antimicrobial peptides are an interesting source of non-cytotoxic drug delivery vectors. Herein, we report on the identification of a new cell-penetrating peptide (KKLFKKILKKL-NH2, BP16) from a set of antimicrobial peptides selected from a library of cecropin-melittin hybrids (CECMEL11) previously designed to be used in plant protection. This set of peptides was screened for their cytotoxicity against breast adenocarcinoma MCF-7, pancreas adenocarcinoma CAPAN-1 and mouse embryonic fibroblast 3T3 cell lines. BP16 resulted to be non-toxic against both malignant and non-malignant cells at concentrations up to 200 μM. We demonstrated by flow cytometry and confocal microscopy that BP16 is mainly internalized in the cells through a clathrin dependent endocytosis and that it efficiently accumulates in the cell cytoplasm. We confirmed that the cell-penetrating properties of BP16 are retained after conjugating it to the breast tumor homing peptide CREKA. Furthermore, we assessed the potential of BP16 as a drug delivery vector by conjugating the anticancer drug chlorambucil to BP16 and to a CREKA-BP16 conjugate. The efficacy of the drug increased between 6 and 9 times when conjugated to BP16 and between 2 and 4.5 times when attached to the CREKA-BP16 derivative. The low toxicity and the excellent cell-penetrating properties clearly suggest that BP16 is a suitable vector for the delivery of therapeutic agents into cells.
Collapse
Affiliation(s)
- Marta Soler
- QBIS-CAT Research Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Copolovici DM, Langel K, Eriste E, Langel Ü. Cell-penetrating peptides: design, synthesis, and applications. ACS NANO 2014; 8:1972-94. [PMID: 24559246 DOI: 10.1021/nn4057269] [Citation(s) in RCA: 683] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The intrinsic property of cell-penetrating peptides (CPPs) to deliver therapeutic molecules (nucleic acids, drugs, imaging agents) to cells and tissues in a nontoxic manner has indicated that they may be potential components of future drugs and disease diagnostic agents. These versatile peptides are simple to synthesize, functionalize, and characterize yet are able to deliver covalently or noncovalently conjugated bioactive cargos (from small chemical drugs to large plasmid DNA) inside cells, primarily via endocytosis, in order to obtain high levels of gene expression, gene silencing, or tumor targeting. Typically, CPPs are often passive and nonselective yet must be functionalized or chemically modified to create effective delivery vectors that succeed in targeting specific cells or tissues. Furthermore, the design of clinically effective systemic delivery systems requires the same amount of attention to detail in both design of the delivered cargo and the cell-penetrating peptide used to deliver it.
Collapse
Affiliation(s)
- Dana Maria Copolovici
- Laboratory of Molecular Biotechnology, Institute of Technology, Tartu University , 504 11 Tartu, Estonia
| | | | | | | |
Collapse
|
37
|
Zhang Q, Tang J, Fu L, Ran R, Liu Y, Yuan M, He Q. A pH-responsive α-helical cell penetrating peptide-mediated liposomal delivery system. Biomaterials 2013; 34:7980-93. [DOI: 10.1016/j.biomaterials.2013.07.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 07/03/2013] [Indexed: 12/11/2022]
|
38
|
Stalmans S, Wynendaele E, Bracke N, Gevaert B, D’Hondt M, Peremans K, Burvenich C, De Spiegeleer B. Chemical-functional diversity in cell-penetrating peptides. PLoS One 2013; 8:e71752. [PMID: 23951237 PMCID: PMC3739727 DOI: 10.1371/journal.pone.0071752] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/03/2013] [Indexed: 12/13/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are a promising tool to overcome cell membrane barriers. They have already been successfully applied as carriers for several problematic cargoes, like e.g. plasmid DNA and (si)RNA, opening doors for new therapeutics. Although several hundreds of CPPs are already described in the literature, only a few commercial applications of CPPs are currently available. Cellular uptake studies of these peptides suffer from inconsistencies in used techniques and other experimental conditions, leading to uncertainties about their uptake mechanisms and structural properties. To clarify the structural characteristics influencing the cell-penetrating properties of peptides, the chemical-functional space of peptides, already investigated for cellular uptake, was explored. For 186 peptides, a new cell-penetrating (CP)-response was proposed, based upon the scattered quantitative results for cellular influx available in the literature. Principal component analysis (PCA) and a quantitative structure-property relationship study (QSPR), using chemo-molecular descriptors and our newly defined CP-response, learned that besides typical well-known properties of CPPs, i.e. positive charge and amphipathicity, the shape, structure complexity and the 3D-pattern of constituting atoms influence the cellular uptake capacity of peptides.
Collapse
Affiliation(s)
- Sofie Stalmans
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Nathalie Bracke
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Bert Gevaert
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Matthias D’Hondt
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Kathelijne Peremans
- Department of Medical Imaging and Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Christian Burvenich
- Department of Medical Imaging and Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
Eggimann GA, Buschor S, Darbre T, Reymond JL. Convergent synthesis and cellular uptake of multivalent cell penetrating peptides derived from Tat, Antp, pVEC, TP10 and SAP. Org Biomol Chem 2013; 11:6717-33. [DOI: 10.1039/c3ob41023d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Mäger I, Langel K, Lehto T, Eiríksdóttir E, Langel U. The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:502-11. [PMID: 22155257 DOI: 10.1016/j.bbamem.2011.11.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/09/2011] [Accepted: 11/23/2011] [Indexed: 11/16/2022]
Abstract
Cell-penetrating peptides (CPPs) are short cationic/amphipathic peptides that can be used to deliver a variety of cargos into cells. However, it is still debated which routes CPPs employ to gain access to intracellular compartments. To assess this, most previously conducted studies have relied on information which is gained by using fluorescently labeled CPPs. More relevant information whether the internalized conjugates are biologically available has been gathered using end-point assays with biological readouts. Uptake kinetic studies have shed even more light on the matter because the arbitrary choice of end-point might have profound effect how the results could be interpreted. To elucidate uptake mechanisms of CPPs, here we have used a bioluminescence based assay to measure cytosolic delivery kinetics of luciferin-CPP conjugates in the presence of endocytosis inhibitors. The results suggest that these conjugates are delivered into cytosol mainly via macropinocytosis; clathrin-mediated endocytosis and caveolae/lipid raft dependent endocytosis are involved in a smaller extent. Furthermore, we demonstrate how the involved endocytic routes and internalization kinetic profiles can depend on conjugate concentration in case of certain peptides, but not in case of others. The employed internalization route, however, likely dictates the intracellular fate and subsequent trafficking of internalized ligands, therefore emphasizing the importance of our novel findings for delivery vector development.
Collapse
Affiliation(s)
- Imre Mäger
- Institute of Technology, University of Tartu, Tartu, Estonia.
| | | | | | | | | |
Collapse
|