1
|
Han X, Chen Y, Ha L, Yang J, Wang F, Chen H, Zhou Q, Long C, Qiu X, Chen Q. Effects of electroacupuncture on bladder dysfunction and the expression of PACAP38 in a diabetic rat model. Front Physiol 2023; 13:1008269. [PMID: 36699677 PMCID: PMC9868671 DOI: 10.3389/fphys.2022.1008269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Objective: To explore the effects and the possible mechanism of electroacupuncture (EA) on diabetic bladder dysfunction (DBD) in streptozotocin-high fat diet (STZ-HFD) induced type 2 diabetes mellitus (T2DM) rats. Methods: The experiment was divided into Control, diabetic bladder dysfunction, electroacupuncture, and Sham electroacupuncture group. After 8 weeks of electroacupuncture intervention, the body mass, 24 h urine volume, intraperitoneal glucose tolerance test (IPGTT), and urodynamics were detected. After the wet weight of the bladder was detected, the hematoxylin-eosin (HE), Masson's trichrome, and TUNEL were used to analyze histological changes. The PACAP38 expressions in the bladder were detected by Real-time PCR and Western blot. Results: Compared to the Control group, the bladder wet weight, 24 h urine volume, blood glucose, maximum bladder capacity, bladder compliance, bladder wall thickness, the smooth muscle/collagen ratio, and apoptosis rate of the diabetic bladder dysfunction group were significantly increased. Moreover, the body mass and leak point pressure were significantly reduced. Compared with the Sham electroacupuncture group, the bladder wet weight, maximum bladder capacity, bladder compliance, bladder wall thickness, and apoptosis rate of the electroacupuncture group were significantly reduced. In contrast, the leak point pressure was increased. The PACAP38 mRNA and PACAP38 protein expression of the diabetic bladder dysfunction group were significantly lower than the Control group, while electroacupuncture treatment could upregulate PACAP38 mRNA levels and PACAP38 protein expression of diabetic bladder dysfunction model rats. Conclusion: electroacupuncture could ameliorate bladder dysfunction in the diabetic bladder dysfunction model rats by reversing bladder remodeling, which might be mainly mediated by regulating the PACAP38 level.
Collapse
Affiliation(s)
- Xuke Han
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiding Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lue Ha
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiao Yang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangzhou Wang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Huizhen Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhou
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cong Long
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianliang Qiu
- West China Second Hospital, Sichuan University, Chengdu, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Protective Effects of PACAP in a Rat Model of Diabetic Neuropathy. Int J Mol Sci 2021; 22:ijms221910691. [PMID: 34639032 PMCID: PMC8509403 DOI: 10.3390/ijms221910691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide with a widespread occurrence and diverse effects. PACAP has well-documented neuro- and cytoprotective effects, proven in numerous studies. Among others, PACAP is protective in models of diabetes-associated diseases, such as diabetic nephropathy and retinopathy. As the neuropeptide has strong neurotrophic and neuroprotective actions, we aimed at investigating the effects of PACAP in a rat model of streptozotocin-induced diabetic neuropathy, another common complication of diabetes. Rats were treated with PACAP1-38 every second day for 8 weeks starting simultaneously with the streptozotocin injection. Nerve fiber morphology was examined with electron microscopy, chronic neuronal activation in pain processing centers was studied with FosB immunohistochemistry, and functionality was assessed by determining the mechanical nociceptive threshold. PACAP treatment did not alter body weight or blood glucose levels during the 8-week observation period. However, PACAP attenuated the mechanical hyperalgesia, compared to vehicle-treated diabetic animals, and it markedly reduced the morphological signs characteristic for neuropathy: axon–myelin separation, mitochondrial fission, unmyelinated fiber atrophy, and basement membrane thickening of endoneurial vessels. Furthermore, PACAP attenuated the increase in FosB immunoreactivity in the dorsal spinal horn and periaqueductal grey matter. Our results show that PACAP is a promising therapeutic agent in diabetes-associated complications, including diabetic neuropathy.
Collapse
|
3
|
Carminic acid supplementation protects against fructose-induced kidney injury mainly through suppressing inflammation and oxidative stress via improving Nrf-2 signaling. Aging (Albany NY) 2021; 13:10326-10353. [PMID: 33819919 PMCID: PMC8064181 DOI: 10.18632/aging.202794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Excessive fructose (Fru) intake has become an increased risk for chronic kidney disease progression. Despite extensive researches that have been performed to develop effective treatments against Fru-induced renal injury, the outcome has achieved limited success. In this study, we attempted to explore whether carminic acid (CA) could influence the progression of Fru-induced kidney injury, and the underlying molecular mechanism. At first, our in vitro results showed that CA significantly reduced inflammation in mouse tubular epithelial cells and human tubule epithelial cells stimulated by Fru. The anti-inflammatory effects of CA were associated with the blockage of nuclear factor-κB (NF-κB) signaling. In addition, Fru-exposed cells showed higher oxidative stress, which was effectively restrained by CA treatment through improving nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) nuclear translocation. Importantly, we found that Fru-induced inflammation and oxidative stress were accelerated in cells with Nrf-2 knockdown. What's more, in Fru-stimulated cells, CA-alleviated inflammatory response and reactive oxygen species (ROS) production were evidently abolished by Nrf-2 knockdown. The in vivo analysis demonstrated that Fru led to metabolic disorder, excessive albuminuria and histologic changes in renal tissues, which were effectively reversed by CA supplementation. We confirmed that CA significantly reduced inflammation and oxidative stress in the kidneys of mice through regulating NF-κB and Nrf-2 signaling pathways, eventually alleviating the progression of chronic kidney injury. Taken together, these results identified CA as a potential therapeutic strategy for metabolic stress-induced renal injury through restraining inflammation and oxidative stress via the improvement of Nrf-2 signaling.
Collapse
|
4
|
Rayl JM, Allender MC. Temperature affects the host hematological and cytokine response following experimental ranavirus infection in red-eared sliders (Trachemys scripta elegans). PLoS One 2020; 15:e0241414. [PMID: 33119713 PMCID: PMC7595395 DOI: 10.1371/journal.pone.0241414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Pathogen-host interactions are important components of epidemiological research, but are scarcely investigated in chelonians. Red-eared sliders (Trachemys scripta elegans), are recognized as a model for frog virus-3 infection (FV3), a ranavirus in the family Iridoviridae that infects multiple classes of ectothermic vertebrates. Previous challenge studies observed differences in disease outcome based on environmental temperature in this species, but the host response was minimally evaluated. We challenged red-eared sliders with an FV3-like ranavirus at both 28°C and 22°C. We monitored several host response variables for 30 days, including: survival (binary outcome and duration), clinical signs, total and differential leukocytes, and select cytokine transcription in the buffy coat (IL-1β, TNFα, IFYg, IL-10). After 30 days, 17% of challenged turtles survived at 28°C (Median survival time [MST]: 15 days, range: 10–30 days) and 50% survived (MST: 28.5 days, range: 23–30 days) at 22°C (range 23–30 days). The most common clinical signs were injection site swelling, palpebral swelling, and lethargy. The heterophil/lymphocyte ratio at 22°C and interleukin-1 beta (IL1β) transcription at both 22°C and 28°C were significantly greater on days 9, 16, and 23 in FV3 challenged groups. Tumor necrosis factor alpha and interleukin-10 were transcribed at detectable levels, but did not display significant differences in mean relative transcription quantity over time. Overall, evidence indicates an over-robust immune response leading to death in the challenged turtles. FV3 remains a risk for captive and free-ranging chelonian populations, and insight to host/pathogen interaction through this model helps to elucidate the timing and intensity of the host response that contribute to mortality.
Collapse
Affiliation(s)
- Jeremy M. Rayl
- Wildlife Epidemiology Laboratory, College of Veterinary Medicine at University of Illinois, Urbana-Champaign, Illinois, United States of America
- * E-mail:
| | - Matthew C. Allender
- Wildlife Epidemiology Laboratory, College of Veterinary Medicine at University of Illinois, Urbana-Champaign, Illinois, United States of America
| |
Collapse
|
5
|
Toth D, Szabo E, Tamas A, Juhasz T, Horvath G, Fabian E, Opper B, Szabo D, Maugeri G, D'Amico AG, D'Agata V, Vicena V, Reglodi D. Protective Effects of PACAP in Peripheral Organs. Front Endocrinol (Lausanne) 2020; 11:377. [PMID: 32765418 PMCID: PMC7381171 DOI: 10.3389/fendo.2020.00377] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide widely distributed in the nervous system, where it exerts strong neuroprotective effects. PACAP is also expressed in peripheral organs but its peripheral protective effects have not been summarized so far. Therefore, the aim of the present paper is to review the existing literature regarding the cytoprotective effects of PACAP in non-neuronal cell types, peripheral tissues, and organs. Among others, PACAP has widespread expression in the digestive system, where it shows protective effects in various intestinal pathologies, such as duodenal ulcer, small bowel ischemia, and intestinal inflammation. PACAP is present in both the exocrine and endocrine pancreas as well as liver where it reduces inflammation and steatosis by interfering with hepatic pathology related to obesity. It is found in several exocrine glands and also in urinary organs, where, with its protective effects being mainly published regarding renal pathologies, PACAP is protective in numerous conditions. PACAP displays anti-inflammatory effects in upper and lower airways of the respiratory system. In the skin, it is involved in the development of inflammatory pathology such as psoriasis and also has anti-allergic effects in a model of contact dermatitis. In the non-neuronal part of the visual system, PACAP showed protective effects in pathological conditions of the cornea and retinal pigment epithelial cells. The positive role of PACAP has been demonstrated on the formation and healing processes of cartilage and bone where it also prevents osteoarthritis and rheumatoid arthritis development. The protective role of PACAP was also demonstrated in the cardiovascular system in different pathological processes including hyperglycaemia-induced endothelial dysfunction and age-related vascular changes. In the heart, PACAP protects against ischemia, oxidative stress, and cardiomyopathies. PACAP is also involved in the protection against the development of pre-senile systemic amyloidosis, which is presented in various peripheral organs in PACAP-deficient mice. The studies summarized here provide strong evidence for the cytoprotective effects of the peptide. The survival-promoting effects of PACAP depend on a number of factors which are also shortly discussed in the present review.
Collapse
Affiliation(s)
- Denes Toth
- Department of Forensic Medicine, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Edina Szabo
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Gabriella Horvath
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Eszter Fabian
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Balazs Opper
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Szabo
- Heart Institute, Medical School, University of Pécs, Pécs, Hungary
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Agata G. D'Amico
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
- *Correspondence: Dora Reglodi
| |
Collapse
|
6
|
Conservation of glucagon like peptide-1 level with liraglutide and linagilptin protects the kidney against angiotensin II-induced tissue fibrosis in rats. Eur J Pharmacol 2019; 867:172844. [PMID: 31811859 DOI: 10.1016/j.ejphar.2019.172844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
This study tested the hypothesis that the enhancement of glucagon-like peptide-1 (GLP-1) level through either exogenous supply of GLP-1 agonist, liraglutide or prevention of endogenous GLP-1 degradation with dipeptidyl peptidease-4 inhibitor, lingaliptin ameliorates angiotensin II (Ang II)-induced renal fibrosis. Sprague-Dawley rats were randomly divided into four groups: 0.9% saline or Ang II (500 ng/kg/min) was infused with osmotic minipumps for 4 weeks, defined as sham and Ang II groups. In drug treated groups, liraglutide (0.3 mg/kg) was injected subcutaneously twice daily or linagliptin (8 mg/kg) was administered daily via oral gavage during Ang II infusion. Compared with Ang II stimulation, liraglutide or linagliptin comparatively down-regulated the protein level of the AT1 receptor, and up-regulated the AT2 receptor, as identified by a reduced AT1/AT2 ratio (all p < 0.05), consistent with less locally-expressed AT1 receptor and enhanced AT2 receptor in the glomerular capillaries and proximal tubules of the renal cortex. Furthermore, both drugs significantly increased the expression of GLP-1 receptor and attenuated the protein levels of TLR4, NOX4 and IL-6. The populations of macrophages and α-SMA expressing myofibroblasts decreased with treatment of liraglutide and linagliptin, in coincidence with the reduced expression of phosphor-Smad2/3, Smad4, TGFβ1, and up-regulated Smad7. Along with these modulations, renal morphology was preserved and synthesis of fibronectin/collagen I was down-regulated, as identified by small collagen-rich area in the renal cortex. These results suggest that the preservation of GLP-1 level using liraglutide or linagliptin might be considered as an add-on therapeutic option for inhibiting Ang II induced renal fibrosis and failure.
Collapse
|
7
|
The Neuropeptide Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is Protective in Inflammation and Oxidative Stress-Induced Damage in the Kidney. Int J Mol Sci 2019; 20:ijms20194944. [PMID: 31591326 PMCID: PMC6801442 DOI: 10.3390/ijms20194944] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide with a widespread distribution throughout the entire body including the urinary system. PACAP exerts protective actions in different injury models related to several organ systems. Its protective effect is mainly based on its antiapoptotic, anti-inflammatory and antioxidant effects. The present review aims to summarize the effects of PACAP in pathologies associated with inflammation and oxidative stress-induced damage in the kidney. Both in vitro and in vivo data are available proving its protective actions against oxidative stress, hypoxia, renal ischemia/reperfusion, diabetic nephropathy, myeloma kidney injury, amyloidosis and different types of drug-induced nephropathies. Data showing the nephroprotection by PACAP emphasize the potential of PACAP’s therapeutic use in various renal pathologies.
Collapse
|
8
|
Denes V, Geck P, Mester A, Gabriel R. Pituitary Adenylate Cyclase-Activating Polypeptide: 30 Years in Research Spotlight and 600 Million Years in Service. J Clin Med 2019; 8:jcm8091488. [PMID: 31540472 PMCID: PMC6780647 DOI: 10.3390/jcm8091488] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging from the depths of evolution, pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors (i.e., PAC1, VPAC1, VPAC2) are present in multicellular organisms from Tunicates to humans and govern a remarkable number of physiological processes. Consequently, the clinical relevance of PACAP systems spans a multifaceted palette that includes more than 40 disorders. We aimed to present the versatility of PACAP1-38 actions with a focus on three aspects: (1) when PACAP1-38 could be a cause of a malfunction, (2) when PACAP1-38 could be the cure for a malfunction, and (3) when PACAP1-38 could either improve or impair biology. PACAP1-38 is implicated in the pathophysiology of migraine and post-traumatic stress disorder whereas an outstanding protective potential has been established in ischemia and in Alzheimer’s disease. Lastly, PACAP receptors could mediate opposing effects both in cancers and in inflammation. In the light of the above, the duration and concentrations of PACAP agents must be carefully set at any application to avoid unwanted consequences. An enormous amount of data accumulated since its discovery (1989) and the first clinical trials are dated in 2017. Thus in the field of PACAP research: “this is not the end, not even the beginning of the end, but maybe the end of the beginning.”
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Peter Geck
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA.
| | - Adrienn Mester
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| |
Collapse
|
9
|
Epigenetic Profiles Reveal That ADCYAP1 Serves as Key Molecule in Gestational Diabetes Mellitus. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:6936175. [PMID: 31485258 PMCID: PMC6710731 DOI: 10.1155/2019/6936175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/21/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022]
Abstract
Gestational diabetes mellitus (GDM) refers to the condition which shows abnormal glucose metabolism that occurs during pregnancy, while normal glucose metabolism before pregnancy. In the present study, a novel analytical procedure was used to explore the key molecule of gestational diabetes mellitus. First, the weighted pathway model was carried out subsequently to eliminate the gene-overlapping effects among pathways. Second, we assessed the enriched pathways by a combination of Fisher's t-test and the Mann–Whitney U test. We carried out the functional principal component analysis by estimating F values of genes to identify the hub genes in the enriched pathways. Results showed that a total of 4 differential pathways were enriched. The key pathway was considered as the insulin secretion pathway. F values of each gene in the key pathway were calculated. Three hub molecules were identified as hub differentially methylated genes, namely, CAMK2B, ADCYAP1, and KCNN2. In addition, by further comparing the gene expression data in a validation cohort, one key molecule was obtained, ADCYAP1. Therefore, ADCYAP1 may serve as a potential target for the treatment of GDM.
Collapse
|
10
|
Sullivan MA, Forbes JM. Glucose and glycogen in the diabetic kidney: Heroes or villains? EBioMedicine 2019; 47:590-597. [PMID: 31405756 PMCID: PMC6796499 DOI: 10.1016/j.ebiom.2019.07.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
Glucose metabolism in the kidney is currently foremost in the minds of nephrologists, diabetologists and researchers globally, as a result of the outstanding success of SGLT2 inhibitors in reducing renal and cardiovascular disease in individuals with diabetes. However, these exciting data have come with the puzzling but fascinating paradigm that many of the beneficial effects on the kidney and cardiovascular system seem to be independent of the systemic glucose lowering actions of these agents. This manuscript places into context an area of research highly relevant to renal glucose metabolism, that of glycogen accumulation and metabolism in the diabetic kidney. Whether the glycogen that abnormally accumulates is pathological (the villain), is somehow protective (the hero) or is inconsequential (the bystander) is a research question that may provide insight into the link between diabetes and diabetic kidney disease.
Collapse
Affiliation(s)
- Mitchell A Sullivan
- Glycation and Diabetes Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia.
| | - Josephine M Forbes
- Glycation and Diabetes Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia; Mater Clinical School, School of Medicine, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
11
|
Illes A, Horvath G, Schafer E, Kerenyi M, Karadi O, Opper B, Toth G, Reglodi D. Effect of PACAP on Bacterial Adherence and Cytokine Expression in Intestinal Cell Cultures. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9748-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Solymar M, Ivic I, Balasko M, Fulop BD, Toth G, Tamas A, Reman G, Koller A, Reglodi D. Pituitary adenylate cyclase-activating polypeptide ameliorates vascular dysfunction induced by hyperglycaemia. Diab Vasc Dis Res 2018; 15:277-285. [PMID: 29466879 DOI: 10.1177/1479164118757922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Short-lasting hyperglycaemia occurs frequently in prediabetes and poorly controlled diabetes mellitus leading to vascular damage. Pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to play a protective role in vascular complications of diabetes; moreover, antioxidant effects of PACAP were also described. Therefore, we hypothesized that PACAP exerts protective effects in short-term hyperglycaemia-induced vascular dysfunctions. METHODS After short-term hyperglycaemia, acetylcholine-induced and sodium nitroprusside-induced vascular relaxation of mouse carotid arteries were tested with a myograph with or without the presence of PACAP or superoxide dismutase. Potential direct antioxidant superoxide-scavenging action of pituitary adenylate cyclase-activating peptide was tested with pyrogallol autoxidation assay; furthermore, the effect of pituitary adenylate cyclase-activating peptide or superoxide dismutase was investigated on hyperglycaemia-associated vascular markers. RESULTS PACAP administration resulted in reduced endothelial dysfunction after a 1-h hyperglycaemic episode. PACAP was able to restore acetylcholine-induced relaxation of the vessels and improved sodium nitroprusside-induced relaxation. This effect was comparable to the protective effect of superoxide dismutase, but PACAP was unable to directly scavenge superoxide produced by autoxidation of pyrogallol. Endothelial dysfunction was associated with elevated levels of fibroblast growth factor basic, matrix metalloproteinase 9 and nephroblastoma overexpressed gene proteins. Their release was reduced by PACAP administration. CONCLUSION These results suggest a strong protective role of PACAP in the vascular complications of diabetes.
Collapse
Affiliation(s)
- Margit Solymar
- 1 Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Ivan Ivic
- 2 Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, Pécs, Hungary
| | - Marta Balasko
- 1 Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Balazs D Fulop
- 2 Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, Pécs, Hungary
| | - Gabor Toth
- 3 Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Andrea Tamas
- 2 Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, Pécs, Hungary
| | - Gyongyver Reman
- 2 Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, Pécs, Hungary
| | - Akos Koller
- 4 Department of Physiology, New York Medical College, Valhalla, NY, USA
- 5 Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
- 6 Institute of Natural Sciences, University of Physical Education, Budapest, Hungary
| | - Dora Reglodi
- 2 Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
13
|
Vaczy A, Reglodi D, Somoskeoy T, Kovacs K, Lokos E, Szabo E, Tamas A, Atlasz T. The Protective Role of PAC1-Receptor Agonist Maxadilan in BCCAO-Induced Retinal Degeneration. J Mol Neurosci 2016; 60:186-94. [PMID: 27566170 DOI: 10.1007/s12031-016-0818-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022]
Abstract
A number of studies have proven that pituitary adenylate cyclase activating polypeptide (PACAP) is protective in neurodegenerative diseases. Permanent bilateral common carotid artery occlusion (BCCAO) causes severe degeneration in the rat retina. In our previous studies, protective effects were observed with PACAP1-38, PACAP1-27, and VIP but not with their related peptides, glucagon, or secretin in BCCAO. All three PACAP receptors (PAC1, VPAC1, VPAC2) appear in the retina. Molecular and immunohistochemical analysis demonstrated that the retinoprotective effects are most probably mainly mediated by the PAC1 receptor. The aim of the present study was to investigate the retinoprotective effects of a selective PAC1-receptor agonist maxadilan in BCCAO-induced retinopathy. Wistar rats were used in the experiment. After performing BCCAO, the right eye was treated with intravitreal maxadilan (0.1 or 1 μM), while the left eye was injected with vehicle. Sham-operated rats received the same treatment. Two weeks after the operation, retinas were processed for standard morphometric and molecular analysis. Intravitreal injection of 0.1 or 1 μM maxadilan caused significant protection in the thickness of most retinal layers and the number of cells in the GCL compared to the BCCAO-operated eyes. In addition, 1 μM maxadilan application was more effective than 0.1 μM maxadilan treatment in the ONL, INL, IPL, and the entire retina (OLM-ILM). Maxadilan treatment significantly decreased cytokine expression (CINC-1, IL-1α, and L-selectin) in ischemia. In summary, our histological and molecular analysis showed that maxadilan, a selective PAC1 receptor agonist, has a protective role in BCCAO-induced retinal degeneration, further supporting the role of PAC1 receptor conveying the retinoprotective effects of PACAP.
Collapse
Affiliation(s)
- A Vaczy
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - D Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - T Somoskeoy
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - K Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
| | - E Lokos
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - E Szabo
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - A Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary
| | - T Atlasz
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs, Pecs, Hungary. .,Department of Sportbiology, University of Pecs, Ifjusag Street 6, Pecs, H-7624, Hungary. .,Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| |
Collapse
|
14
|
Renoprotective effect of diosgenin in streptozotocin induced diabetic rats. Pharmacol Rep 2016; 68:370-7. [DOI: 10.1016/j.pharep.2015.10.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/19/2022]
|
15
|
Modeling long-term diabetes and related complications in rats. J Pharmacol Toxicol Methods 2016; 78:1-12. [DOI: 10.1016/j.vascn.2015.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 12/22/2022]
|
16
|
Tamas A, Javorhazy A, Reglodi D, Sarlos DP, Banyai D, Semjen D, Nemeth J, Lelesz B, Fulop DB, Szanto Z. Examination of PACAP-Like Immunoreactivity in Urogenital Tumor Samples. J Mol Neurosci 2015; 59:177-83. [DOI: 10.1007/s12031-015-0652-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022]
|
17
|
Ramos-Álvarez I, Mantey SA, Nakamura T, Nuche-Berenguer B, Moreno P, Moody TW, Maderdrut JL, Coy DH, Jensen RT. A structure-function study of PACAP using conformationally restricted analogs: Identification of PAC1 receptor-selective PACAP agonists. Peptides 2015; 66:26-42. [PMID: 25698233 PMCID: PMC4420714 DOI: 10.1016/j.peptides.2015.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 11/22/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) has widespread physiological/pathophysiological actions and there is increased interest for its use therapeutically, especially in the CNS (neuroprotection). Unfortunately, no selective PACAP-analogs exist for PACAP-preferring PAC1-receptors, primarily because of its high sequence identity to VIP and particularly, because of the inability of structure-function studies to separate the pharmacophore of PAC1-R from VPAC1-R, which has high affinity for PACAP and VIP. The present study attempted to develop PAC1-R-selective agonists primarily by making conformationally restricted PACAP-analogs in positions important for receptor-selectivity/affinity. Forty-six PACAP-related-analogs were synthesized with substitutions in positions 1-4, 14-17, 20-22, 28, 34, 38 and receptor-selectivity determined in PAC1-R,VPAC1-R,VPAC2-R-transfected or native cells from binding or cAMP-generation experiments. Fifteen PACAP-analogs had 6-78-fold higher affinities for PAC1-R than VPAC1-R and 13 were agonists. Although binding-affinities correlated significantly with agonist potency, the degree of receptor-spareness varied markedly for the different PACAP-analogs, resulting in selective potencies for activating the PAC1 receptor over the VPAC1 receptor from 0- to 103-fold. In addition, a number of PACAP-analogs were identified that had high selectivity for PAC1-R over VPAC2-R as well as PACAP-analogs that could prove more useful therapeutically because of substitutions known to extend their half-lives (substitutions at potential sites of proteolysis and attachment of long-chain fatty acids). This study provides for the first time a separation of the pharmacophores for PAC1-R and VPAC1-R, resulting in PACAP-related analogs that are PAC1-R-preferring. Some of these analogs, or their modifications, could prove useful as therapeutic agents for various diseases.
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Samuel A Mantey
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Taichi Nakamura
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Bernardo Nuche-Berenguer
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Terry W Moody
- Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Jerome L Maderdrut
- Peptide Research Laboratory, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, United States
| | - Robert T Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States.
| |
Collapse
|
18
|
Marzagalli R, Scuderi S, Drago F, Waschek JA, Castorina A. Emerging Role of PACAP as a New Potential Therapeutic Target in Major Diabetes Complications. Int J Endocrinol 2015; 2015:160928. [PMID: 26074958 PMCID: PMC4446501 DOI: 10.1155/2015/160928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022] Open
Abstract
Enduring diabetes increases the probability of developing secondary damage to numerous systems, and these complications represent a cause of morbidity and mortality. Establishing the causes of diabetes remains the key step to eradicate the disease, but prevention as well as finding therapies to ameliorate some of the major diabetic complications is an equally important step to increase life expectancy and quality for the millions of individuals already affected by the disease or who are likely to develop it before cures become routinely available. In this review, we will firstly summarize some of the major complications of diabetes, including endothelial and pancreatic islets dysfunction, retinopathy, and nephropathy, and then discuss the emerging roles exerted by the neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) to counteract these ranges of pathologies that are precipitated by the prolonged hyperglycemic state. Finally, we will describe the main signalling routes activated by the peptide and propose possible future directions to focus on developing more effective peptide-based therapies to treat the major complications associated with longstanding diabetes.
Collapse
Affiliation(s)
- Rubina Marzagalli
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Soraya Scuderi
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Filippo Drago
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - James A. Waschek
- Semel Institute, Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alessandro Castorina
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- *Alessandro Castorina:
| |
Collapse
|
19
|
Sakamoto K, Kuno K, Takemoto M, He P, Ishikawa T, Onishi S, Ishibashi R, Okabe E, Shoji M, Hattori A, Yamaga M, Kobayashi K, Kawamura H, Tokuyama H, Maezawa Y, Yokote K. Pituitary adenylate cyclase-activating polypeptide protects glomerular podocytes from inflammatory injuries. J Diabetes Res 2015; 2015:727152. [PMID: 25821833 PMCID: PMC4363873 DOI: 10.1155/2015/727152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 12/02/2022] Open
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage kidney disease; however, there are few treatment options. Inflammation plays a crucial role in the initiation and/or progression of DN. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide, which was originally isolated from the ovine hypothalamus and reportedly has diverse biological functions. It has been reported that PACAP has renoprotective effects in different models of kidney pathology. However, the specific cell types within the kidney that are protected by PACAP have not yet been reported. In this study, we localized VPAC1, one of the PACAP receptors, to glomerular podocytes, which also reportedly has crucial roles not only in glomerular physiology but also in pathology. PACAP was effective in the downregulation of proinflammatory cytokines, such as monocyte chemoattractant protein-1 (MCP-1) and interleukin-6, which had been induced by the activation of toll-like receptor (TLR) with lipopolysaccharide. PACAP also had downregulated the expression of MCP-1 through the protein kinase A signaling pathway; this led to the attenuation of the activation of extracellular signal-regulated kinase and nuclear factor-kappa B signaling. Our results suggested that PACAP could be a possible treatment option for DN through the use of anti-inflammation effects on glomerular podocytes.
Collapse
Affiliation(s)
- Kenichi Sakamoto
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Kyoko Kuno
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
| | - Minoru Takemoto
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
- *Minoru Takemoto:
| | - Peng He
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
| | - Takahiro Ishikawa
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Shunichiro Onishi
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Ryoichi Ishibashi
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Emiko Okabe
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Mayumi Shoji
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Akiko Hattori
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Masaya Yamaga
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Kazuki Kobayashi
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Harukiyo Kawamura
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Hirotake Tokuyama
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Yoshiro Maezawa
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| |
Collapse
|
20
|
László E, Kiss P, Horváth G, Szakály P, Tamás A, Reglődi D. The effects of pituitary adenylate cyclase activating polypeptide in renal ischemia/reperfusion. ACTA BIOLOGICA HUNGARICA 2014; 65:369-78. [PMID: 25475976 DOI: 10.1556/abiol.65.2014.4.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP ) is a multifunctional neuropeptide occurring in the nervous system as well as in the peripheral organs. Beneficial action of PACAP has been shown in different pathological processes. The strong protective effects of the peptide are probably due to its complex modulatory actions in antiapoptotic, anti-inflammatory and antioxidant pathways. In the kidney, PACAP is protective in models of diabetic nephropathy, myeloma kidney injury, cisplatin-, gentamycin- and cyclosporin-induced damages. Numerous studies have been published describing the protective effect of this peptide in renal ischemia/reperfusion. The present review focuses on the ischemia/reperfusion-induced kidney injury and gives a brief summary about the results published in this area.
Collapse
Affiliation(s)
- Eszter László
- PTE-MTA PACAP "Lendület" Research Team Department of Anatomy Pécs Hungary
| | - P Kiss
- PTE-MTA PACAP "Lendület" Research Team Department of Anatomy Pécs Hungary
| | - Gabriella Horváth
- PTE-MTA PACAP "Lendület" Research Team Department of Anatomy Pécs Hungary
| | - P Szakály
- University of Pécs Department of Surgery Pécs Hungary
| | - Andrea Tamás
- PTE-MTA PACAP "Lendület" Research Team Department of Anatomy Pécs Hungary
| | - Dóra Reglődi
- PTE-MTA PACAP "Lendület" Research Team Department of Anatomy Pécs Hungary
| |
Collapse
|
21
|
Banki E, Pakai E, Gaszner B, Zsiboras C, Czett A, Bhuddi PRP, Hashimoto H, Toth G, Tamas A, Reglodi D, Garami A. Characterization of the thermoregulatory response to pituitary adenylate cyclase-activating polypeptide in rodents. J Mol Neurosci 2014; 54:543-54. [PMID: 24994541 DOI: 10.1007/s12031-014-0361-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/23/2014] [Indexed: 12/19/2022]
Abstract
Administration of the long form (38 amino acids) of pituitary adenylate cyclase-activating polypeptide (PACAP38) into the central nervous system causes hyperthermia, suggesting that PACAP38 plays a role in the regulation of deep body temperature (T b). In this study, we investigated the thermoregulatory role of PACAP38 in details. First, we infused PACAP38 intracerebroventricularly to rats and measured their T b and autonomic thermoeffector responses. We found that central PACAP38 infusion caused dose-dependent hyperthermia, which was brought about by increased thermogenesis and tail skin vasoconstriction. Compared to intracerebroventricular administration, systemic (intravenous) infusion of the same dose of PACAP38 caused significantly smaller hyperthermia, indicating a central site of action. We then investigated the thermoregulatory phenotype of mice lacking the Pacap gene (Pacap (-/-)). Freely moving Pacap (-/-) mice had higher locomotor activity throughout the day and elevated deep T b during the light phase. When the Pacap (-/-) mice were loosely restrained, their metabolic rate and T b were lower compared to their wild-type littermates. We conclude that PACAP38 causes hyperthermia via activation of the autonomic cold-defense thermoeffectors through central targets. Pacap (-/-) mice express hyperkinesis, which is presumably a compensatory mechanism, because under restrained conditions, these mice are hypometabolic and hypothermic compared to controls.
Collapse
Affiliation(s)
- Eszter Banki
- Department of Anatomy PTE-MTA "Lendulet" PACAP Research Team, Medical School, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
The selective PAC1 receptor agonist maxadilan inhibits neurogenic vasodilation and edema formation in the mouse skin. Neuropharmacology 2014; 85:538-47. [PMID: 24973707 DOI: 10.1016/j.neuropharm.2014.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 01/30/2023]
Abstract
We have earlier shown that PACAP-38 decreases neurogenic inflammation. However, there were no data on its receptorial mechanism and the involvement of its PAC1 and VPAC1/2 receptors (PAC1R, VPAC1/2R) in this inhibitory effect. Neurogenic inflammation in the mouse ear was induced by topical application of the Transient Receptor Potential Ankyrin 1 (TRPA1) receptor activator mustard oil (MO). Consequent neurogenic edema, vasodilation and plasma leakage were assessed by measuring ear thickness with engineer's micrometer, detecting tissue perfusion by laser Doppler scanning and Evans blue or indocyanine green extravasation by intravital videomicroscopy or fluorescence imaging, respectively. Myeloperoxidase activity, an indicator of neutrophil infiltration, was measured from the ear homogenates with spectrophotometry. The selective PAC1R agonist maxadilan, the VPAC1/2R agonist vasoactive intestinal polypeptide (VIP) or the vehicle were administered i.p. 15 min before MO. Substance P (SP) concentration of the ear was assessed by radioimmunoassay. Maxadilan significantly diminished MO-induced neurogenic edema, increase of vascular permeability and vasodilation. These inhibitory effects of maxadilan may be partially due to the decreased substance P (SP) levels. In contrast, inhibitory effect of VIP on ear swelling was moderate, without any effect on MO-induced plasma leakage or SP release, however, activation of VPAC1/2R inhibited the increased microcirculation caused by the early arteriolar vasodilation. Neither the PAC1R, nor the VPAC1/2R agonist influenced the MO-evoked increase in tissue myeloperoxidase activity. These results clearly show that PAC1R activation inhibits acute neurogenic arterial vasodilation and plasma protein leakage from the venules, while VPAC1/2R stimulation is only involved in the attenuation of vasodilation.
Collapse
|
23
|
Horvath G, Reglodi D, Brubel R, Halasz M, Barakonyi A, Tamas A, Fabian E, Opper B, Toth G, Cohen M, Szereday L. Investigation of the possible functions of PACAP in human trophoblast cells. J Mol Neurosci 2014; 54:320-30. [PMID: 24874580 DOI: 10.1007/s12031-014-0337-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/16/2014] [Indexed: 12/21/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide having a widespread distribution both in the nervous system and peripheral organs including the female reproductive system. Both the peptide and its receptors have been shown in the placenta but its role in placental growth, especially its human aspects, remains unknown. The aim of the present study was to investigate the effects of PACAP on invasion, proliferation, cell survival, and angiogenesis of trophoblast cells. Furthermore, cytokine production was investigated in human decidual and peripheral blood mononuclear cells. For in vitro studies, human invasive proliferative extravillous cytotrophoblast (HIPEC) cells and HTR-8/SVneo human trophoblast cells were used. Both cell types were used for testing the effects of PACAP on invasion and cell survival in order to investigate whether the effects of PACAP in trophoblasts depend on the examined cell type. Invasion was studied by standardized invasion assay. PACAP increased proliferation in HIPEC cells, but not in HTR-8 cells. Cell viability was examined using MTT test, WST-1 assay, and annexin V/propidium iodide flow cytometry assay. Survival of HTR-8/SVneo cells was studied under oxidative stress conditions induced by hydrogen peroxide. PACAP as pretreatment, but not as co-treatment, significantly increased the number of surviving HTR-8 cells. Viability of HIPEC cells was investigated using methotrexate (MTX) toxicity, but PACAP1-38 could not counteract its toxic effect. Angiogenic molecules were determined both in the supernatant and the cell lysate by angiogenesis array. In the supernatant, we found that PACAP decreased the secretion of various angiogenic markers, such as angiopoietin, angiogenin, activin, endoglin, ADAMTS-1, and VEGF. For the cytokine assay, human decidual and peripheral blood lymphocytes were separated and treated with PACAP1-38. Th1 and Th2 cytokines were analyzed with CBA assay and the results showed that there were no significant differences in control and PACAP-treated cells. In summary, PACAP seems to play various roles in human trophoblast cells, depending on the cell type and microenvironmental influences.
Collapse
Affiliation(s)
- G Horvath
- Department of Anatomy, MTA-PTE "Lendulet" PACAP Research Team, University of Pecs, Szigeti u 12, 7624, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Molecular mechanisms underlying the Nephroprotective effects of PACAP in diabetes. J Mol Neurosci 2014; 54:300-9. [PMID: 24535559 DOI: 10.1007/s12031-014-0249-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
Diabetic nephropathy is the leading cause of end-stage renal failure and accounts for 30-40 % of patients entering renal transplant programmes. The nephroprotective effects of the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP38) against diabetes have been shown previously, but the molecular mechanisms responsible for these effects remain unknown. In the present study, we showed that PACAP treatment counteracted the diabetes-induced increase in the level of the proapoptotic pp38MAPK and cleaved caspase-3 and also decreased the p60 subunit of NFκB. The examined antiapoptotic factors, including pAkt and pERK1/2, showed a slight increase in the diabetic kidneys, while PACAP treatment resulted in a notable elevation of these proteins. PCR and Western blot revealed the downregulation of fibrotic markers, like collagen IV and TGF-β1 in the kidney. PACAP treatment resulted in increased expression of the antioxidant glutathione. We conclude that the nephroprotective effect of PACAP in diabetes is, at least partly, due to its antiapoptotic, antifibrotic and antioxidative effect in addition to the previously described antiinflammatory effect.
Collapse
|
25
|
PACAP promotes neuron survival in early experimental diabetic retinopathy. Neurochem Int 2014; 64:84-91. [DOI: 10.1016/j.neuint.2013.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 01/05/2023]
|
26
|
Ayepola OR, Chegou NN, Brooks NL, Oguntibeju OO. Kolaviron, a Garcinia biflavonoid complex ameliorates hyperglycemia-mediated hepatic injury in rats via suppression of inflammatory responses. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:363. [PMID: 24359406 PMCID: PMC3878222 DOI: 10.1186/1472-6882-13-363] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/11/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic inflammation plays a crucial role in hyperglycemia-induced liver injury. Kolaviron (KV), a natural biflavonoid from Garcinia kola seeds have been shown to possess anti- inflammatory properties which has not been explored in diabetes. To our knowledge, this is the first study to investigate the effect of KV on pro-inflammatory proteins in the liver of diabetic rats. METHODS Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ) (50 mg/kg) in male Wistar rats. Kolaviron (100 mg/kg) was administered orally five times a week for six weeks. The concentrations of cytokines and chemokine were measured using Bio-plex Pro™ magnetic bead-based assays (Bio-Rad Laboratories, Hercules, USA). Plasma glucose and serum biomarkers of liver dysfunction were analyzed with diagnostic kits in an automated clinical chemistry analyzer. Insulin concentration was estimated by radioimmunoassay (RIA). RESULT Kolaviron (100mg/kg) treatment significantly ameliorated hyperglycemia and liver dysfunction. Serum levels of hepatic marker enzymes were significantly reduced in kolaviron treated diabetic rats. Kolaviron prevented diabetes induced increase in the hepatic levels of proinflammatory cytokines; interleukin (IL)-1beta, IL-6, tumour necrosis factor (TNF-α) and monocyte chemotactic protein (MCP-1). CONCLUSION The results of this study demonstrate that the hepatoprotective effects of kolaviron in diabetic rats may be partly associated with its modulating effect on inflammatory responses.
Collapse
|