1
|
Wang X, Luo H, Peng X, Chen J. Spider and scorpion knottins targeting voltage-gated sodium ion channels in pain signaling. Biochem Pharmacol 2024; 227:116465. [PMID: 39102991 DOI: 10.1016/j.bcp.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
In sensory neurons that transmit pain signals, whether acute or chronic, voltage-gated sodium channels (VGSCs) are crucial for regulating excitability. NaV1.1, NaV1.3, NaV1.6, NaV1.7, NaV1.8, and NaV1.9 have been demonstrated and defined their functional roles in pain signaling based on their biophysical properties and distinct patterns of expression in each subtype of sensory neurons. Scorpions and spiders are traditional Chinese medicinal materials, belonging to the arachnid class. Most of the studied species of them have evolved venom peptides that exhibit a wide variety of knottins specifically targeting VGSCs with subtype selectivity and conformational specificity. This review provides an overview on the exquisite knottins from scorpion and spider venoms targeting pain-related NaV channels, describing the sequences and the structural features as well as molecular determinants that influence their selectivity on special subtype and at particular conformation, with an aim for the development of novel research tools on NaV channels and analgesics with minimal adverse effects.
Collapse
Affiliation(s)
- Xiting Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huan Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiaozhen Peng
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China.
| | - Jinjun Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 418000, China.
| |
Collapse
|
2
|
Dongol Y, Wilson DT, Daly NL, Cardoso FC, Lewis RJ. Structure-function and rational design of a spider toxin Ssp1a at human voltage-gated sodium channel subtypes. Front Pharmacol 2023; 14:1277143. [PMID: 38034993 PMCID: PMC10682951 DOI: 10.3389/fphar.2023.1277143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
The structure-function and optimization studies of NaV-inhibiting spider toxins have focused on developing selective inhibitors for peripheral pain-sensing NaV1.7. With several NaV subtypes emerging as potential therapeutic targets, structure-function analysis of NaV-inhibiting spider toxins at such subtypes is warranted. Using the recently discovered spider toxin Ssp1a, this study extends the structure-function relationships of NaV-inhibiting spider toxins beyond NaV1.7 to include the epilepsy target NaV1.2 and the pain target NaV1.3. Based on these results and docking studies, we designed analogues for improved potency and/or subtype-selectivity, with S7R-E18K-rSsp1a and N14D-P27R-rSsp1a identified as promising leads. S7R-E18K-rSsp1a increased the rSsp1a potency at these three NaV subtypes, especially at NaV1.3 (∼10-fold), while N14D-P27R-rSsp1a enhanced NaV1.2/1.7 selectivity over NaV1.3. This study highlights the challenge of developing subtype-selective spider toxin inhibitors across multiple NaV subtypes that might offer a more effective therapeutic approach. The findings of this study provide a basis for further rational design of Ssp1a and related NaSpTx1 homologs targeting NaV1.2, NaV1.3 and/or NaV1.7 as research tools and therapeutic leads.
Collapse
Affiliation(s)
- Yashad Dongol
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David T. Wilson
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Norelle L. Daly
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Fernanda C. Cardoso
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Richard J. Lewis
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Dongol Y, Choi PM, Wilson DT, Daly NL, Cardoso FC, Lewis RJ. Voltage-Gated Sodium Channel Modulation by a New Spider Toxin Ssp1a Isolated From an Australian Theraphosid. Front Pharmacol 2021; 12:795455. [PMID: 35002728 PMCID: PMC8740163 DOI: 10.3389/fphar.2021.795455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Given the important role of voltage-gated sodium (NaV) channel-modulating spider toxins in elucidating the function, pharmacology, and mechanism of action of therapeutically relevant NaV channels, we screened the venom from Australian theraphosid species against the human pain target hNaV1.7. Using assay-guided fractionation, we isolated a 33-residue inhibitor cystine knot (ICK) peptide (Ssp1a) belonging to the NaSpTx1 family. Recombinant Ssp1a (rSsp1a) inhibited neuronal hNaV subtypes with a rank order of potency hNaV1.7 > 1.6 > 1.2 > 1.3 > 1.1. rSsp1a inhibited hNaV1.7, hNaV1.2 and hNaV1.3 without significantly altering the voltage-dependence of activation, inactivation, or delay in recovery from inactivation. However, rSsp1a demonstrated voltage-dependent inhibition at hNaV1.7 and rSsp1a-bound hNaV1.7 opened at extreme depolarizations, suggesting rSsp1a likely interacted with voltage-sensing domain II (VSD II) of hNaV1.7 to trap the channel in its resting state. Nuclear magnetic resonance spectroscopy revealed key structural features of Ssp1a, including an amphipathic surface with hydrophobic and charged patches shown by docking studies to comprise the interacting surface. This study provides the basis for future structure-function studies to guide the development of subtype selective inhibitors.
Collapse
Affiliation(s)
- Yashad Dongol
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Phil M. Choi
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David T. Wilson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Norelle L. Daly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Fernanda C. Cardoso
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Richard J. Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Diochot S. Pain-related toxins in scorpion and spider venoms: a face to face with ion channels. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210026. [PMID: 34925480 PMCID: PMC8667759 DOI: 10.1590/1678-9199-jvatitd-2021-0026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pain is a common symptom induced during envenomation by spiders and scorpions.
Toxins isolated from their venom have become essential tools for studying the
functioning and physiopathological role of ion channels, as they modulate their
activity. In particular, toxins that induce pain relief effects can serve as a
molecular basis for the development of future analgesics in humans. This review
provides a summary of the different scorpion and spider toxins that directly
interact with pain-related ion channels, with inhibitory or stimulatory effects.
Some of these toxins were shown to affect pain modalities in different animal
models providing information on the role played by these channels in the pain
process. The close interaction of certain gating-modifier toxins with membrane
phospholipids close to ion channels is examined along with molecular approaches
to improve selectivity, affinity or bioavailability in vivo for
therapeutic purposes.
Collapse
Affiliation(s)
- Sylvie Diochot
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS) UMR 7275 et Université Côte d'Azur (UCA), 06560 Valbonne, France. Institut de Pharmacologie Moléculaire et Cellulaire Centre National de la Recherche Scientifique Université Côte d'Azur Valbonne France
| |
Collapse
|
5
|
Hu H, Mawlawi SE, Zhao T, Deuis JR, Jami S, Vetter I, Lewis RJ, Cardoso FC. Engineering of a Spider Peptide via Conserved Structure-Function Traits Optimizes Sodium Channel Inhibition In Vitro and Anti-Nociception In Vivo. Front Mol Biosci 2021; 8:742457. [PMID: 34621788 PMCID: PMC8490825 DOI: 10.3389/fmolb.2021.742457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Venom peptides are potent and selective modulators of voltage-gated ion channels that regulate neuronal function both in health and in disease. We previously identified the spider venom peptide Tap1a from the Venezuelan tarantula Theraphosa apophysis that targeted multiple voltage-gated sodium and calcium channels in visceral pain pathways and inhibited visceral mechano-sensing neurons contributing to irritable bowel syndrome. In this work, alanine scanning and domain activity analysis revealed Tap1a inhibited sodium channels by binding with nanomolar affinity to the voltage-sensor domain II utilising conserved structure-function features characteristic of spider peptides belonging to family NaSpTx1. In order to speed up the development of optimized NaV-targeting peptides with greater inhibitory potency and enhanced in vivo activity, we tested the hypothesis that incorporating residues identified from other optimized NaSpTx1 peptides into Tap1a could also optimize its potency for NaVs. Applying this approach, we designed the peptides Tap1a-OPT1 and Tap1a-OPT2 exhibiting significant increased potency for NaV1.1, NaV1.2, NaV1.3, NaV1.6 and NaV1.7 involved in several neurological disorders including acute and chronic pain, motor neuron disease and epilepsy. Tap1a-OPT1 showed increased potency for the off-target NaV1.4, while this off-target activity was absent in Tap1a-OPT2. This enhanced potency arose through a slowed off-rate mechanism. Optimized inhibition of NaV channels observed in vitro translated in vivo, with reversal of nocifensive behaviours in a murine model of NaV-mediated pain also enhanced by Tap1a-OPT. Molecular docking studies suggested that improved interactions within loops 3 and 4, and C-terminal of Tap1a-OPT and the NaV channel voltage-sensor domain II were the main drivers of potency optimization. Overall, the rationally designed peptide Tap1a-OPT displayed new and refined structure-function features which are likely the major contributors to its enhanced bioactive properties observed in vivo. This work contributes to the rapid engineering and optimization of potent spider peptides multi-targeting NaV channels, and the research into novel drugs to treat neurological diseases.
Collapse
Affiliation(s)
- H Hu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - S E Mawlawi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - T Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - J R Deuis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - S Jami
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - I Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - R J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - F C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Centre for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Wisedchaisri G, Tonggu L, Gamal El-Din TM, McCord E, Zheng N, Catterall WA. Structural Basis for High-Affinity Trapping of the Na V1.7 Channel in Its Resting State by Tarantula Toxin. Mol Cell 2021; 81:38-48.e4. [PMID: 33232657 PMCID: PMC8043720 DOI: 10.1016/j.molcel.2020.10.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/14/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022]
Abstract
Voltage-gated sodium channels initiate electrical signals and are frequently targeted by deadly gating-modifier neurotoxins, including tarantula toxins, which trap the voltage sensor in its resting state. The structural basis for tarantula-toxin action remains elusive because of the difficulty of capturing the functionally relevant form of the toxin-channel complex. Here, we engineered the model sodium channel NaVAb with voltage-shifting mutations and the toxin-binding site of human NaV1.7, an attractive pain target. This mutant chimera enabled us to determine the cryoelectron microscopy (cryo-EM) structure of the channel functionally arrested by tarantula toxin. Our structure reveals a high-affinity resting-state-specific toxin-channel interaction between a key lysine residue that serves as a "stinger" and penetrates a triad of carboxyl groups in the S3-S4 linker of the voltage sensor. By unveiling this high-affinity binding mode, our studies establish a high-resolution channel-docking and resting-state locking mechanism for huwentoxin-IV and provide guidance for developing future resting-state-targeted analgesic drugs.
Collapse
Affiliation(s)
| | - Lige Tonggu
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | - Eedann McCord
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Yousuf A, Sadeghi M, Adams DJ. Venom-Derived Peptides Inhibiting Voltage-Gated Sodium and Calcium Channels in Mammalian Sensory Neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:3-19. [DOI: 10.1007/978-981-16-4254-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Eagles DA, Chow CY, King GF. Fifteen years of Na
V
1.7 channels as an analgesic target: Why has excellent in vitro pharmacology not translated into in vivo analgesic efficacy? Br J Pharmacol 2020; 179:3592-3611. [DOI: 10.1111/bph.15327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- David A. Eagles
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - Chun Yuen Chow
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - Glenn F. King
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| |
Collapse
|
9
|
Chen M, Peng S, Wang L, Yang L, Si Y, Zhou X, Zhang Y, Liu Z. Recombinant PaurTx-3, a spider toxin, inhibits sodium channels and decreases membrane excitability in DRG neurons. Biochem Biophys Res Commun 2020; 533:958-964. [PMID: 33004176 DOI: 10.1016/j.bbrc.2020.09.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
Voltage-gated sodium channels are critical for the generation and propagation of action potentials. Gating modifier toxins from spider venom can modulate the gating mechanism of sodium channels and thus have potential as drug leads. Here, we established expression of the gating modifier toxin PaurTx-3, a sodium channel inhibitor found in the venom of the spider Phrixotrichus auratus. Whole-cell voltage-clamp recordings indicated that recombinant PaurTx-3 (rPaurTx-3) inhibited Nav1.4, Nav1.5, and Nav1.7 currents with IC50 values of 61 nM, 72 nM, and 25 nM, respectively. Furthermore, rPaurTx-3 irreversibly inhibited Nav1.7 currents, but had 60-70% recovery in Nav1.4 and Nav1.5 after washing with a bath solution. rPaurTx-3 also hyperpolarized the voltage-dependent steady-state inactivation curve and significantly slowed recovery from fast inactivation of Nav1.7. Current-clamp recordings showed that rPaurTx-3 suppressed small DRG neuron activity. The biological activity assay findings for rPaurTx-3 support its potent pharmacological effect in Nav1.7 and small DRG neurons.
Collapse
Affiliation(s)
- Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Shuijiao Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Li Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Li Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yuxin Si
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xi Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Yunxiao Zhang
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
10
|
Cardoso FC. Multi-targeting sodium and calcium channels using venom peptides for the treatment of complex ion channels-related diseases. Biochem Pharmacol 2020; 181:114107. [PMID: 32579958 DOI: 10.1016/j.bcp.2020.114107] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 02/08/2023]
Abstract
Venom peptides are amongst the most exquisite group of bioactive molecules able to alter the normal physiology of organisms. These bioactive peptides penetrate tissues and blood vessels to encounter a number of receptors and ion channels to which they bind with high affinity and execute modulatory activities. Arachnid is the most diverse class of venomous animals often rich in peptides modulating voltage-gated sodium (NaV), calcium (CaV), and potassium (KV) channels. Spider venoms, in particular, contain potent and selective peptides targeting these channels, with a few displaying interesting multi-target properties for NaV and CaV channels underlying disease mechanisms such as in neuropathic pain, motor neuron disease and cancer. The elucidation of the pharmacology and structure-function properties of these venom peptides are invaluable for the development of effective drugs targeting NaV and CaV channels. This perspective discusses spider venom peptides displaying multi-target properties to modulate NaV and CaV channels in regard to their pharmacological features, structure-function relationships and potential to become the next generation of effective drugs to treat neurological disorders and other multi-ion channels related diseases.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd., St Lucia, QLD AU 4072, Australia
| |
Collapse
|
11
|
Agwa AJ, Tran P, Mueller A, Tran HNT, Deuis JR, Israel MR, McMahon KL, Craik DJ, Vetter I, Schroeder CI. Manipulation of a spider peptide toxin alters its affinity for lipid bilayers and potency and selectivity for voltage-gated sodium channel subtype 1.7. J Biol Chem 2020; 295:5067-5080. [PMID: 32139508 PMCID: PMC7152767 DOI: 10.1074/jbc.ra119.012281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/03/2020] [Indexed: 02/05/2023] Open
Abstract
Huwentoxin-IV (HwTx-IV) is a gating modifier peptide toxin from spiders that has weak affinity for the lipid bilayer. As some gating modifier toxins have affinity for model lipid bilayers, a tripartite relationship among gating modifier toxins, voltage-gated ion channels, and the lipid membrane surrounding the channels has been proposed. We previously designed an HwTx-IV analogue (gHwTx-IV) with reduced negative charge and increased hydrophobic surface profile, which displays increased lipid bilayer affinity and in vitro activity at the voltage-gated sodium channel subtype 1.7 (NaV1.7), a channel targeted in pain management. Here, we show that replacements of the positively-charged residues that contribute to the activity of the peptide can improve gHwTx-IV's potency and selectivity for NaV1.7. Using HwTx-IV, gHwTx-IV, [R26A]gHwTx-IV, [K27A]gHwTx-IV, and [R29A]gHwTx-IV variants, we examined their potency and selectivity at human NaV1.7 and their affinity for the lipid bilayer. [R26A]gHwTx-IV consistently displayed the most improved potency and selectivity for NaV1.7, examined alongside off-target NaVs, compared with HwTx-IV and gHwTx-IV. The lipid affinity of each of the three novel analogues was weaker than that of gHwTx-IV, but stronger than that of HwTx-IV, suggesting a possible relationship between in vitro potency at NaV1.7 and affinity for lipid bilayers. In a murine NaV1.7 engagement model, [R26A]gHwTx-IV exhibited an efficacy comparable with that of native HwTx-IV. In summary, this study reports the development of an HwTx-IV analogue with improved in vitro selectivity for the pain target NaV1.7 and with an in vivo efficacy similar to that of native HwTx-IV.
Collapse
Affiliation(s)
- Akello J Agwa
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Poanna Tran
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alexander Mueller
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hue N T Tran
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mathilde R Israel
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kirsten L McMahon
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4103, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
- National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| |
Collapse
|
12
|
Newly Discovered Action of HpTx3 from Venom of Heteropoda venatoria on Na v1.7 and Its Pharmacological Implications in Analgesia. Toxins (Basel) 2019; 11:toxins11120680. [PMID: 31757020 PMCID: PMC6950750 DOI: 10.3390/toxins11120680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
It has been reported that Heteropodatoxin3 (HpTx3), a peptidic neurotoxin purified from the venom of the spider species Heteropoda venatoria, could inhibit Kv4.2 channels. Our present study newly found that HpTx3 also has potent and selective inhibitory action on Nav1.7, with an IC50 of 135.61 ± 12.98 nM. Without effect on the current–voltage (I-V) relationship of Nav1.7, HpTx3 made minor alternation in the voltage-dependence of activation and steady-state inactivation of Nav1.7 (4.15 mV and 7.29 mV, respectively) by interacting with the extracellular S3–S4 loop (S3b–S4 sequence) in domain II and the domain IV of the Nav channel subtype, showing the characteristics of both pore blocker and gate modifier toxin. During the interaction of HpTx3 with the S3b–S4 sequence of Nav1.7, the amino acid residue D in the sequence played a key role. When administered intraperitoneally or intramuscularly, HpTx3 displayed potent analgesic activity in a dose-dependent manner in different mouse pain models induced by formalin, acetic acid, complete Freund’s adjuvant, hot plate, or spared nerve injury, demonstrating that acute, inflammatory, and neuropathic pains were all effectively inhibited by the toxin. In most cases HpTx3 at doses of ≥ 1mg/kg could produce the analgesic effect comparable to that of 1 mg/kg morphine. These results suggest that HpTx3 not only can be used as a molecular probe to investigate ion channel function and pain mechanism, but also has potential in the development of the drugs that treat the Nav1.7 channel-related pain.
Collapse
|
13
|
Spider Knottin Pharmacology at Voltage-Gated Sodium Channels and Their Potential to Modulate Pain Pathways. Toxins (Basel) 2019; 11:toxins11110626. [PMID: 31671792 PMCID: PMC6891507 DOI: 10.3390/toxins11110626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels (NaVs) are a key determinant of neuronal signalling. Neurotoxins from diverse taxa that selectively activate or inhibit NaV channels have helped unravel the role of NaV channels in diseases, including chronic pain. Spider venoms contain the most diverse array of inhibitor cystine knot (ICK) toxins (knottins). This review provides an overview on how spider knottins modulate NaV channels and describes the structural features and molecular determinants that influence their affinity and subtype selectivity. Genetic and functional evidence support a major involvement of NaV subtypes in various chronic pain conditions. The exquisite inhibitory properties of spider knottins over key NaV subtypes make them the best lead molecules for the development of novel analgesics to treat chronic pain.
Collapse
|
14
|
µ-TRTX-Ca1a: a novel neurotoxin from Cyriopagopus albostriatus with analgesic effects. Acta Pharmacol Sin 2019; 40:859-866. [PMID: 30382183 DOI: 10.1038/s41401-018-0181-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/30/2018] [Indexed: 12/16/2022]
Abstract
Human genetic and pharmacological studies have demonstrated that voltage-gated sodium channels (VGSCs) are promising therapeutic targets for the treatment of pain. Spider venom contains many toxins that modulate the activity of VGSCs. To date, only 0.01% of such spider toxins has been explored, and thus there is a great potential for discovery of novel VGSC modulators as useful pharmacological tools or potential therapeutics. In the current study, we identified a novel peptide, µ-TRTX-Ca1a (Ca1a), in the venom of the tarantula Cyriopagopus albostriatus. This peptide consisted of 38 residues, including 6 cysteines, i.e. IFECSISCEIEKEGNGKKCKPKKCKGGWKCKFNICVKV. In HEK293T or ND7/23 cells expressing mammalian VGSCs, this peptide exhibited the strongest inhibitory activity on Nav1.7 (IC50 378 nM), followed by Nav1.6 (IC50 547 nM), Nav1.2 (IC50 728 nM), Nav1.3 (IC50 2.2 µM) and Nav1.4 (IC50 3.2 µM), and produced negligible inhibitory effect on Nav1.5, Nav1.8, and Nav1.9, even at high concentrations of up to 10 µM. Furthermore, this peptide did not significantly affect the activation and inactivation of Nav1.7. Using site-directed mutagenesis of Nav1.7 and Nav1.4, we revealed that its binding site was localized to the DIIS3-S4 linker region involving the D816 and E818 residues. In three different mouse models of pain, pretreatment with Cala (100, 200, 500 µg/kg) dose-dependently suppressed the nociceptive responses induced by formalin, acetic acid or heat. These results suggest that Ca1a is a novel neurotoxin against VGSCs and has a potential to be developed as a novel analgesic.
Collapse
|
15
|
Cardoso FC, Lewis RJ. Structure-Function and Therapeutic Potential of Spider Venom-Derived Cysteine Knot Peptides Targeting Sodium Channels. Front Pharmacol 2019; 10:366. [PMID: 31031623 PMCID: PMC6470632 DOI: 10.3389/fphar.2019.00366] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Spider venom-derived cysteine knot peptides are a mega-diverse class of molecules that exhibit unique pharmacological properties to modulate key membrane protein targets. Voltage-gated sodium channels (NaV) are often targeted by these peptides to allosterically promote opening or closing of the channel by binding to structural domains outside the channel pore. These effects can result in modified pain responses, muscle paralysis, cardiac arrest, priapism, and numbness. Although such effects are often deleterious, subtype selective spider venom peptides are showing potential to treat a range of neurological disorders, including chronic pain and epilepsy. This review examines the structure–activity relationships of cysteine knot peptides from spider venoms that modulate NaV and discusses their potential as leads to novel therapies for neurological disorders.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
16
|
Gonçalves TC, Benoit E, Kurz M, Lucarain L, Fouconnier S, Combemale S, Jaquillard L, Schombert B, Chambard JM, Boukaiba R, Hessler G, Bohme A, Bialy L, Hourcade S, Béroud R, De Waard M, Servent D, Partiseti M. From identification to functional characterization of cyriotoxin-1a, an antinociceptive toxin from the spider Cyriopagopus schioedtei. Br J Pharmacol 2019; 176:1298-1314. [PMID: 30784059 DOI: 10.1111/bph.14628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE The NaV 1.7 channel is highly expressed in dorsal root ganglia of the sensory nervous system and plays a central role in the pain signalling process. We investigated a library prepared from original venoms of 117 different animals to identify new selective inhibitors of this target. EXPERIMENTAL APPROACH We used high throughput screening of a large venom collection using automated patch-clamp experiments on human voltage-gated sodium channel subtypes and then in vitro and in vivo electrophysiological experiments to characterize the active peptides that have been purified, sequenced, and chemically synthesized. Analgesic effects were evaluated in vivo in mice models. KEY RESULTS We identified cyriotoxin-1a (CyrTx-1a), a novel peptide isolated from Cyriopagopus schioedtei spider venom, as a candidate for further characterization. This 33 amino acids toxin belongs to the inhibitor cystine knot structural family and inhibits hNaV 1.1-1.3 and 1.6-1.7 channels in the low nanomolar range, compared to the micromolar range for hNaV 1.4-1.5 and 1.8 channels. CyrTx-1a was 920 times more efficient at inhibiting tetrodotoxin (TTX)-sensitive than TTX-resistant sodium currents recorded from adult mouse dorsal root ganglia neurons and in vivo electrophysiological experiments showed that CyrTx-1a was approximately 170 times less efficient than huwentoxin-IV at altering mouse skeletal neuromuscular excitability properties. CyrTx-1a exhibited an analgesic effect in mice by increasing reaction time in the hot-plate assay. CONCLUSIONS AND IMPLICATIONS The pharmacological profile of CyrTx-1a paves the way for further molecular engineering aimed to optimize the potential antinociceptive properties of this peptide.
Collapse
Affiliation(s)
- Tânia C Gonçalves
- Integrated Drug Discovery-High Content Biology, Sanofi R&D, Vitry-sur-Seine, France.,Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Evelyne Benoit
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, Gif-sur-Yvette, France.,Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR CNRS/Université Paris-Sud 9197, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michael Kurz
- Integrated Drug Discovery-Synthetic Molecular Design, Sanofi R&D, Frankfurt, Germany
| | - Laetitia Lucarain
- Integrated Drug Discovery-High Content Biology, Sanofi R&D, Vitry-sur-Seine, France
| | - Sophie Fouconnier
- Integrated Drug Discovery-High Content Biology, Sanofi R&D, Vitry-sur-Seine, France
| | | | | | - Brigitte Schombert
- Integrated Drug Discovery-High Content Biology, Sanofi R&D, Vitry-sur-Seine, France
| | - Jean-Marie Chambard
- Integrated Drug Discovery-High Content Biology, Sanofi R&D, Vitry-sur-Seine, France
| | - Rachid Boukaiba
- Integrated Drug Discovery-High Content Biology, Sanofi R&D, Vitry-sur-Seine, France
| | - Gerhard Hessler
- Integrated Drug Discovery-Synthetic Molecular Design, Sanofi R&D, Frankfurt, Germany
| | - Andrees Bohme
- Integrated Drug Discovery-High Content Biology, Sanofi R&D, Vitry-sur-Seine, France
| | - Laurent Bialy
- Integrated Drug Discovery-Synthetic Molecular Design, Sanofi R&D, Frankfurt, Germany
| | - Stéphane Hourcade
- Neuroscience Therapeutic Area, Neurodegeneration Research, Sanofi R&D, Chilly-Mazarin, France
| | | | - Michel De Waard
- Smartox Biotechnology, Saint-Egrève, France.,Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science and Therapeutics", Nantes, France
| | - Denis Servent
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Partiseti
- Integrated Drug Discovery-High Content Biology, Sanofi R&D, Vitry-sur-Seine, France
| |
Collapse
|
17
|
Lawrence N, Wu B, Ligutti J, Cheneval O, Agwa AJ, Benfield AH, Biswas K, Craik DJ, Miranda LP, Henriques ST, Schroeder CI. Peptide-Membrane Interactions Affect the Inhibitory Potency and Selectivity of Spider Toxins ProTx-II and GpTx-1. ACS Chem Biol 2019; 14:118-130. [PMID: 30507158 DOI: 10.1021/acschembio.8b00989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gating modifier toxins (GMTs) from spider venom can inhibit voltage gated sodium channels (NaVs) involved in pain signal transmission, including the NaV1.7 subtype. GMTs have a conserved amphipathic structure that allow them to interact with membranes and also with charged residues in regions of NaV that are exposed at the cell surface. ProTx-II and GpTx-1 are GMTs able to inhibit NaV1.7 with high potency, but they differ in their ability to bind to membranes and in their selectivity over other NaV subtypes. To explore these differences and gain detailed information on their membrane-binding ability and how this relates to potency and selectivity, we examined previously described NaV1.7 potent/selective GpTx-1 analogues and new ProTx-II analogues designed to reduce membrane binding and improve selectivity for NaV1.7. Our studies reveal that the number and type of hydrophobic residues as well as how they are presented at the surface determine the affinity of ProTx-II and GpTx-1 for membranes and that altering these residues can have dramatic effects on NaV inhibitory activity. We demonstrate that strong peptide-membrane interactions are not essential for inhibiting NaV1.7 and propose that hydrophobic interactions instead play an important role in positioning the GMT at the membrane surface proximal to exposed NaV residues, thereby affecting peptide-channel interactions. Our detailed structure-activity relationship study highlights the challenges of designing GMT-based molecules that simultaneously achieve high potency and selectivity for NaV1.7, as single mutations can induce local changes in GMT structure that can have a major impact on NaV-inhibitory activity.
Collapse
Affiliation(s)
- Nicole Lawrence
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Joseph Ligutti
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Olivier Cheneval
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Akello Joanna Agwa
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Aurélie H. Benfield
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christina I. Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
18
|
Zhang Y, Peng D, Huang B, Yang Q, Zhang Q, Chen M, Rong M, Liu Z. Discovery of a Novel Na v1.7 Inhibitor From Cyriopagopus albostriatus Venom With Potent Analgesic Efficacy. Front Pharmacol 2018; 9:1158. [PMID: 30386239 PMCID: PMC6198068 DOI: 10.3389/fphar.2018.01158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/24/2018] [Indexed: 01/15/2023] Open
Abstract
Spider venoms contain a vast array of bioactive peptides targeting ion channels. A large number of peptides have high potency and selectivity toward sodium channels. Nav1.7 contributes to action potential generation and propagation and participates in pain signaling pathway. In this study, we describe the identification of μ-TRTX-Ca2a (Ca2a), a novel 35-residue peptide from the venom of Vietnam spider Cyriopagopus albostriatus (C. albostriatus) that potently inhibits Nav1.7 (IC50 = 98.1 ± 3.3 nM) with high selectivity against skeletal muscle isoform Nav1.4 (IC50 > 10 μM) and cardiac muscle isoform Nav1.5 (IC50 > 10 μM). Ca2a did not significantly alter the voltage-dependent activation or fast inactivation of Nav1.7, but it hyperpolarized the slow inactivation. Site-directed mutagenesis analysis indicated that Ca2a bound with Nav1.7 at the extracellular S3–S4 linker of domain II. Meanwhile, Ca2a dose-dependently attenuated pain behaviors in rodent models of formalin-induced paw licking, hot plate test, and acetic acid-induced writhing. This study indicates that Ca2a is a potential lead molecule for drug development of novel analgesics.
Collapse
Affiliation(s)
- Yunxiao Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Dezheng Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Biao Huang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiuchu Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qingfeng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Mingqiang Rong
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
19
|
Gonçalves TC, Benoit E, Partiseti M, Servent D. The Na V1.7 Channel Subtype as an Antinociceptive Target for Spider Toxins in Adult Dorsal Root Ganglia Neurons. Front Pharmacol 2018; 9:1000. [PMID: 30233376 PMCID: PMC6131673 DOI: 10.3389/fphar.2018.01000] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Although necessary for human survival, pain may sometimes become pathologic if long-lasting and associated with alterations in its signaling pathway. Opioid painkillers are officially used to treat moderate to severe, and even mild, pain. However, the consequent strong and not so rare complications that occur, including addiction and overdose, combined with pain management costs, remain an important societal and economic concern. In this context, animal venom toxins represent an original source of antinociceptive peptides that mainly target ion channels (such as ASICs as well as TRP, CaV, KV and NaV channels) involved in pain transmission. The present review aims to highlight the NaV1.7 channel subtype as an antinociceptive target for spider toxins in adult dorsal root ganglia neurons. It will detail (i) the characteristics of these primary sensory neurons, the first ones in contact with pain stimulus and conveying the nociceptive message, (ii) the electrophysiological properties of the different NaV channel subtypes expressed in these neurons, with a particular attention on the NaV1.7 subtype, an antinociceptive target of choice that has been validated by human genetic evidence, and (iii) the features of spider venom toxins, shaped of inhibitory cysteine knot motif, that present high affinity for the NaV1.7 subtype associated with evidenced analgesic efficacy in animal models.
Collapse
Affiliation(s)
- Tânia C Gonçalves
- Sanofi R&D, Integrated Drug Discovery - High Content Biology, Paris, France.,Service d'Ingénierie Moléculaire des Protéines, CEA de Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Evelyne Benoit
- Service d'Ingénierie Moléculaire des Protéines, CEA de Saclay, Université Paris-Saclay, Gif-sur-Yvette, France.,Institut des Neurosciences Paris-Saclay, UMR CNRS/Université Paris-Sud 9197, Gif-sur-Yvette, France
| | - Michel Partiseti
- Sanofi R&D, Integrated Drug Discovery - High Content Biology, Paris, France
| | - Denis Servent
- Service d'Ingénierie Moléculaire des Protéines, CEA de Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
20
|
Agwa AJ, Blomster LV, Craik DJ, King GF, Schroeder CI. Efficient Enzymatic Ligation of Inhibitor Cystine Knot Spider Venom Peptides: Using Sortase A To Form Double-Knottins That Probe Voltage-Gated Sodium Channel NaV1.7. Bioconjug Chem 2018; 29:3309-3319. [DOI: 10.1021/acs.bioconjchem.8b00505] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Akello J. Agwa
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Linda V. Blomster
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christina I. Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
21
|
Cardoso FC, Lewis RJ. Sodium channels and pain: from toxins to therapies. Br J Pharmacol 2018; 175:2138-2157. [PMID: 28749537 PMCID: PMC5980290 DOI: 10.1111/bph.13962] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium channels (NaV channels) are essential for the initiation and propagation of action potentials that critically influence our ability to respond to a diverse range of stimuli. Physiological and pharmacological studies have linked abnormal function of NaV channels to many human disorders, including chronic neuropathic pain. These findings, along with the description of the functional properties and expression pattern of NaV channel subtypes, are helping to uncover subtype specific roles in acute and chronic pain and revealing potential opportunities to target these with selective inhibitors. High-throughput screens and automated electrophysiology platforms have identified natural toxins as a promising group of molecules for the development of target-specific analgesics. In this review, the role of toxins in defining the contribution of NaV channels in acute and chronic pain states and their potential to be used as analgesic therapies are discussed. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Department of Chemistry and Structural Biology, Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Richard J Lewis
- Department of Chemistry and Structural Biology, Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
22
|
Hamad MK, He K, Abdulrazeq HF, Mustafa AM, Luceri R, Kamal N, Ali M, Nakhla J, Herzallah MM, Mammis A. Potential Uses of Isolated Toxin Peptides in Neuropathic Pain Relief: A Literature Review. World Neurosurg 2018; 113:333-347.e5. [DOI: 10.1016/j.wneu.2018.01.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/31/2023]
|
23
|
Agwa AJ, Peigneur S, Chow CY, Lawrence N, Craik DJ, Tytgat J, King GF, Henriques ST, Schroeder CI. Gating modifier toxins isolated from spider venom: Modulation of voltage-gated sodium channels and the role of lipid membranes. J Biol Chem 2018; 293:9041-9052. [PMID: 29703751 DOI: 10.1074/jbc.ra118.002553] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/25/2018] [Indexed: 11/06/2022] Open
Abstract
Gating modifier toxins (GMTs) are venom-derived peptides isolated from spiders and other venomous creatures and modulate activity of disease-relevant voltage-gated ion channels and are therefore being pursued as therapeutic leads. The amphipathic surface profile of GMTs has prompted the proposal that some GMTs simultaneously bind to the cell membrane and voltage-gated ion channels in a trimolecular complex. Here, we examined whether there is a relationship among spider GMT amphipathicity, membrane binding, and potency or selectivity for voltage-gated sodium (NaV) channels. We used NMR spectroscopy and in silico calculations to examine the structures and physicochemical properties of a panel of nine GMTs and deployed surface plasmon resonance to measure GMT affinity for lipids putatively found in proximity to NaV channels. Electrophysiology was used to quantify GMT activity on NaV1.7, an ion channel linked to chronic pain. Selectivity of the peptides was further examined against a panel of NaV channel subtypes. We show that GMTs adsorb to the outer leaflet of anionic lipid bilayers through electrostatic interactions. We did not observe a direct correlation between GMT amphipathicity and affinity for lipid bilayers. Furthermore, GMT-lipid bilayer interactions did not correlate with potency or selectivity for NaVs. We therefore propose that increased membrane binding is unlikely to improve subtype selectivity and that the conserved amphipathic GMT surface profile is an adaptation that facilitates simultaneous modulation of multiple NaVs.
Collapse
Affiliation(s)
- Akello J Agwa
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Steve Peigneur
- Laboratory of Toxicology and Pharmacology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Chun Yuen Chow
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Nicole Lawrence
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - David J Craik
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Jan Tytgat
- Laboratory of Toxicology and Pharmacology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Glenn F King
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Sónia Troeira Henriques
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Christina I Schroeder
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| |
Collapse
|
24
|
Männikkö R, Shenkarev ZO, Thor MG, Berkut AA, Myshkin MY, Paramonov AS, Kulbatskii DS, Kuzmin DA, Sampedro Castañeda M, King L, Wilson ER, Lyukmanova EN, Kirpichnikov MP, Schorge S, Bosmans F, Hanna MG, Kullmann DM, Vassilevski AA. Spider toxin inhibits gating pore currents underlying periodic paralysis. Proc Natl Acad Sci U S A 2018; 115:4495-4500. [PMID: 29636418 PMCID: PMC5924911 DOI: 10.1073/pnas.1720185115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel NaV1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these toxins could function as blockers of the pathogenic gating pore currents. We report that a crab spider toxin Hm-3 from Heriaeus melloteei can inhibit gating pore currents due to mutations affecting the second arginine residue in the S4 helix of VSD-I that we have found in patients with HypoPP and describe here. NMR studies show that Hm-3 partitions into micelles through a hydrophobic cluster formed by aromatic residues and reveal complex formation with VSD-I through electrostatic and hydrophobic interactions with the S3b helix and the S3-S4 extracellular loop. Our data identify VSD-I as a specific binding site for neurotoxins on sodium channels. Gating modifier toxins may constitute useful hits for the treatment of HypoPP.
Collapse
Affiliation(s)
- Roope Männikkö
- MRC Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, WC1N 3BG London, United Kingdom;
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 117303 Moscow, Russia
| | - Michael G Thor
- MRC Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, WC1N 3BG London, United Kingdom
| | - Antonina A Berkut
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 117303 Moscow, Russia
| | - Mikhail Yu Myshkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 117303 Moscow, Russia
| | - Alexander S Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitrii S Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dmitry A Kuzmin
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, WC1N 3BG London, United Kingdom
| | - Marisol Sampedro Castañeda
- MRC Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, WC1N 3BG London, United Kingdom
| | - Louise King
- MRC Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, WC1N 3BG London, United Kingdom
| | - Emma R Wilson
- MRC Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, WC1N 3BG London, United Kingdom
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 117303 Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, WC1N 3BG London, United Kingdom
| | - Frank Bosmans
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, WC1N 3BG London, United Kingdom
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, WC1N 3BG London, United Kingdom
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 117303 Moscow, Russia
| |
Collapse
|
25
|
Wu Y, Ma H, Zhang F, Zhang C, Zou X, Cao Z. Selective Voltage-Gated Sodium Channel Peptide Toxins from Animal Venom: Pharmacological Probes and Analgesic Drug Development. ACS Chem Neurosci 2018; 9:187-197. [PMID: 29161016 DOI: 10.1021/acschemneuro.7b00406] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) play critical roles in action potential generation and propagation. Nav channelopathy as well as pathological sensitization contribute to allodynia and hyperalgesia. Recent evidence has demonstrated the significant roles of Nav subtypes (Nav1.3, 1.7, 1.8, and 1.9) in nociceptive transduction, and therefore these Navs may represent attractive targets for analgesic drug discovery. Animal toxins are structurally diverse peptides that are highly potent yet selective on ion channel subtypes and therefore represent valuable probes to elucidate the structures, gating properties, and cellular functions of ion channels. In this review, we summarize recent advances on peptide toxins from animal venom that selectively target Nav1.3, 1.7, 1.8, and 1.9, along with their potential in analgesic drug discovery.
Collapse
Affiliation(s)
- Ying Wu
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Ma
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Fan Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Chunlei Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaohan Zou
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Zhengyu Cao
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
26
|
Wingerd JS, Mozar CA, Ussing CA, Murali SS, Chin YKY, Cristofori-Armstrong B, Durek T, Gilchrist J, Vaughan CW, Bosmans F, Adams DJ, Lewis RJ, Alewood PF, Mobli M, Christie MJ, Rash LD. The tarantula toxin β/δ-TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity. Sci Rep 2017; 7:974. [PMID: 28428547 PMCID: PMC5430537 DOI: 10.1038/s41598-017-01129-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/27/2017] [Indexed: 11/09/2022] Open
Abstract
Voltage-gated sodium (NaV) channels are essential for the transmission of pain signals in humans making them prime targets for the development of new analgesics. Spider venoms are a rich source of peptide modulators useful to study ion channel structure and function. Here we describe β/δ-TRTX-Pre1a, a 35-residue tarantula peptide that selectively interacts with neuronal NaV channels inhibiting peak current of hNaV1.1, rNaV1.2, hNaV1.6, and hNaV1.7 while concurrently inhibiting fast inactivation of hNaV1.1 and rNaV1.3. The DII and DIV S3-S4 loops of NaV channel voltage sensors are important for the interaction of Pre1a with NaV channels but cannot account for its unique subtype selectivity. Through analysis of the binding regions we ascertained that the variability of the S1-S2 loops between NaV channels contributes substantially to the selectivity profile observed for Pre1a, particularly with regards to fast inactivation. A serine residue on the DIV S2 helix was found to be sufficient to explain Pre1a’s potent and selective inhibitory effect on the fast inactivation process of NaV1.1 and 1.3. This work highlights that interactions with both S1-S2 and S3-S4 of NaV channels may be necessary for functional modulation, and that targeting the diverse S1-S2 region within voltage-sensing domains provides an avenue to develop subtype selective tools.
Collapse
Affiliation(s)
- Joshua S Wingerd
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christine A Mozar
- Discipline of Pharmacology, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Christine A Ussing
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.,Novo Nordisk A/S, Copenhagen Area, Capital Region, Denmark
| | - Swetha S Murali
- Discipline of Pharmacology, University of Sydney, Camperdown, NSW, 2006, Australia.,Harvard Medical School, Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, United States
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ben Cristofori-Armstrong
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - John Gilchrist
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Christopher W Vaughan
- Pain Management Research Institute, University of Sydney, St Leonards, NSW, 2006, Australia
| | - Frank Bosmans
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging & School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Macdonald J Christie
- Discipline of Pharmacology, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Lachlan D Rash
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia. .,School of Biomedical Sciences, The University of Queensland, St Lucia, 4072, QLD, Australia.
| |
Collapse
|
27
|
Agwa AJ, Henriques ST, Schroeder CI. Gating modifier toxin interactions with ion channels and lipid bilayers: Is the trimolecular complex real? Neuropharmacology 2017; 127:32-45. [PMID: 28400258 DOI: 10.1016/j.neuropharm.2017.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 11/15/2022]
Abstract
Spider peptide toxins have attracted attention because of their ability to target voltage-gated ion channels, which are involved in several pathologies including chronic pain and some cardiovascular conditions. A class of these peptides acts by modulating the gating mechanism of voltage-gated ion channels and are thus called gating modifier toxins (GMTs). In addition to their interactions with voltage-gated ion channels, some GMTs have affinity for lipid bilayers. This review discusses the potential importance of the cell membrane on the mode of action of GMTs. We propose that peptide-membrane interactions can anchor GMTs at the cell surface, thereby increasing GMT concentration in the vicinity of the channel binding site. We also propose that modulating peptide-membrane interactions might be useful for increasing the therapeutic potential of spider toxins. Furthermore, we explore the advantages and limitations of the methodologies currently used to examine peptide-membrane interactions. Although GMT-lipid membrane binding does not appear to be a requirement for the activity of all GMTs, it is an important feature, and future studies with GMTs should consider the trimolecular peptide-lipid membrane-channel complex. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Akello J Agwa
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sónia T Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
28
|
Vetter I, Deuis JR, Mueller A, Israel MR, Starobova H, Zhang A, Rash LD, Mobli M. NaV1.7 as a pain target – From gene to pharmacology. Pharmacol Ther 2017; 172:73-100. [DOI: 10.1016/j.pharmthera.2016.11.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Spider peptide toxin HwTx-IV engineered to bind to lipid membranes has an increased inhibitory potency at human voltage-gated sodium channel hNa V1.7. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:835-844. [PMID: 28115115 DOI: 10.1016/j.bbamem.2017.01.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/03/2017] [Accepted: 01/19/2017] [Indexed: 01/15/2023]
Abstract
The human voltage-gated sodium channel sub-type 1.7 (hNaV1.7) is emerging as an attractive target for the development of potent and sub-type selective novel analgesics with increased potency and fewer side effects than existing therapeutics. HwTx-IV, a spider derived peptide toxin, inhibits hNaV1.7 with high potency and is therefore of great interest as an analgesic lead. In the current study we examined whether engineering a HwTx-IV analogue with increased ability to bind to lipid membranes would improve its inhibitory potency at hNaV1.7. This hypothesis was explored by comparing HwTx-IV and two analogues [E1PyrE]HwTx-IV (mHwTx-IV) and [E1G,E4G,F6W,Y30W]HwTx-IV (gHwTx-IV) on their membrane-binding affinity and hNaV1.7 inhibitory potency using a range of biophysical techniques including computational analysis, NMR spectroscopy, surface plasmon resonance, and fluorescence spectroscopy. HwTx-IV and mHwTx-IV exhibited weak affinity for lipid membranes, whereas gHwTx-IV showed improved affinity for the model membranes studied. In addition, activity assays using SH-SY5Y neuroblastoma cells expressing hNaV1.7 showed that gHwTx-IV has increased activity at hNaV1.7 compared to HwTx-IV. Based on these results we hypothesize that an increase in the affinity of HwTx-IV for lipid membranes is accompanied by improved inhibitory potency at hNaV1.7 and that increasing the affinity of gating modifier toxins to lipid bilayers is a strategy that may be useful for improving their potency at hNaV1.7.
Collapse
|
30
|
Israel MR, Tay B, Deuis JR, Vetter I. Sodium Channels and Venom Peptide Pharmacology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 79:67-116. [PMID: 28528674 DOI: 10.1016/bs.apha.2017.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Venomous animals including cone snails, spiders, scorpions, anemones, and snakes have evolved a myriad of components in their venoms that target the opening and/or closing of voltage-gated sodium channels to cause devastating effects on the neuromuscular systems of predators and prey. These venom peptides, through design and serendipity, have not only contributed significantly to our understanding of sodium channel pharmacology and structure, but they also represent some of the most phyla- and isoform-selective molecules that are useful as valuable tool compounds and drug leads. Here, we review our understanding of the basic function of mammalian voltage-gated sodium channel isoforms as well as the pharmacology of venom peptides that act at these key transmembrane proteins.
Collapse
Affiliation(s)
- Mathilde R Israel
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Bryan Tay
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
31
|
Shcherbatko A, Rossi A, Foletti D, Zhu G, Bogin O, Galindo Casas M, Rickert M, Hasa-Moreno A, Bartsevich V, Crameri A, Steiner AR, Henningsen R, Gill A, Pons J, Shelton DL, Rajpal A, Strop P. Engineering Highly Potent and Selective Microproteins against Nav1.7 Sodium Channel for Treatment of Pain. J Biol Chem 2016; 291:13974-13986. [PMID: 27129258 DOI: 10.1074/jbc.m116.725978] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Indexed: 12/19/2022] Open
Abstract
The prominent role of voltage-gated sodium channel 1.7 (Nav1.7) in nociception was revealed by remarkable human clinical and genetic evidence. Development of potent and subtype-selective inhibitors of this ion channel is crucial for obtaining therapeutically useful analgesic compounds. Microproteins isolated from animal venoms have been identified as promising therapeutic leads for ion channels, because they naturally evolved to be potent ion channel blockers. Here, we report the engineering of highly potent and selective inhibitors of the Nav1.7 channel based on tarantula ceratotoxin-1 (CcoTx1). We utilized a combination of directed evolution, saturation mutagenesis, chemical modification, and rational drug design to obtain higher potency and selectivity to the Nav1.7 channel. The resulting microproteins are highly potent (IC50 to Nav1.7 of 2.5 nm) and selective. We achieved 80- and 20-fold selectivity over the closely related Nav1.2 and Nav1.6 channels, respectively, and the IC50 on skeletal (Nav1.4) and cardiac (Nav1.5) sodium channels is above 3000 nm The lead molecules have the potential for future clinical development as novel therapeutics in the treatment of pain.
Collapse
Affiliation(s)
| | - Andrea Rossi
- Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Davide Foletti
- Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Guoyun Zhu
- Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | | | | | - Mathias Rickert
- Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Adela Hasa-Moreno
- Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | | | | | | | | | - Avinash Gill
- Sutro Biopharma, South San Francisco, California 94080
| | - Jaume Pons
- Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - David L Shelton
- Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Arvind Rajpal
- Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080
| | - Pavel Strop
- Rinat Laboratories, Pfizer Inc., South San Francisco, California 94080,.
| |
Collapse
|
32
|
Cardoso FC, Dekan Z, Rosengren KJ, Erickson A, Vetter I, Deuis JR, Herzig V, Alewood PF, King GF, Lewis RJ. Identification and Characterization of ProTx-III [μ-TRTX-Tp1a], a New Voltage-Gated Sodium Channel Inhibitor from Venom of the Tarantula Thrixopelma pruriens. Mol Pharmacol 2015; 88:291-303. [PMID: 25979003 DOI: 10.1124/mol.115.098178] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/15/2015] [Indexed: 01/26/2023] Open
Abstract
Spider venoms are a rich source of ion channel modulators with therapeutic potential. Given the analgesic potential of subtype-selective inhibitors of voltage-gated sodium (NaV) channels, we screened spider venoms for inhibitors of human NaV1.7 (hNaV1.7) using a high-throughput fluorescent assay. Here, we describe the discovery of a novel NaV1.7 inhibitor, μ-TRTX-Tp1a (Tp1a), isolated from the venom of the Peruvian green-velvet tarantula Thrixopelma pruriens. Recombinant and synthetic forms of this 33-residue peptide preferentially inhibited hNaV1.7 > hNaV1.6 > hNaV1.2 > hNaV1.1 > hNaV1.3 channels in fluorescent assays. NaV1.7 inhibition was diminished (IC50 11.5 nM) and the association rate decreased for the C-terminal acid form of Tp1a compared with the native amidated form (IC50 2.1 nM), suggesting that the peptide C terminus contributes to its interaction with hNaV1.7. Tp1a had no effect on human voltage-gated calcium channels or nicotinic acetylcholine receptors at 5 μM. Unlike most spider toxins that modulate NaV channels, Tp1a inhibited hNaV1.7 without significantly altering the voltage dependence of activation or inactivation. Tp1a proved to be analgesic by reversing spontaneous pain induced in mice by intraplantar injection in OD1, a scorpion toxin that potentiates hNaV1.7. The structure of Tp1a as determined using NMR spectroscopy revealed a classic inhibitor cystine knot (ICK) motif. The molecular surface of Tp1a presents a hydrophobic patch surrounded by positively charged residues, with subtle differences from other ICK spider toxins that might contribute to its different pharmacological profile. Tp1a may help guide the development of more selective and potent hNaV1.7 inhibitors for treatment of chronic pain.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| | - Zoltan Dekan
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| | - K Johan Rosengren
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| | - Andelain Erickson
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| | - Glenn F King
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|