1
|
Liu Y, Liu Y, Hao L, Cao J, Jiang L, Yi H. Metabolomic Approaches to Study the Potential Inhibitory Effects of Plantaricin Q7 against Listeria monocytogenes Biofilm. Foods 2024; 13:2573. [PMID: 39200500 PMCID: PMC11353926 DOI: 10.3390/foods13162573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Listeria monocytogenes is a serious pathogen and can exacerbate harmful effects through the formation of biofilm. Inhibition of or reduction in L. monocytogenes biofilm is a promising strategy to control L. monocytogenes in the food industry. In our previous study, it was found that plantaricin Q7 produced by Lactiplantibacillus plantarum Q7 could inhibit and reduce L. monocytogenes biofilm, but the specific mechanism remains unclear. In this study, the inhibitive and reduced activity of plantaricin Q7 on L. monocytogenes biofilm was investigated by metabolomics. The results showed that plantaricin Q7 inhibited the synthesis of L. monocytogenes biofilm mainly through purine metabolism and glycerol phospholipid metabolism, and the key differential metabolites included acetylcholine and hypoxanthine with a decrease in abundance from 5.80 to 4.85. In addition, plantaricin Q7 reduced the formed L. monocytogenes biofilm by purine metabolism and arginine biosynthesis, and the main differential metabolites were N-acetylglutamate and D-ribose-1-phosphate with a decrease in abundance from 6.21 to 4.73. It was the first report that purine metabolism and amino acid metabolism were the common metabolic pathway for plantaricin Q7 to inhibit and reduce L. monocytogenes biofilm, which could be potential targets to control L. monocytogenes biofilm. A putative metabolic pathway for L. monocytogenes biofilm inhibition and reduction by plantaricin Q7 was proposed. These findings provided a novel strategy to control L. monocytogenes biofilm in food processing.
Collapse
Affiliation(s)
| | | | | | | | | | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.L.); (Y.L.); (L.H.); (J.C.); (L.J.)
| |
Collapse
|
2
|
Liu X, Shi D, Cheng S, Chen X, Ma C, Jiang Y, Wang T, Chen T, Shaw C, Wang L, Zhou M. Modification and Synergistic Studies of a Novel Frog Antimicrobial Peptide against Pseudomonas aeruginosa Biofilms. Antibiotics (Basel) 2024; 13:574. [PMID: 39061256 PMCID: PMC11274128 DOI: 10.3390/antibiotics13070574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The overuse of traditional antibiotics has resulted in bacterial resistance and seriously compromised the therapeutic efficacy of traditional antibiotics, making the exploration of new antimicrobials particularly important. Several studies have shown that bioactive peptides have become an important source of new antimicrobial drugs due to their broad-spectrum antibacterial action and lack of susceptibility to resistance. In this study, a novel bioactive peptide Nigrosin-6VL was characterised from the skin secretion of the golden cross band frog, Odorrana andersonii, by using the 'shotgun' cloning strategy. Modifications on the Rana Box of Nigrosin-6VL revealed its critical role in antimicrobial functions. The peptide analogue, 2170-2R, designed to preserve the Rana Box structure while enhancing cationicity, exhibited improved therapeutic efficacy, particularly against Gram-negative bacteria, with a therapeutic value of 45.27. Synergistic studies demonstrated that 2170-2R inherits the synergistic antimicrobial activities of the parent peptides and effectively enhances the antimicrobial capacity of cefepime and gentamicin against both planktonic cells and biofilms. Specifically, 2170-2R can synergise effectively with cefepime and gentamicin against different strains of P. aeruginosa biofilms. Consequently, 2170-2R holds promise as a potent antimicrobial agent developed to combat infections induced by Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Xinze Liu
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Daning Shi
- Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China;
| | - Shiya Cheng
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| |
Collapse
|
3
|
Wang L, Zheng J, Hou W, Zhang C, Zhang J, Fan X, Zhang H, Han Y. The Anti-Microbial Peptide Citrocin Controls Pseudomonas aeruginosa Biofilms by Breaking Down Extracellular Polysaccharide. Int J Mol Sci 2024; 25:4122. [PMID: 38612931 PMCID: PMC11012989 DOI: 10.3390/ijms25074122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Citrocin is an anti-microbial peptide that holds great potential in animal feed. This study evaluates the anti-microbial and anti-biofilm properties of Citrocin and explores the mechanism of action of Citrocin on the biofilm of P. aeruginosa. The results showed that Citrocin had a significant inhibitory effect on the growth of P. aeruginosa with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 0.3 mg/mL. All five concentrations (1/4MIC, 1/2MIC, MIC, 2MIC, and 4MIC) of Citrocin inhibited P. aeruginosa biofilm formation. Citrocin at the MIC, 2MIC and 4MIC removed 42.7%, 76.0% and 83.2% of mature biofilms, respectively, and suppressed the swarming motility, biofilm metabolic activity and extracellular polysaccharide production of P. aeruginosa. Metabolomics analysis indicated that 0.3 mg/mL of Citrocin up- regulated 26 and down-regulated 83 metabolites, mainly comprising amino acids, fatty acids, organic acids and sugars. Glucose and amino acid metabolic pathways, including starch and sucrose metabolism as well as arginine and proline metabolism, were highly enriched by Citrocin. In summary, our research reveals the anti-biofilm mechanism of Citrocin at the metabolic level, which provides theoretical support for the development of novel anti-biofilm strategies for combatting P. aeruginosa.
Collapse
Affiliation(s)
- Liyao Wang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
- College of Life Science and Technology, Southeast University, Nanjing 211189, China
| | - Jiaqi Zheng
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wenchao Hou
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
| | - Chaowen Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
| | - Jie Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
| | - Xuanbo Fan
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
| | - Hongliang Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
- College of Animal Science and Technology, China Agricultural University, Beijing 100083, China
| | - Yuzhu Han
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (L.W.); (J.Z.); (W.H.); (C.Z.); (J.Z.); (X.F.); (H.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China
| |
Collapse
|
4
|
Rad PM, Rahbarnia L, Safary A, ShadiDizaji A, Maani Z. The Synthetic Antimicrobial Peptide Derived From Melittin Displays Low Toxicity and Anti-infectious Properties. Probiotics Antimicrob Proteins 2024; 16:490-500. [PMID: 36988897 DOI: 10.1007/s12602-023-10066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
The low stability and nonspecific toxicity are the main limiting factors for the clinical applications of melittin (MLT). This study aimed to design and synthesize new analogs of MLT to increase stability, reduce toxicity, and retain their antimicrobial properties against bacterial pathogens. At first, peptide analogs were designed computationally by inducing single mutations in MLT peptides and evaluating their physicochemical properties. The stability of the analogs with the highest scores was determined by Gromacs software. In vitro assays were performed to examine the antimicrobial activity and toxicity of the selected analogs. Two peptide analogs, M1 and M2, were selected based on the SVM score in cell PPD. The M1 analog was created by replacing alanine with leucine on the 15th. The M2 analog was designed by substituting alanine with leucine and isoleucine with arginine at the 15th and 17th positions. According to the Gromacs results, the M2 peptide indicated more stability. RMSD and RMSF results showed no undesirable fluctuations during the 200 ns MD simulation. The MIC and MBC values for the M1 peptide were calculated in a range of 8-128 μg/ml, while the M2 peptide limited the bacterial growth to 32-128 μg/mL. Both peptides indicated less toxicity than natural MLT, based on MTT assay results. The hemolytic activity of the M1 analog was more than M2 at 16 μg/mL concentration. M1 peptide displayed the highest selectivity index against S. aureus and A. baumannii, which were approximately 5.27-fold improvements compared to MLT. In conclusion, we introduced two analogs of MLT with low toxicity, low hemolytic activity, and higher stability, along with retaining antimicrobial properties against gram-negative and positive bacteria.
Collapse
Affiliation(s)
- Parisa Mansouri Rad
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zahra Maani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Hussan, Nisa S, Bano SA, Zia M. Chemically synthesized ciprofloxacin-PEG-FeO nanotherapeutic exhibits strong antibacterial and controlled cytotoxic effects. Nanomedicine (Lond) 2024; 19:875-893. [PMID: 38530883 DOI: 10.2217/nnm-2023-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Aim: To develop a biocompatible conjugated ciprofloxacin-PEG-FeO nanodelivery system with increased efficacy of available therapeutics in a controlled manner. Materials & methods: FeO nanoparticles were synthesized by chemical and biological methods and modified as ciprofloxacin-PEG-FeO nanoformulations. After initial antibacterial and cytotoxicity studies, the effective and biocompatible nanoformulations was further fabricated as nanotherapeutics for in vivo studies in mouse models. Results: Chemically synthesized ciprofloxacin-PEG-FeO nanoformulations demonstrated boosted antibacterial activity against clinically isolated bacterial strains. Nanoformulations were also found to be compatible with baby hamster kidney 21 cells and red blood cells. In in vivo studies, nanotherapeutic showed wound-healing effects with eradication of Staphylococcus aureus infection. Conclusion: The investigations indicate that the developed nanotherapeutic can eradicate localized infections and enhance wound healing with controlled cytotoxicity.
Collapse
Affiliation(s)
- Hussan
- Department of Microbiology, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Sobia Nisa
- Department of Microbiology, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Syeda Asma Bano
- Department of Microbiology, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid e Azam University Islamabad, Islamabad, 15320, Pakistan
| |
Collapse
|
6
|
Jalil AT, Alrawe RTA, Al-Saffar MA, Shaghnab ML, Merza MS, Abosaooda M, Latef R. The use of combination therapy for the improvement of colistin activity against bacterial biofilm. Braz J Microbiol 2024; 55:411-427. [PMID: 38030866 PMCID: PMC10920569 DOI: 10.1007/s42770-023-01189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Colistin is used as a last resort for the management of infections caused by multi-drug resistant (MDR) bacteria. However, the use of this antibiotic could lead to different side effects, such as nephrotoxicity, in most patients, and the high prevalence of colistin-resistant strains restricts the use of colistin in the clinical setting. Additionally, colistin could induce resistance through the increased formation of biofilm; biofilm-embedded cells are highly resistant to antibiotics, and as with other antibiotics, colistin is impaired by bacteria in the biofilm community. In this regard, the researchers used combination therapy for the enhancement of colistin activity against bacterial biofilm, especially MDR bacteria. Different antibacterial agents, such as antimicrobial peptides, bacteriophages, natural compounds, antibiotics from different families, N-acetylcysteine, and quorum-sensing inhibitors, showed promising results when combined with colistin. Additionally, the use of different drug platforms could also boost the efficacy of this antibiotic against biofilm. The mentioned colistin-based combination therapy not only could suppress the formation of biofilm but also could destroy the established biofilm. These kinds of treatments also avoided the emergence of colistin-resistant subpopulations, reduced the required dosage of colistin for inhibition of biofilm, and finally enhanced the dosage of this antibiotic at the site of infection. However, the exact interaction of colistin with other antibacterial agents has not been elucidated yet; therefore, further studies are required to identify the precise mechanism underlying the efficient removal of biofilms by colistin-based combination therapy.
Collapse
Affiliation(s)
| | | | - Montaha A Al-Saffar
- Community Health Department, Institute of Medical Technology/Baghdad, Middle Technical University, Baghdad, Iraq
| | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Munther Abosaooda
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Rahim Latef
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
7
|
Liu X, Wang Z, You Z, Wang W, Wang Y, Wu W, Peng Y, Zhang S, Yun Y, Zhang J. Transcriptomic analysis of cell envelope inhibition by prodigiosin in methicillin-resistant Staphylococcus aureus. Front Microbiol 2024; 15:1333526. [PMID: 38318338 PMCID: PMC10839101 DOI: 10.3389/fmicb.2024.1333526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading threat to public health as it is resistant to most currently available antibiotics. Prodigiosin is a secondary metabolite of microorganisms with broad-spectrum antibacterial activity. This study identified a significant antibacterial effect of prodigiosin against MRSA with a minimum inhibitory concentration as low as 2.5 mg/L. The results of scanning electron microscopy, crystal violet staining, and confocal laser scanning microscopy indicated that prodigiosin inhibited biofilm formation in S. aureus USA300, while also destroying the structure of the cell wall and cell membrane, which was confirmed by transmission electron microscopy. At a prodigiosin concentration of 1.25 mg/L, biofilm formation was inhibited by 76.24%, while 2.5 mg/L prodigiosin significantly reduced the vitality of MRSA cells in the biofilm. Furthermore, the transcriptomic results obtained at 1/8 MIC of prodigiosin indicated that 235and 387 genes of S. aureus USA300 were significantly up- and downregulated, respectively. The downregulated genes were related to two-component systems, including the transcriptional regulator LytS, quorum sensing histidine kinases SrrB, NreA and NreB, peptidoglycan biosynthesis enzymes (MurQ and GlmU), iron-sulfur cluster repair protein ScdA, microbial surface components recognizing adaptive matrix molecules, as well as the key arginine synthesis enzymes ArcC and ArgF. The upregulated genes were mainly related to cell wall biosynthesis, as well as two-component systems including vancomycin resistance-associated regulator, lipoteichoic acid biosynthesis related proteins DltD and DltB, as well as the 9 capsular polysaccharide biosynthesis proteins. This study elucidated the molecular mechanisms through which prodigiosin affects the cell envelope of MRSA from the perspectives of cell wall synthesis, cell membrane and biofilm formation, providing new potential targets for the development of antimicrobials for the treatment of MRSA.
Collapse
Affiliation(s)
- Xiaoxia Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Zonglin Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Zhongyu You
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Wei Wang
- Clinical Laboratory of First Hospital of Jiaxing, Jiaxing, China
| | - Yujie Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Wenjing Wu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Yongjia Peng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Suping Zhang
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, China
| | - Yinan Yun
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| |
Collapse
|
8
|
Alfei S. Shifting from Ammonium to Phosphonium Salts: A Promising Strategy to Develop Next-Generation Weapons against Biofilms. Pharmaceutics 2024; 16:80. [PMID: 38258091 PMCID: PMC10819902 DOI: 10.3390/pharmaceutics16010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Since they are difficult and sometimes impossible to treat, infections sustained by multidrug-resistant (MDR) pathogens, emerging especially in nosocomial environments, are an increasing global public health concern, translating into high mortality and healthcare costs. In addition to having acquired intrinsic abilities to resist available antibiotic treatments, MDR bacteria can transmit genetic material encoding for resistance to non-mutated bacteria, thus strongly decreasing the number of available effective antibiotics. Moreover, several pathogens develop resistance by forming biofilms (BFs), a safe and antibiotic-resistant home for microorganisms. BFs are made of well-organized bacterial communities, encased and protected in a self-produced extracellular polymeric matrix, which impedes antibiotics' ability to reach bacteria, thus causing them to lose efficacy. By adhering to living or abiotic surfaces in healthcare settings, especially in intensive care units where immunocompromised older patients with several comorbidities are hospitalized BFs cause the onset of difficult-to-eradicate infections. In this context, recent studies have demonstrated that quaternary ammonium compounds (QACs), acting as membrane disruptors and initially with a low tendency to develop resistance, have demonstrated anti-BF potentialities. However, a paucity of innovation in this space has driven the emergence of QAC resistance. More recently, quaternary phosphonium salts (QPSs), including tri-phenyl alkyl phosphonium derivatives, achievable by easy one-step reactions and well known as intermediates of the Wittig reaction, have shown promising anti-BF effects in vitro. Here, after an overview of pathogen resistance, BFs, and QACs, we have reviewed the QPSs developed and assayed to this end, so far. Finally, the synthetic strategies used to prepare QPSs have also been provided and discussed to spur the synthesis of novel compounds of this class. We think that the extension of the knowledge about these materials by this review could be a successful approach to finding effective weapons for treating chronic infections and device-associated diseases sustained by BF-producing MDR bacteria.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
| |
Collapse
|
9
|
Vergoz D, Le H, Bernay B, Schaumann A, Barreau M, Nilly F, Desriac F, Tahrioui A, Giard JC, Lesouhaitier O, Chevalier S, Brunel JM, Muller C, Dé E. Antibiofilm and Antivirulence Properties of 6-Polyaminosteroid Derivatives against Antibiotic-Resistant Bacteria. Antibiotics (Basel) 2023; 13:8. [PMID: 38275318 PMCID: PMC10812528 DOI: 10.3390/antibiotics13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The emergence of multi-drug resistant pathogens is a major public health problem, leading us to rethink and innovate our bacterial control strategies. Here, we explore the antibiofilm and antivirulence activities of nineteen 6-polyaminosterol derivatives (squalamine-based), presenting a modulation of their polyamine side chain on four major pathogens, i.e., carbapenem-resistant A. baumannii (CRAB) and P. aeruginosa (CRPA), methicillin-resistant S. aureus (MRSA), and vancomycin-resistant E. faecium (VRE) strains. We screened the effect of these derivatives on biofilm formation and eradication. Derivatives 4e (for CRAB, VRE, and MRSA) and 4f (for all the strains) were the most potent ones and displayed activities as good as those of conventional antibiotics. We also identified 11 compounds able to decrease by more than 40% the production of pyocyanin, a major virulence factor of P. aeruginosa. We demonstrated that 4f treatment acts against bacterial infections in Galleria mellonella and significantly prolonged larvae survival (from 50% to 80%) after 24 h of CRAB, VRE, and MRSA infections. As shown by proteomic studies, 4f triggered distinct cellular responses depending on the bacterial species but essentially linked to cell envelope. Its interesting antibiofilm and antivirulence properties make it a promising a candidate for use in therapeutics.
Collapse
Affiliation(s)
- Delphine Vergoz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| | - Hung Le
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| | - Benoit Bernay
- Univ Caen Normandie, Proteogen Platform, US EMERODE, F-14000 Caen, France;
| | - Annick Schaumann
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| | - Magalie Barreau
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Flore Nilly
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Florie Desriac
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Ali Tahrioui
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | | | - Olivier Lesouhaitier
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Sylvie Chevalier
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | | | - Cécile Muller
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Emmanuelle Dé
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| |
Collapse
|
10
|
Wang S, Ma C, Long J, Cheng P, Zhang Y, Peng L, Fu L, Yu Y, Xu D, Zhang S, Qiu J, He Y, Yang H, Chen H. Impact of CRAMP-34 on Pseudomonas aeruginosa biofilms and extracellular metabolites. Front Cell Infect Microbiol 2023; 13:1295311. [PMID: 38162583 PMCID: PMC10757720 DOI: 10.3389/fcimb.2023.1295311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Biofilm is a structured community of bacteria encased within a self-produced extracellular matrix. When bacteria form biofilms, they undergo a phenotypic shift that enhances their resistance to antimicrobial agents. Consequently, inducing the transition of biofilm bacteria to the planktonic state may offer a viable approach for addressing infections associated with biofilms. Our previous study has shown that the mouse antimicrobial peptide CRAMP-34 can disperse Pseudomonas aeruginosa (P. aeruginosa) biofilm, and the potential mechanism of CRAMP-34 eradicate P. aeruginosa biofilms was also investigated by combined omics. However, changes in bacterial extracellular metabolism have not been identified. To further explore the mechanism by which CRAMP-34 disperses biofilm, this study analyzed its effects on the extracellular metabolites of biofilm cells via metabolomics. The results demonstrated that a total of 258 significantly different metabolites were detected in the untargeted metabolomics, of which 73 were downregulated and 185 were upregulated. Pathway enrichment analysis of differential metabolites revealed that metabolic pathways are mainly related to the biosynthesis and metabolism of amino acids, and it also suggested that CRAMP-34 may alter the sensitivity of biofilm bacteria to antibiotics. Subsequently, it was confirmed that the combination of CRAMP-34 with vancomycin and colistin had a synergistic effect on dispersed cells. These results, along with our previous findings, suggest that CRAMP-34 may promote the transition of PAO1 bacteria from the biofilm state to the planktonic state by upregulating the extracellular glutamate and succinate metabolism and eventually leading to the dispersal of biofilm. In addition, increased extracellular metabolites of myoinositol, palmitic acid and oleic acid may enhance the susceptibility of the dispersed bacteria to the antibiotics colistin and vancomycin. CRAMP-34 also delayed the development of bacterial resistance to colistin and ciprofloxacin. These results suggest the promising development of CRAMP-34 in combination with antibiotics as a potential candidate to provide a novel therapeutic approach for the prevention and treatment of biofilm-associated infections.
Collapse
Affiliation(s)
- Shiyuan Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Collaborative Innovation Institute National Center of Technology Innovation for Pigs, Chongqing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chengjun Ma
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Collaborative Innovation Institute National Center of Technology Innovation for Pigs, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jinying Long
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Collaborative Innovation Institute National Center of Technology Innovation for Pigs, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Peng Cheng
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Collaborative Innovation Institute National Center of Technology Innovation for Pigs, Chongqing, China
| | - Yang Zhang
- Collaborative Innovation Institute National Center of Technology Innovation for Pigs, Chongqing, China
- Institute of Veterinary Medicine Academy of Animal Sciences, Chongqing, China
| | - Lianci Peng
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Collaborative Innovation Institute National Center of Technology Innovation for Pigs, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Lizhi Fu
- Collaborative Innovation Institute National Center of Technology Innovation for Pigs, Chongqing, China
- Institute of Veterinary Medicine Academy of Animal Sciences, Chongqing, China
| | - Yuandi Yu
- Collaborative Innovation Institute National Center of Technology Innovation for Pigs, Chongqing, China
- Institute of Veterinary Medicine Academy of Animal Sciences, Chongqing, China
| | - Dengfeng Xu
- Collaborative Innovation Institute National Center of Technology Innovation for Pigs, Chongqing, China
- Institute of Veterinary Medicine Academy of Animal Sciences, Chongqing, China
| | - Suhui Zhang
- Collaborative Innovation Institute National Center of Technology Innovation for Pigs, Chongqing, China
- Institute of Veterinary Medicine Academy of Animal Sciences, Chongqing, China
| | - Jinjie Qiu
- Collaborative Innovation Institute National Center of Technology Innovation for Pigs, Chongqing, China
- Institute of Veterinary Medicine Academy of Animal Sciences, Chongqing, China
| | - Yuzhang He
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Collaborative Innovation Institute National Center of Technology Innovation for Pigs, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongzao Yang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Collaborative Innovation Institute National Center of Technology Innovation for Pigs, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Collaborative Innovation Institute National Center of Technology Innovation for Pigs, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Chen X, Su S, Yan Y, Yin L, Liu L. Anti- Pseudomonas aeruginosa activity of natural antimicrobial peptides when used alone or in combination with antibiotics. Front Microbiol 2023; 14:1239540. [PMID: 37731929 PMCID: PMC10508351 DOI: 10.3389/fmicb.2023.1239540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
The World Health Organization has recently published a list of 12 drug-resistant bacteria that posed a significant threat to human health, and Pseudomonas aeruginosa (P. aeruginosa) was among them. In China, P. aeruginosa is a common pathogen in hospital acquired pneumonia, accounting for 16.9-22.0%. It is a ubiquitous opportunistic pathogen that can infect individuals with weakened immune systems, leading to hospital-acquired acute and systemic infections. The excessive use of antibiotics has led to the development of various mechanisms in P. aeruginosa to resist conventional drugs. Thus, there is an emergence of multidrug-resistant strains, posing a major challenge to conventional antibiotics and therapeutic approaches. Antimicrobial peptides are an integral component of host defense and have been found in many living organisms. Most antimicrobial peptides are characterized by negligible host toxicity and low resistance rates, making them become promising for use as antimicrobial products. This review particularly focuses on summarizing the inhibitory activity of natural antimicrobial peptides against P. aeruginosa planktonic cells and biofilms, as well as the drug interactions when these peptides used in combination with conventional antibiotics. Moreover, the underlying mechanism of these antimicrobial peptides against P. aeruginosa strains was mainly related to destroy the membrane structure through interacting with LPS or increasing ROS levels, or targeting cellular components, leaded to cell lysis. Hopefully, this analysis will provide valuable experimental data on developing novel compounds to combat P. aeruginosa.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Shan Su
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Yan Yan
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Limei Yin
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Lihong Liu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
12
|
Song YQ, Kyung SM, Kim S, Kim G, Lee SY, Yoo HS. Effects of synthetic peptide RP557 and its origin, LL-37, on carbapenem-resistant Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0043023. [PMID: 37555659 PMCID: PMC10581083 DOI: 10.1128/spectrum.00430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/28/2023] [Indexed: 08/10/2023] Open
Abstract
Pseudomonas aeruginosa is a common bacterium in nosocomial infection. The biofilm-forming ability and antimicrobial resistance make P. aeruginosa biofilm infection refractory to patients requiring hospitalization, especially patients in the intensive care unit. Therefore, many alternative compounds have been developed. A newly synthesized peptide, RP557, derived from human cathelicidin LL-37, was evaluated for its antimicrobial and antibiofilm effect toward carbapenem-resistant P. aeruginosa (CRPA). The results showed that regardless of the resistance to carbapenems, the minimal inhibition concentrations of RP557 and LL-37 against P. aeruginosa were 32 µg/mL and 256 µg/mL, respectively. Both RP557 and LL-37 significantly reduced the P. aeruginosa biofilm mass at subMICs, while subMICs of carbapenems induced biofilm formation. RP557 could also remove approximately 50% of the mature biofilm at a concentration of 64 µg/mL, while 256 µg/mL LL-37 was needed to remove it. A quarter MIC of RP557 and LL-37 was used together with carbapenems (ertapenem, imipenem, and meropenem). The results show that both RP-557 and LL-37 might increase the susceptibility to CRPA by 4-16 times. Significant gene expression level changes were observed in RP557- or LL-37-treated CRPA. Confocal images showed that biofilm structures and biofilm cell viability were significantly reduced in the LL-37- or RP557-treated groups. Therefore, RP557 and its structural origin, LL-37, could be potential treatments for carbapenem-resistant P. aeruginosa infection, especially for chronic biofilm infection. IMPORTANCE Pseudomonas aeruginosa is one of the major pathogens of nosocomial infection. Combined its biofilm-forming ability with carbapenem-resistance, it is hard to handle P. aeruginosa infection, especially for patients requiring hospitalization. Antimicrobial peptide is a type of potential compound for bacterial infection treatment. Among these, RP557 was found effective in inhibiting biofilm previously. By assessing its effect on both carbapenem-resistant P. aeruginosa planktonic cells and biofilm, our results offered a potential treatment for carbapenem-resistant P. aeruginosa infection. It could be helpful to treat severe nosocomial infection related to carbapenem-resistant bacteria and increase the patients' survival rate.
Collapse
Affiliation(s)
- Yun-Qi Song
- Department of Infectious Disease, Seoul National University, Seoul, Republic of Korea
| | - Su Min Kyung
- Department of Infectious Disease, Seoul National University, Seoul, Republic of Korea
| | - Suji Kim
- Department of Infectious Disease, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Gun Kim
- Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Laboratory of Veterinary Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - So Yeong Lee
- Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Laboratory of Veterinary Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Disease, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Jabalameli F, Emaneini M, Beigverdi R, Halimi S, Siroosi M. Determining effects of nitrate, arginine, and ferrous on antibiotic recalcitrance of clinical strains of Pseudomonas aeruginosa in biofilm-inspired alginate encapsulates. Ann Clin Microbiol Antimicrob 2023; 22:61. [PMID: 37475017 PMCID: PMC10360276 DOI: 10.1186/s12941-023-00613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Biofilms play a role in recalcitrance and treatability of bacterial infections, but majority of known antibiotic resistance mechanisms are biofilm-independent. Biofilms of Pseudomonas aeruginosa, especially in cystic fibrosis patients infected with the alginate producing strains in their lungs, are hard to treat. Changes in growth-related bacterial metabolism in biofilm affect their antibiotic recalcitrance which could be considered for new therapies designed based on these changes. In this study, effects of nitrate, arginine, and ferrous were investigated on antibiotic recalcitrance in alginate-encapsulated P. aeruginosa strains isolated from cystic fibrosis patients in the presence of amikacin, tobramycin, and ciprofloxacin. Also, expression of an efflux pump gene, mexY, was analyzed in selected strains in the presence of amikacin and ferrous. METHODS Clinical P. aeruginosa strains were isolated from cystic fibrosis patients and minimum inhibitory concentration of amikacin, tobramycin, and ciprofloxacin was determined against all the strains. For each antibiotic, a susceptible and a resistant or an intermediate-resistant strain were selected, encapsulated into alginate beads, and subjected to minimal biofilm eradication concentration (MBEC) test. After determining MBECs, sub-MBEC concentrations (antibiotics at concentrations one level below the determined MBEC) for each antibiotic were selected and used to study the effects of nitrate, arginine, and ferrous on antibiotic recalcitrance of encapsulated strains. Effects of ferrous and amikacin on expression of the efflux pump gene, mexY, was studied on amikacin sensitive and intermediate-resistant strains. One-way ANOVA and t test were used as the statistical tests. RESULTS According to the results, the supplements had a dose-related effect on decreasing the number of viable cells; maximal effect was noted with ferrous, as ferrous supplementation significantly increased biofilm susceptibility to both ciprofloxacin and amikacin in all strains, and to tobramycin in a resistant strain. Also, treating an amikacin-intermediate strain with amikacin increased the expression of mexY gene, which has a role in P. aeruginosa antibiotic recalcitrance, while treating the same strain with ferrous and amikacin significantly decreased the expression of mexY gene, which was a promising result. CONCLUSIONS Our results support the possibility of using ferrous and arginine as an adjuvant to enhance the efficacy of conventional antimicrobial therapy of P. aeruginosa infections.
Collapse
Affiliation(s)
- Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahnaz Halimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Siroosi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Gatti M, Tedeschi S, Zamparini E, Pea F, Viale P. Pharmacokinetic and pharmacodynamic considerations for optimizing antimicrobial therapy used to treat bone and joint infections: an evidence-based algorithmic approach. Expert Opin Drug Metab Toxicol 2023; 19:511-535. [PMID: 37671793 DOI: 10.1080/17425255.2023.2255525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
INTRODUCTION Bone and joint infections (BJIs) are a major health concern causing remarkable morbidity and mortality. However, which antimicrobial treatment could be the best according to specific clinical scenarios and/or to the pharmacokinetic/pharmacodynamic (PK/PD) features remains an unmet clinical need. This multidisciplinary opinion article aims to develop evidence-based algorithms for empirical and targeted antibiotic therapy of patients affected by BJIs. AREAS COVERED A multidisciplinary team of four experts had several rounds of assessment for developing algorithms devoted to empirical and targeted antimicrobial therapy of BJIs. A literature search was performed on PubMed-MEDLINE (until April 2023) to provide evidence for supporting therapeutic choices. Four different clinical scenarios were structured according to specific infection types (i.e. vertebral osteomyelitis, prosthetic joint infections, infected non-unions and other chronic osteomyelitis, and infectious arthritis), need or not of surgical intervention or revision, isolation or not of clinically relevant bacterial pathogens from blood and/or tissue cultures, and PK/PD features of antibiotics. EXPERT OPINION The proposed therapeutic algorithms were based on a multifaceted approach considering the peculiar features of each antibiotic (spectrum of activity, PK/PD properties, bone penetration rate, and anti-biofilm activity), and could be hopefully helpful in improving clinical outcome of BJIs.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Sara Tedeschi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Eleonora Zamparini
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
15
|
Zhang Q, Ul Ain Q, Schulz C, Pircher J. Role of antimicrobial peptide cathelicidin in thrombosis and thromboinflammation. Front Immunol 2023; 14:1151926. [PMID: 37090695 PMCID: PMC10114025 DOI: 10.3389/fimmu.2023.1151926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Thrombosis is a frequent cause of cardiovascular mortality and hospitalization. Current antithrombotic strategies, however, target both thrombosis and physiological hemostasis and thereby increase bleeding risk. In recent years the pathophysiological understanding of thrombus formation has significantly advanced and inflammation has become a crucial element. Neutrophils as most frequent immune cells in the blood and their released mediators play a key role herein. Neutrophil-derived cathelicidin next to its strong antimicrobial properties has also shown to modulates thrombosis and thus presents a potential therapeutic target. In this article we review direct and indirect (immune- and endothelial cell-mediated) effects of cathelicidin on platelets and the coagulation system. Further we discuss its implications for large vessel thrombosis and consecutive thromboinflammation as well as immunothrombosis in sepsis and COVID-19 and give an outlook for potential therapeutic prospects.
Collapse
Affiliation(s)
- Qing Zhang
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- Universität, Munich, Germany
- Partner Site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), Munich, Germany
| | - Qurrat Ul Ain
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- Universität, Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- Universität, Munich, Germany
- Partner Site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), Munich, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- Universität, Munich, Germany
- Partner Site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), Munich, Germany
- *Correspondence: Joachim Pircher,
| |
Collapse
|
16
|
Synergy between Human Peptide LL-37 and Polymyxin B against Planktonic and Biofilm Cells of Escherichia coli and Pseudomonas aeruginosa. Antibiotics (Basel) 2023; 12:antibiotics12020389. [PMID: 36830299 PMCID: PMC9952724 DOI: 10.3390/antibiotics12020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The rise in antimicrobial resistant bacteria is limiting the number of effective treatments for bacterial infections. Escherichia coli and Pseudomonas aeruginosa are two of the pathogens with the highest prevalence of resistance, and with the greatest need for new antimicrobial agents. Combinations of antimicrobial peptides (AMPs) and antibiotics that display synergistic effects have been shown to be an effective strategy in the development of novel therapeutic agents. In this study, we investigated the synergy between the AMP LL-37 and various classes of antibiotics against E. coli and P. aeruginosa strains. Of the six antibiotics tested (ampicillin, tetracycline, ciprofloxacin, gentamicin, aztreonam, and polymyxin B (PMB)), LL-37 displayed the strongest synergy against E. coli MG1655 and P. aeruginosa PAO1 laboratory strains when combined with PMB. Given the strong synergy, the PMB + LL-37 combination was chosen for further examination where it demonstrated synergy against multidrug-resistant and clinical E. coli isolates. Synergy of PMB + LL-37 towards clinical isolates of P. aeruginosa varied and showed synergistic, additive, or indifferent effects. The PMB + LL-37 combination treatment showed significant prevention of biofilm formation as well as eradication of pre-grown E. coli and P. aeruginosa biofilms. Using the Galleria mellonella wax worm model, we showed that the PMB + LL-37 combination treatment retained its antibacterial capacities in vivo. Flow analyses were performed to characterize the mode of action. The results of the present study provide proof of principle for the synergistic response between LL-37 and PMB and give novel insights into a promising new antimicrobial combination against gram-negative planktonic and biofilm cells.
Collapse
|
17
|
Memariani H, Memariani M. Antibiofilm properties of cathelicidin LL-37: an in-depth review. World J Microbiol Biotechnol 2023; 39:99. [PMID: 36781570 DOI: 10.1007/s11274-023-03545-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
Notwithstanding ceaseless endeavors toward developing effective antibiofilm chemotherapeutics, biofilm-associated infections continue to be one of the most perplexing challenges confronting medicine today. Endogenous host defense peptides, such as the human cathelicidin LL-37, are being propounded as promising options for treating such infectious diseases. Over the past decennium, LL-37 has duly received tremendous research attention by virtue of its broad-spectrum antimicrobial activity and immunomodulatory properties. No attempt has hitherto been made, as far as we are aware, to comprehensively review the antibiofilm effects of LL-37. Accordingly, the intent in this paper is to provide a fairly all-embracing review of the literature available on the subject. Accumulating evidence suggests that LL-37 is able to prevent biofilm establishment by different bacterial pathogens such as Acinetobacter baumannii, Aggregatibacter actinomycetemcomitans, Bacteroides fragilis, Burkholderia thailandensis, Cutibacterium acnes, Escherichia coli, Francisella tularensis, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pyogenes. Inhibition of bacterial adhesion, downregulation of biofilm-associated genes, suppression of quorum-sensing pathways, degradation of biofilm matrix, and eradication of biofilm-residing cells are the major mechanisms responsible for antibiofilm properties of LL-37. In terms of its efficacy and safety in vivo, there are still many questions to be answered. Undoubtedly, LL-37 can open up new windows of opportunity to prevent and treat obstinate biofilm-mediated infections.
Collapse
Affiliation(s)
- Hamed Memariani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mojtaba Memariani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
18
|
Pompilio A, Scocchi M, Mangoni ML, Shirooie S, Serio A, Ferreira Garcia da Costa Y, Alves MS, Şeker Karatoprak G, Süntar I, Khan H, Di Bonaventura G. Bioactive compounds: a goldmine for defining new strategies against pathogenic bacterial biofilms? Crit Rev Microbiol 2023; 49:117-149. [PMID: 35313120 DOI: 10.1080/1040841x.2022.2038082] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Most human infectious diseases are caused by microorganisms growing as biofilms. These three-dimensional self-organized communities are embedded in a dense matrix allowing microorganisms to persistently inhabit abiotic and biotic surfaces due to increased resistance to both antibiotics and effectors of the immune system. Consequently, there is an urgent need for novel strategies to control biofilm-associated infections. Natural products offer a vast array of chemical structures and possess a wide variety of biological properties; therefore, they have been and continue to be exploited in the search for potential biofilm inhibitors with a specific or multi-locus mechanism of action. This review provides an updated discussion of the major bioactive compounds isolated from several natural sources - such as plants, lichens, algae, microorganisms, animals, and humans - with the potential to inhibit biofilm formation and/or to disperse established biofilms by bacterial pathogens. Despite the very large number of bioactive products, their exact mechanism of action often remains to be clarified and, in some cases, the identity of the active molecule is still unknown. This knowledge gap should be filled thus allowing development of these products not only as novel drugs to combat bacterial biofilms, but also as antibiotic adjuvants to restore the therapeutic efficacy of current antibiotics.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Sapienza University of Rome, Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ygor Ferreira Garcia da Costa
- Laboratory of Cellular and Molecular Bioactivity, Pharmaceutical Research Center, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Maria Silvana Alves
- Laboratory of Cellular and Molecular Bioactivity, Pharmaceutical Research Center, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Talas, Kayseri, Turkey
| | - Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
19
|
Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells 2023; 12:199. [PMID: 36611992 PMCID: PMC9818774 DOI: 10.3390/cells12010199] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is an important Gram-negative opportunistic pathogen which causes many severe acute and chronic infections with high morbidity, and mortality rates as high as 40%. What makes P. aeruginosa a particularly challenging pathogen is its high intrinsic and acquired resistance to many of the available antibiotics. In this review, we review the important acute and chronic infections caused by this pathogen. We next discuss various animal models which have been developed to evaluate P. aeruginosa pathogenesis and assess therapeutics against this pathogen. Next, we review current treatments (antibiotics and vaccines) and provide an overview of their efficacies and their limitations. Finally, we highlight exciting literature on novel antibiotic-free strategies to control P. aeruginosa infections.
Collapse
Affiliation(s)
- Stephen J. Wood
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Timothy M. Kuzel
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
20
|
Asante J, Abia ALK, Anokwah D, Hetsa BA, Fatoba DO, Bester LA, Amoako DG. Phenotypic and Genomic Insights into Biofilm Formation in Antibiotic-Resistant Clinical Coagulase-Negative Staphylococcus Species from South Africa. Genes (Basel) 2022; 14:104. [PMID: 36672846 PMCID: PMC9858754 DOI: 10.3390/genes14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
The work aims to investigate biofilm formation and biofilm/adhesion-encoding genes in coagulase-negative staphylococci (CoNS) species recovered from blood culture isolates. Eighty-nine clinical CoNS were confirmed using the VITEK 2 system, and antibiotic susceptibility testing of isolates was conducted using the Kirby-Bauer disk diffusion method against a panel of 20 antibiotics. Isolates were qualitatively screened using the Congo red agar medium. Quantitative assays were performed on microtiter plates, where the absorbances of the solubilised biofilms were recorded as optical densities and quantified. In all, 12.4% of the isolates were strong biofilm formers, 68.5% had moderate biofilm capacity, and 17.9% showed weak capacity. A subset of 18 isolates, mainly methicillin-resistant S. epidermidis, were investigated for adherence-related genes using whole-genome sequencing and bioinformatics analysis. The highest antibiotic resistance rates for strongly adherent isolates were observed against penicillin (100%) and cefoxitin (81.8%), but the isolates showed no resistance to linezolid (0.0%) and tigecycline (0.0%). The icaABC genes involved in biofilm formation were detected in 50% of the screened isolates. Other adherence-related genes, including autolysin gene atl (88.8%), elastin binding protein gene ebp (94.4%), cell wall-associated fibronectin-binding protein gene ebh (66.7%), clumping factor A gene clfA (5.5%), and pili gene ebpC (22.2%) were also found. The insertion sequence IS256, involved in biofilm formation, was found in 10/18 (55.5%) screened isolates. We demonstrate a high prevalence of biofilm-forming coagulase-negative staphylococci associated with various resistance phenotypes and a substantial agreement between the possession of biofilm-associated genes and the biofilm phenotype.
Collapse
Affiliation(s)
- Jonathan Asante
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
- College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Akebe L. K. Abia
- College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Environmental Research Foundation, Westville 3630, South Africa
| | - Daniel Anokwah
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Bakoena A. Hetsa
- College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Dorcas O. Fatoba
- College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Linda A. Bester
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Daniel G. Amoako
- College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
21
|
Improvement of the Antibacterial Activity of Phage Lysin-Derived Peptide P87 through Maximization of Physicochemical Properties and Assessment of Its Therapeutic Potential. Antibiotics (Basel) 2022; 11:antibiotics11101448. [PMID: 36290106 PMCID: PMC9598152 DOI: 10.3390/antibiotics11101448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
Phage lysins are a promising alternative to common antibiotic chemotherapy. However, they have been regarded as less effective against Gram-negative pathogens unless engineered, e.g., by fusing them to antimicrobial peptides (AMPs). AMPs themselves pose an alternative to antibiotics. In this work, AMP P87, previously derived from a phage lysin (Pae87) with a presumed nonenzymatic mode-of-action, was investigated to improve its antibacterial activity. Five modifications were designed to maximize the hydrophobic moment and net charge, producing the modified peptide P88, which was evaluated in terms of bactericidal activity, cytotoxicity, MICs or synergy with antibiotics. P88 had a better bactericidal performance than P87 (an average of 6.0 vs. 1.5 log-killing activity on Pseudomonas aeruginosa strains treated with 10 µM). This did not correlate with a dramatic increase in cytotoxicity as assayed on A549 cell cultures. P88 was active against a range of P. aeruginosa isolates, with no intrinsic resistance factors identified. Synergy with some antibiotics was observed in vitro, in complex media, and in a respiratory infection mouse model. Therefore, P88 can be a new addition to the therapeutic toolbox of alternative antimicrobials against Gram-negative pathogens as a sole therapeutic, a complement to antibiotics, or a part to engineer proteinaceous antimicrobials.
Collapse
|
22
|
Pseudomonas aeruginosa biofilm dispersion by the mouse antimicrobial peptide CRAMP. Vet Res 2022; 53:80. [PMID: 36209206 PMCID: PMC9548163 DOI: 10.1186/s13567-022-01097-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a known bacterium that produces biofilms and causes severe infection. Furthermore, P. aeruginosa biofilms are extremely difficult to eradicate, leading to the development of chronic and antibiotic-resistant infections. Our previous study showed that a cathelicidin-related antimicrobial peptide (CRAMP) inhibits the formation of P. aeruginosa biofilms and markedly reduces the biomass of preformed biofilms, while the mechanism of eradicating bacterial biofilms remains elusive. Therefore, in this study, the potential mechanism by which CRAMP eradicates P. aeruginosa biofilms was investigated through an integrative analysis of transcriptomic, proteomic, and metabolomic data. The omics data revealed CRAMP functioned against P. aeruginosa biofilms by different pathways, including the Pseudomonas quinolone signal (PQS) system, cyclic dimeric guanosine monophosphate (c-di-GMP) signalling pathway, and synthesis pathways of exopolysaccharides and rhamnolipid. Moreover, a total of 2914 differential transcripts, 785 differential proteins, and 280 differential metabolites were identified. A series of phenotypic validation tests demonstrated that CRAMP reduced the c-di-GMP level with a decrease in exopolysaccharides, especially alginate, in P. aeruginosa PAO1 biofilm cells, improved bacterial flagellar motility, and increased the rhamnolipid content, contributing to the dispersion of biofilms. Our study provides new insight into the development of CRAMP as a potentially effective antibiofilm dispersant.
Collapse
|
23
|
Host Cell Antimicrobial Responses against Helicobacter pylori Infection: From Biological Aspects to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms231810941. [PMID: 36142852 PMCID: PMC9504325 DOI: 10.3390/ijms231810941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 02/07/2023] Open
Abstract
The colonization of Helicobacter pylori (H. pylori) in human gastric mucosa is highly associated with the occurrence of gastritis, peptic ulcer, and gastric cancer. Antibiotics, including amoxicillin, clarithromycin, furazolidone, levofloxacin, metronidazole, and tetracycline, are commonly used and considered the major treatment regimens for H. pylori eradication, which is, however, becoming less effective by the increasing prevalence of H pylori resistance. Thus, it is urgent to understand the molecular mechanisms of H. pylori pathogenesis and develop alternative therapeutic strategies. In this review, we focus on the virulence factors for H. pylori colonization and survival within host gastric mucosa and the host antimicrobial responses against H. pylori infection. Moreover, we describe the current treatments for H. pylori eradication and provide some insights into new therapeutic strategies for H. pylori infection.
Collapse
|
24
|
Oyardi O, Savage PB, Guzel CB. Effects of Ceragenins and Antimicrobial Peptides on the A549 Cell Line and an In Vitro Co-Culture Model of A549 Cells and Pseudomonas aeruginosa. Pathogens 2022; 11:pathogens11091044. [PMID: 36145476 PMCID: PMC9503685 DOI: 10.3390/pathogens11091044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa is an important pathogen that can adhere to host tissues and epithelial surfaces, especially during chronic infections such as cystic fibrosis (CF) lung infections. The effect of ceragenins and antimicrobial peptides (AMP) on this colonization was investigated in a co-culture infection model. After determining the antimicrobial effects of the substances on P. aeruginosa planktonic cells, their cytotoxicity on the A549 cell line was also determined. After the A549 cell line was infected with P. aeruginosa, the effect of antimicrobials on intracellular bacteria as well as the effects in inhibiting the adhesion of P. aeruginosa were investigated. In addition, LDH release from cells was determined by performing an LDH experiment to understand the cytotoxicity of bacterial infection and antimicrobial treatment on cells. CSA-131 was determined as the antimicrobial agent with the highest antimicrobial activity, while the antimicrobial effects of AMPs were found to be much lower than those of ceragenins. The antimicrobial with the lowest IC50 value was determined as the combination of CSA-131 with Pluronic F127. CSA-13 has been determined to be the most effective antimicrobial with its effectiveness to both intracellular bacteria and bacterial adhesion. Nevertheless, further safety, efficacy, toxicity, and pharmacological studies of ceragenins are needed to evaluate clinical utility.
Collapse
Affiliation(s)
- Ozlem Oyardi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
- Institute of Graduate Studies in Health Sciences, Istanbul University, 34116 Istanbul, Turkey
- Correspondence:
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 86001, USA
| | - Cagla Bozkurt Guzel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
| |
Collapse
|
25
|
Bicarbonate Effects on Antibacterial Immunity and Mucus Glycobiology in the Cystic Fibrosis Lung: A Review With Selected Experimental Observations. INFECTIOUS MICROBES & DISEASES 2022; 4:103-110. [PMID: 36793929 PMCID: PMC9928163 DOI: 10.1097/im9.0000000000000101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The primary defect in cystic fibrosis (CF) is abnormal chloride and bicarbonate transport in the cystic fibrosis transmembrane conductance regulator (CFTR) epithelial ion channel. The apical surface of the respiratory tract is lined by an airway surface liquid layer (ASL) composed of mucin comprising mainly MUC5A and MUC5B glycoproteins. ASL homeostasis depends on sodium bicarbonate secretion into the airways and secretion deficits alter mucus properties leading to airway obstruction, inflammation, and infections. Downstream effects of abnormal ion transport in the lungs include altered intrinsic immune defenses. We observed that neutrophils killed Pseudomonas aeruginosa more efficiently when it had been exposed to sodium bicarbonate, and formation of neutrophil extracellular traps (NETs) by neutrophils was augmented in the presence of increasing bicarbonate concentrations. Physiological levels of bicarbonate sensitized P. aeruginosa to the antimicrobial peptide cathelicidin LL-37, which is present in both lung ASL and in NETs. Sodium bicarbonate has various uses in clinical medicine and in the care of CF patients, and could be further explored as a therapeutic adjunct against Pseudomonas infections.
Collapse
|
26
|
Liu Y, Ma W, Li M, Wu J, Sun L, Zhao W, Sun S. Antibacterial and anti-biofilm activities of fosfomycin combined with rifampin against Carbapenem-resistant Pseudomonas aeruginosa. Lett Appl Microbiol 2022; 75:1559-1568. [PMID: 36036376 DOI: 10.1111/lam.13822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
Increasing prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)strains in the hospital setting represents an emerging challenge to clinical treatment for Pseudomonas aeruginosa (PA) infections, as the range of therapeutic agents active against these pathogens becomes increasingly constrained. This study demonstrated for the first time that fosfomycin (FOS) combined with rifampin (RIF) showed strong synergistic effects against CRPA and carbapenem-susceptible PA, with 100% synergistic rates. Additionally, time-killing curve further proves dynamic antibacterial activity of FOS+RIF against CRPA. Further experiments determined that antibacterial mechanisms of FOS+RIF might be inhibition of biofilm formation and eradication of pre-formed biofilm. The results of inhibition biofilm formation assay demonstrated that RIF and FOS at 1/8MIC, 1/16MIC and 1/32MIC have better inhibitory effects on CRPA biofilm formation VS FOS alone (96%, 90% and 78% VS 29%, 24% and 22%) (p<0.0001) or RIF alone (96%, 90% and 78% VS 86%, 67% and 29%) (p<0.01). The rates of eradicating pre-formed biofilm with combination therapy at 1/2MIC, 1/4MIC and 1/8MIC of both antibiotics, increased 46%, 61% and 55% compared with FOS alone (p<0.001) and 37%, 33% and 46% compared with RIF alone (p<0.01). This finding will provide new insights for the treatment of bacterial infection caused by CRPA, which can be further explored in the clinical practice.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Clinical Pharmacy, the First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Wenli Ma
- Department of Clinical Pharmacy, the First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China.,Department of Clinical Pharmacy, ShanDong Healthcare Group FeiCheng Hospital, Taian, People's Republic of China
| | - Min Li
- Department of Clinical Pharmacy, the First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Jiyong Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, 250022, Jinan, Shandong, P.R. China
| | - Licui Sun
- Department of Clinical Pharmacy, ShanDong Healthcare Group FeiCheng Hospital, Taian, People's Republic of China
| | - Wei Zhao
- Department of Clinical Pharmacy, ShanDong Healthcare Group FeiCheng Hospital, Taian, People's Republic of China
| | - Shujuan Sun
- Department of Clinical Pharmacy, the First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China.,Department of Pharmacy, Shandong Second Provincial General Hospital, 250022, Jinan, Shandong, P.R. China
| |
Collapse
|
27
|
Higashihira S, Simpson SJ, Collier CD, Natoli RM, Kittaka M, Greenfield EM. Halicin Is Effective Against Staphylococcus aureus Biofilms In Vitro. Clin Orthop Relat Res 2022; 480:1476-1487. [PMID: 35583504 PMCID: PMC9278916 DOI: 10.1097/corr.0000000000002251] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/28/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Biofilms protect bacteria from the host immune system and many antibiotics, making the treatment of orthopaedic infections difficult. Halicin, a recently discovered antibiotic, has potent activity against nonorthopaedic infections in mice and the planktonic, free-living forms of many bacterial species, including Staphylococcus aureus , a common cause of orthopaedic infections. Importantly, halicin did not induce resistance in vitro and was effective against drug-resistant bacteria and proliferating and quiescent bacteria. Quiescence is an important cause of antibiotic tolerance in biofilms. However, whether halicin acts on biofilms has not been tested. QUESTIONS/PURPOSES (1) Does halicin reduce the viability of S. aureus in less mature and more mature biofilms as it does in planktonic cultures? (2) How do the relative effects of halicin on S. aureus biofilms and planktonic cultures compare with those of conventional antibiotics (tobramycin, cefazolin, vancomycin, or rifampicin) that are commonly used in clinical orthopaedic infections? METHODS To measure minimal biofilm eradication concentrations (MBECs) with less mature 3-day and more mature 7-day biofilms, we used 96-well peg plates that provided high throughput and excellent reproducibility. After S. aureus -Xen36 biofilm formation, planktonic bacteria were removed from the cultures, and the biofilms were exposed to various concentrations of halicin, tobramycin, cefazolin, vancomycin, or rifampicin for 20 hours. Biofilm viability was determined by measuring resazurin reduction or by counting colony-forming units after sonication. To determine effects of halicin and the conventional antibiotics on biofilm viability, we defined MBEC 75 as the lowest concentration that decreased viability by 75% or more. To determine effects on bacterial viability in planktonic cultures, minimum inhibitory concentrations (MICs) were determined with the broth dilution method. Each result was measured in four to 10 independent experiments. RESULTS We found no differences between halicin's effectiveness against planktonic S. aureus and 3-day biofilms (MIC and MBEC 75 for 3-day biofilms was 25 μM [interquartile range 25 to 25 and 25 to 25, respectively]; p > 0.99). Halicin was eightfold less effective against more mature 7-day biofilms (MBEC 75 = 200 μM [100 to 200]; p < 0.001). Similarly, tobramycin was equally effective against planktonic culture and 3-day biofilms (MIC and MBEC 75 for 3-day biofilms was 20 μM [20 to 20 and 10 to 20, respectively]; p > 0.99). Tobramycin's MBEC 75 against more mature 7-day biofilms was 320 μM (320 to 480), which is 16-fold greater than its planktonic MIC (p = 0.03). In contrast, the MBEC 75 for cefazolin, vancomycin, and rifampicin against more mature 7-day biofilms were more than 1000-fold (> 1000; p < 0.001), 500-fold (500 to 875; p < 0.001), and 3125-fold (3125 to 5469; p = 0.004) greater than their planktonic MICs, respectively, consistent with those antibiotics' relative inactivity against biofilms. CONCLUSION Halicin was as effective against S. aureus in less mature 3-day biofilms as those in planktonic cultures, but eightfold higher concentrations were needed for more mature 7-day biofilms. Tobramycin, an antibiotic whose effectiveness depends on biofilm maturity, was also as effective against S. aureus in less mature 3-day biofilms as those in planktonic cultures, but 16-fold higher concentrations were needed for more mature 7-day biofilms. In contrast, cefazolin, vancomycin, and rifampicin were substantially less active against both less and more mature biofilms than against planktonic cultures. CLINICAL RELEVANCE Halicin is a promising antibiotic that may be effective against S. aureus osteomyelitis and infections on orthopaedic implants. Future studies should assess the translational value of halicin by testing its effects in animal models of orthopaedic infections; on the biofilms of other bacterial species, including multidrug-resistant bacteria; and in combination therapy with conventional antibiotics.
Collapse
Affiliation(s)
- Shota Higashihira
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Orthopaedic Surgery, Yokohama City University, Yokohama, Japan
| | - Stefanie Jan Simpson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher David Collier
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roman Michael Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mizuho Kittaka
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Edward Michael Greenfield
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
28
|
Copur B, Dosler S, Aktas Z, Basaran S, Simsek-Yavuz S, Cagatay A, Oncul O, Ozsut H, Eraksoy H. In vitro activities of antibiotic combinations against mature biofilms of ventilator-associated pneumonia isolates. Future Microbiol 2022; 17:1027-1042. [PMID: 35796076 DOI: 10.2217/fmb-2021-0305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The authors aimed to determine the efficacy of frequently used antibiotics, alone or in combination, against biofilms of ventilator-associated pneumonia isolates. Materials & methods: The authors determined the MICs, minimum biofilm inhibitory concentrations and minimum biofilm eradication concentrations of meropenem, ciprofloxacin and colistin as well as their combinations against planktonic forms and biofilms of Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii clinical isolates. Results: Generally, the minimum biofilm inhibitory concentrations and minimum biofilm eradication concentrations of the antibiotics were 1000-fold higher than their MICs, and synergy was provided by different concentrations of meropenem-colistin and meropenem-ciprofloxacin combinations with checkerboard and time-kill curve methods. Conclusion: The combination of meropenem and ciprofloxacin seems to be a good candidate for the treatment of biofilm-associated infections; none of the concentrations obtained as a result of the synergy test were clinically significant.
Collapse
Affiliation(s)
- Betul Copur
- Departmant of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkey
| | - Sibel Dosler
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul, 34116, Turkey
| | - Zerrin Aktas
- Department of Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkey
| | - Seniha Basaran
- Departmant of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkey
| | - Serap Simsek-Yavuz
- Departmant of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkey
| | - Atahan Cagatay
- Departmant of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkey
| | - Oral Oncul
- Departmant of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkey
| | - Halit Ozsut
- Departmant of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkey
| | - Haluk Eraksoy
- Departmant of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34093, Turkey
| |
Collapse
|
29
|
Wollny T, Wnorowska U, Piktel E, Suprewicz Ł, Król G, Głuszek K, Góźdź S, Kopczyński J, Bucki R. Sphingosine-1-Phosphate-Triggered Expression of Cathelicidin LL-37 Promotes the Growth of Human Bladder Cancer Cells. Int J Mol Sci 2022; 23:7443. [PMID: 35806446 PMCID: PMC9267432 DOI: 10.3390/ijms23137443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
It has been proven that tumour growth and progression are regulated by a variety of mediators released during the inflammatory process preceding the tumour appearance, but the role of inflammation in the development of bladder cancer is ambiguous. This study was designed around the hypothesis that sphingosine-1-phosphate (S1P), as a regulator of several cellular processes important in both inflammation and cancer development, may exert some of the pro-tumorigenic effects indirectly due to its ability to regulate the expression of human cathelicidin (hCAP-18). LL-37 peptide released from hCAP-18 is involved in the development of various types of cancer in humans, especially those associated with infections. Using immunohistological staining, we showed high expression of hCAP-18/LL-37 and sphingosine kinase 1 (the enzyme that forms S1P from sphingosine) in human bladder cancer cells. In a cell culture model, S1P was able to stimulate the expression and release of hCAP-18/LL-37 from human bladder cells, and the addition of LL-37 peptide dose-dependently increased their proliferation. Additionally, the effect of S1P on LL-37 release was inhibited in the presence of FTY720P, a synthetic immunosuppressant that blocks S1P receptors. Together, this study presents the possibility of paracrine relation in which LL-37 production following cell stimulation by S1P promotes the development and growth of bladder cancer.
Collapse
Affiliation(s)
- Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland; (T.W.); (K.G.); (S.G.); (J.K.)
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (U.W.); (Ł.S.)
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, Mickiewicza 2B, 15-222 Bialystok, Poland;
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (U.W.); (Ł.S.)
| | - Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland;
| | - Katarzyna Głuszek
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland; (T.W.); (K.G.); (S.G.); (J.K.)
| | - Stanisław Góźdź
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland; (T.W.); (K.G.); (S.G.); (J.K.)
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland;
| | - Janusz Kopczyński
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland; (T.W.); (K.G.); (S.G.); (J.K.)
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (U.W.); (Ł.S.)
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland;
| |
Collapse
|
30
|
Wei J, Tong K, Wang H, Wen Y, Chen L. Intra-articular versus systemic vancomycin for the treatment of periprosthetic joint infection after debridement and spacer implantation in a rat model. Bone Joint Res 2022; 11:371-385. [PMID: 35708551 PMCID: PMC9233408 DOI: 10.1302/2046-3758.116.bjr-2021-0319.r3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aims Treatment outcomes for methicillin-resistant Staphylococcus aureus (MRSA) periprosthetic joint infection (PJI) using systemic vancomycin and antibacterial cement spacers during two-stage revision arthroplasty remain unsatisfactory. This study explored the efficacy and safety of intra-articular vancomycin injections for PJI control after debridement and cement spacer implantation in a rat model. Methods Total knee arthroplasty (TKA), MRSA inoculation, debridement, and vancomycin-spacer implantation were performed successively in rats to mimic first-stage PJI during the two-stage revision arthroplasty procedure. Vancomycin was administered intraperitoneally or intra-articularly for two weeks to control the infection after debridement and spacer implantation. Results Rats receiving intra-articular vancomycin showed the best outcomes among the four treatment groups, with negative bacterial cultures, increased weight gain, increased capacity for weightbearing activities, increased residual bone volume preservation, and reduced inflammatory reactions in the joint tissues, indicating MRSA eradication in the knee. The vancomycin-spacer and/or systemic vancomycin failed to eliminate the MRSA infections following a two-week antibiotic course. Serum vancomycin levels did not reach nephrotoxic levels in any group. Mild renal histopathological changes, without changes in serum creatinine levels, were observed in the intraperitoneal vancomycin group compared with the intra-articular vancomycin group, but no changes in hepatic structure or serum alanine aminotransferase or aspartate aminotransferase levels were observed. No local complications were observed, such as sinus tract or non-healing surgical incisions. Conclusion Intra-articular vancomycin injection was effective and safe for PJI control following debridement and spacer implantation in a rat model during two-stage revision arthroplasties, with better outcomes than systemic vancomycin administration. Cite this article: Bone Joint Res 2022;11(6):371–385.
Collapse
Affiliation(s)
- Jian Wei
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Joint Disease Research Center of Wuhan University, Wuhan, China
| | - Kai Tong
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Joint Disease Research Center of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Department of Basic Medicine, Wuhan University, Wuhan, China
| | - Yinxian Wen
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Joint Disease Research Center of Wuhan University, Wuhan, China
| | - Liaobin Chen
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Joint Disease Research Center of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Kang Y, Tian L, Gu X, Chen Y, Ma X, Lin S, Li Z, Lou Y, Zheng M. Characterization of the Ocular Surface Microbiome in Keratitis Patients after Repeated Ophthalmic Antibiotic Exposure. Microbiol Spectr 2022; 10:e0216221. [PMID: 35293804 PMCID: PMC9045205 DOI: 10.1128/spectrum.02162-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/07/2022] [Indexed: 12/31/2022] Open
Abstract
In human medicine, antibiotics have been widely used to treat microbial infections. The extensive use of antibiotics is a leading cause of antibiotic resistance. Currently, the influence of the use of antibiotics on the ocular surface microbiome in the course of keratitis treatment remains to be explored in depth. We performed metagenomic analyses in a cohort of 26 healthy controls (HCs), 28 keratitis patients (KPs) who received antibiotics [KP (abx+) group], and 12 KPs who were antibiotic naive [KP (abx-) group]. We identified that the dissimilarities in microbial community structure (Bray-Curtis and Jaccard analyses) between the KP (abx+) group and the HC group were greater than those between the KP (abx-) group and the HC group. Pseudomonas lactis, P. aeruginosa, Pseudomonas sp. FDAARGOS_380, Pseudomonas sp. J380, Corynebacterium simulans, Streptococcus pyogenes, Finegoldia magna, and Aspergillus oryzae had no statistically significant differences between the KP (abx+) and KP (abx-) groups but did have statistically significant differences between the KP (abx+) and HC groups and between the KP (abx-) and HC groups. Among them, Pseudomonas lactis, P. aeruginosa, Pseudomonas sp. FDAARGOS_380, and Pseudomonas sp. J380 were identified as possible hosts carrying multidrug-resistant genes. The total abundance and number of antibiotic resistance genes (ARGs) were greater in the KP (abx+) group than in the HC and KP (abx-) groups. The functional profile analysis of ocular surface microbiota revealed that pathogenesis-related functional pathways and virulence functions were enriched in KPs. In conclusion, our results show that empirical antibiotic treatment in KPs leads to increases in the antibiotic resistance of ocular surface microbiota. IMPORTANCE Treatment for keratitis is based on appropriate antimicrobial therapy. A direct correlation between antibiotic use and the extent of antibiotic resistance has been reported. Therefore, knowledge of the antibiotic resistance patterns of ocular surface microbial flora in KPs is important for clinical treatment. To the best of our knowledge, this is the first study to use metagenomic approaches to investigate the associations between ophthalmic antibiotic use and the ocular surface microbiome of KPs. Monitoring the microbiota and antibiotic resistome profiles for the ocular surface has huge potential to help ophthalmologists choose the appropriate antibiotics and will thereby improve the efficacy of treatment regimens, which has important implications for reducing the development of antibiotic resistance of the ocular surface to a certain extent.
Collapse
Affiliation(s)
- Yutong Kang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Leihao Tian
- Optometry and Eye Hospital and School of Ophthalmology, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaobin Gu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiju Chen
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xueli Ma
- Optometry and Eye Hospital and School of Ophthalmology, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shudan Lin
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meiqin Zheng
- Optometry and Eye Hospital and School of Ophthalmology, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
32
|
Jin L, Dong H, Sun D, Wang L, Qu L, Lin S, Yang Q, Zhang X. Biological Functions and Applications of Antimicrobial Peptides. Curr Protein Pept Sci 2022; 23:226-247. [DOI: 10.2174/1389203723666220519155942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Despite antimicrobial resistance, which is attributed to the misuse of broad-spectrum antibiotics,
antibiotics can indiscriminately kill pathogenic and beneficial microorganisms. These events
disrupt the delicate microbial balance in both humans and animals, leading to secondary infections
and other negative effects. Antimicrobial peptides (AMPs) are functional natural biopolymers in
plants and animals. Due to their excellent antimicrobial activities and absence of microbial resistance,
AMPs have attracted enormous research attention. We reviewed the antibacterial, antifungal, antiviral,
antiparasitic, as well as antitumor properties of AMPs and research progress on AMPs. In addition,
we highlighted various recommendations and potential research areas for their progress and
challenges in practical applications.
Collapse
Affiliation(s)
- Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Hao Dong
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Linkai Qu
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Sue Lin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xingxing Zhang
- Department of Endocrinology
and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
33
|
Xiao Q, Luo Y, Shi W, Lu Y, Xiong R, Wu X, Huang H, Zhao C, Zeng J, Chen C. The effects of LL-37 on virulence factors related to the quorum sensing system of Pseudomonas aeruginosa. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:284. [PMID: 35434009 PMCID: PMC9011280 DOI: 10.21037/atm-22-617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
Abstract
Background Antimicrobial peptides (AMPs) have shown promise in the treatment of multi-resistant pathogens. It was therefore of interest to analyze the effects of the AMP LL-37 on the regulation of several virulence factors related to the quorum sensing (QS) system of Pseudomonas aeruginosa (P. aeruginosa) in vitro. Methods The minimum inhibitory concentration (MIC) was evaluated by the micro broth dilution method. The expression of QS-related and QS-regulated virulence factor genes was also evaluated. Exotoxin A activity was measured with the nicotinamide adenine dinucleotide (NAD) (Coenzyme I) method; Elastase activity was detected with the elastin-Congo red (ECR) method; Pyocyanin detection was performed using the chloroform extraction method. The effects of LL-37 were assessed by measuring the expression changes of the virulence protein-encoding genes of the strains with quantitative polymerase chain reaction (PCR). Results The MIC of LL-37 against both P. aeruginosa reference strain (ATCC 15692 PAO1) and PA-ΔlasI/rhII was therefore determined to be 256 µg/mL. LL-37 at sub-minimum inhibitory concentrations (sub-MICs) had no significant effects on P. aeruginosa bacterial growth (P>0.05), but significantly downregulated the expression of all 3 virulence factors. Conclusions Interestingly, this effect appeared to be dose-related. These findings suggest that LL-37 could be a potential candidate for QS inhibition against bacterial infection and may have significant clinical potential in the treatment of P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanfen Luo
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Shi
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Lu
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Xiong
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinggui Wu
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haihao Huang
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chanjing Zhao
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianming Zeng
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cha Chen
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
34
|
Louis M, Clamens T, Tahrioui A, Desriac F, Rodrigues S, Rosay T, Harmer N, Diaz S, Barreau M, Racine P, Kipnis E, Grandjean T, Vieillard J, Bouffartigues E, Cornelis P, Chevalier S, Feuilloley MGJ, Lesouhaitier O. Pseudomonas aeruginosa Biofilm Dispersion by the Human Atrial Natriuretic Peptide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103262. [PMID: 35032112 PMCID: PMC8895129 DOI: 10.1002/advs.202103262] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/29/2021] [Indexed: 05/05/2023]
Abstract
Pseudomonas aeruginosa biofilms cause chronic, antibiotic tolerant infections in wounds and lungs. Numerous recent studies demonstrate that bacteria can detect human communication compounds through specific sensor/receptor tools that modulate bacterial physiology. Consequently, interfering with these mechanisms offers an exciting opportunity to directly affect the infection process. It is shown that the human hormone Atrial Natriuretic Peptide (hANP) both prevents the formation of P. aeruginosa biofilms and strongly disperses established P. aeruginosa biofilms. This hANP action is dose-dependent with a strong effect at low nanomolar concentrations and takes effect in 30-120 min. Furthermore, although hANP has no antimicrobial effect, it acts as an antibiotic adjuvant. hANP enhances the antibiofilm action of antibiotics with diverse modes of action, allowing almost full biofilm eradication. The hANP effect requires the presence of the P. aeruginosa sensor AmiC and the AmiR antiterminator regulator, indicating a specific mode of action. These data establish the activation of the ami pathway as a potential mechanism for P. aeruginosa biofilm dispersion. hANP appears to be devoid of toxicity, does not enhance bacterial pathogenicity, and acts synergistically with antibiotics. These data show that hANP is a promising powerful antibiofilm weapon against established P. aeruginosa biofilms in chronic infections.
Collapse
Affiliation(s)
- Mélissande Louis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Thomas Clamens
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Ali Tahrioui
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Florie Desriac
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
- Normandie UnivUNICAENUnité De Recherche Risques Microbiens U2RMCaen14000France
| | - Sophie Rodrigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Thibaut Rosay
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | | | - Suraya Diaz
- School of BiosciencesUniversity of ExeterExeterEX4 4QDUK
| | - Magalie Barreau
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Pierre‐Jean Racine
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Eric Kipnis
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019‐UMR9017‐CIIL‐Centre d’Infection et d’Immunité de Lille, Lille, FranceUniversity LilleLilleF‐59000France
| | - Teddy Grandjean
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019‐UMR9017‐CIIL‐Centre d’Infection et d’Immunité de Lille, Lille, FranceUniversity LilleLilleF‐59000France
| | - Julien Vieillard
- Normandie UnivUNIROUENINSA RouenCNRSCOBRA (UMR 6014)Evreux27000France
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Marc G. J. Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| |
Collapse
|
35
|
In Vitro Evaluation of Antimicrobial Peptides from the Black Soldier Fly ( Hermetia Illucens) against a Selection of Human Pathogens. Microbiol Spectr 2022; 10:e0166421. [PMID: 34985302 PMCID: PMC8729770 DOI: 10.1128/spectrum.01664-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial peptides (AMPs) are being explored as alternatives to traditional antibiotics to combat the rising antimicrobial resistance. Insects have proven to be a valuable source of new, potent AMPs with large structural diversity. For example, the black soldier fly has one of the largest AMP repertoires ever recorded in insects. Currently, however, this AMP collection has not yet undergone antimicrobial evaluation or in-depth in vitro characterization. This study evaluated the activity of a library of 36 black soldier fly AMPs against a panel of human pathogens (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, and Aspergillus fumigatus) and a human cell line (MRC5-SV2). The activity profile of two cecropins (Hill-Cec1 and Hill-Cec10) with potent Gram-negative activity, was further explored by characterizing their hemolysis, time-to-kill kinetics, membrane-permeabilization properties, and anti-biofilm activity. Hill-Cec1 and Hill-Cec10 also showed high activity against other bacterial species, including Klebsiella pneumoniae and multi-drug resistant P. aeruginosa. Both AMPs are bactericidal and have a rapid onset of action with membrane-permeabilizing effects. Hill-Cec1 and Hill-Cec10 were also able to prevent P. aeruginosa biofilm formation, but no relevant effect was seen on biofilm eradication. Overall, Hill-Cec1 and Hill-Cec10 are promising leads for new antimicrobial development to treat critical infections caused by Gram-negative pathogens such as P. aeruginosa. IMPORTANCE With the ever growing antimicrobial resistance, finding new candidates for antimicrobial drug development is indispensable. Antimicrobial peptides have steadily gained attention as alternatives for conventional antibiotics, due to some highly desirable characteristics, such as their low propensity for resistance development. With this article, we aim to upgrade the knowledge on the activity of black soldier fly antimicrobial peptides and their potential as future therapeutics. To achieve this, we have evaluated for the first time a library of 36 synthetically produced peptides from the black soldier fly against a range of human pathogens and a human cell line. Two selected peptides have undergone additional testing to characterize their antimicrobial profile against P. aeruginosa, a clinically important Gram-negative pathogen with a high established resistance. Overall, this research has contributed to the search for new peptide drug leads to combat the rising antimicrobial resistance.
Collapse
|
36
|
Escobar‐Salom M, Torrens G, Jordana‐Lluch E, Oliver A, Juan C. Mammals' humoral immune proteins and peptides targeting the bacterial envelope: from natural protection to therapeutic applications against multidrug‐resistant
Gram
‐negatives. Biol Rev Camb Philos Soc 2022; 97:1005-1037. [PMID: 35043558 PMCID: PMC9304279 DOI: 10.1111/brv.12830] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Mammalian innate immunity employs several humoral ‘weapons’ that target the bacterial envelope. The threats posed by the multidrug‐resistant ‘ESKAPE’ Gram‐negative pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are forcing researchers to explore new therapeutic options, including the use of these immune elements. Here we review bacterial envelope‐targeting (peptidoglycan and/or membrane‐targeting) proteins/peptides of the mammalian immune system that are most likely to have therapeutic applications. Firstly we discuss their general features and protective activity against ESKAPE Gram‐negatives in the host. We then gather, integrate, and discuss recent research on experimental therapeutics harnessing their bactericidal power, based on their exogenous administration and also on the discovery of bacterial and/or host targets that improve the performance of this endogenous immunity, as a novel therapeutic concept. We identify weak points and knowledge gaps in current research in this field and suggest areas for future work to obtain successful envelope‐targeting therapeutic options to tackle the challenge of antimicrobial resistance.
Collapse
Affiliation(s)
- María Escobar‐Salom
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Gabriel Torrens
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Elena Jordana‐Lluch
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Antonio Oliver
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Carlos Juan
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| |
Collapse
|
37
|
Kamali E, Jamali A, Izanloo A, Ardebili A. In vitro activities of cellulase and ceftazidime, alone and in combination against Pseudomonas aeruginosa biofilms. BMC Microbiol 2021; 21:347. [PMID: 34915848 PMCID: PMC8675527 DOI: 10.1186/s12866-021-02411-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biofilms are a main pathogenicity feature of Pseudomonas aeruginosa and has a significant role in antibiotic resistance and persistent infections in humans. We investigated the in vitro activities of antibiotic ceftazidime and enzyme cellulase, either alone or in combination against biofilms of P. aeruginosa. RESULTS Both ceftazidime and cellulase significantly decreased biofilm formation in all strains in a dose-dependent manner. Combination of enzyme at concentrations of 1.25, 2.5, 5, and 10 U/mL tested with 1/16× MIC of antibiotic led to a significant reduction in biofilm biomass. Cellulase showed a significant detachment effect on biofilms at three concentrations of 10 U/mL, 5 U/mL, and 2.5 U/mL. The MIC, MBC, and MBEC values of ceftazidime were 2 to 4 µg/mL, 4 to 8 µg/mL, and 2048 to 8192 µg/mL. When combined with cellulase, the MBECs of antibiotic showed a significant decrease from 32- to 128-fold. CONCLUSIONS Combination of the ceftazidime and the cellulase had significant anti-biofilm effects, including inhibition of biofilm formation and biofilm eradication in P. aeruginosa. These data suggest that glycoside hydrolase therapy as a novel strategy has the potential to enhance the efficacy of antibiotics and helps to resolve biofilm-associated wound infections caused by this pathogen.
Collapse
Affiliation(s)
- Esmat Kamali
- Infectious Diseases Research Center, Golestan University of Medical Sciences, P.O. box: 4934174515, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ailar Jamali
- Infectious Diseases Research Center, Golestan University of Medical Sciences, P.O. box: 4934174515, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahdieh Izanloo
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Abdollah Ardebili
- Infectious Diseases Research Center, Golestan University of Medical Sciences, P.O. box: 4934174515, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
38
|
Raju SV, Sarkar P, Pasupuleti M, Abbasi AM, Al-Farraj DA, Elshikh MS, Elumalai P, Harikrishnan R, Rahman MA, Arockiaraj J. Antibacterial Activity of RM12, a Tachykinin Derivative, Against Pseudomonas aeruginosa. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10274-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Singh RB, Das S, Chodosh J, Sharma N, Zegans ME, Kowalski RP, Jhanji V. Paradox of complex diversity: Challenges in the diagnosis and management of bacterial keratitis. Prog Retin Eye Res 2021; 88:101028. [PMID: 34813978 DOI: 10.1016/j.preteyeres.2021.101028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
Bacterial keratitis continues to be one of the leading causes of corneal blindness in the developed as well as the developing world, despite swift progress since the dawn of the "anti-biotic era". Although, we are expeditiously developing our understanding about the different causative organisms and associated pathology leading to keratitis, extensive gaps in knowledge continue to dampen the efforts for early and accurate diagnosis, and management in these patients, resulting in poor clinical outcomes. The ability of the causative bacteria to subdue the therapeutic challenge stems from their large genome encoding complex regulatory networks, variety of unique virulence factors, and rapid secretion of tissue damaging proteases and toxins. In this review article, we have provided an overview of the established classical diagnostic techniques and therapeutics for keratitis caused by various bacteria. We have extensively reported our recent in-roads through novel tools for accurate diagnosis of mono- and poly-bacterial corneal infections. Furthermore, we outlined the recent progress by our group and others in understanding the sub-cellular genomic changes that lead to antibiotic resistance in these organisms. Finally, we discussed in detail, the novel therapies and drug delivery systems in development for the efficacious management of bacterial keratitis.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Leiden University Medical Center, 2333, ZA Leiden, the Netherlands
| | - Sujata Das
- Cornea and Anterior Segment Services, LV Prasad Eye Institute, Bhubaneshwar, India
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Michael E Zegans
- Department of Ophthalmology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Regis P Kowalski
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Charles T Campbell Ophthalmic Microbiology Laboratory, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Charles T Campbell Ophthalmic Microbiology Laboratory, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Etayash H, Hancock REW. Host Defense Peptide-Mimicking Polymers and Polymeric-Brush-Tethered Host Defense Peptides: Recent Developments, Limitations, and Potential Success. Pharmaceutics 2021; 13:1820. [PMID: 34834239 PMCID: PMC8621177 DOI: 10.3390/pharmaceutics13111820] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
Amphiphilic antimicrobial polymers have attracted considerable interest as structural mimics of host defense peptides (HDPs) that provide a broad spectrum of activity and do not induce bacterial-drug resistance. Likewise, surface engineered polymeric-brush-tethered HDP is considered a promising coating strategy that prevents infections and endows implantable materials and medical devices with antifouling and antibacterial properties. While each strategy takes a different approach, both aim to circumvent limitations of HDPs, enhance physicochemical properties, therapeutic performance, and enable solutions to unmet therapeutic needs. In this review, we discuss the recent advances in each approach, spotlight the fundamental principles, describe current developments with examples, discuss benefits and limitations, and highlight potential success. The review intends to summarize our knowledge in this research area and stimulate further work on antimicrobial polymers and functionalized polymeric biomaterials as strategies to fight infectious diseases.
Collapse
Affiliation(s)
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
41
|
Nazeer N, Rodriguez-Lecompte JC, Ahmed M. Bacterial-Specific Aggregation and Killing of Immunomodulatory Host Defense Peptides. Pharmaceuticals (Basel) 2021; 14:839. [PMID: 34577539 PMCID: PMC8467575 DOI: 10.3390/ph14090839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022] Open
Abstract
This study involves the design and development of disulfide bridge-linked antimicrobial peptides using the host defense protein Angiogenin 4 (chAng4) as a template. The mini peptides derived from chAng4 (mCA4s) were evaluated for their antibacterial efficacies in various pathogenic bacterial strains, and the role of the oxidation state of thiols in the peptide sequence and its implication on antibacterial properties were explored. A remarkable property of these synthetic mCA4 peptides is their capability to flocculate bacteria and mediate bacterial-specific killing, in the absence of any other external stimulus. mCA4s were further evaluated for their cellular uptake, hemolytic activities, toxicities, and immunomodulatory activities in different eukaryotic cell lines. The results indicate that disulfide bridge-containing cationic amphipathic peptides show superior antibacterial efficacies, are nontoxic and nonhemolytic, and mediate bacterial flocculation and killing, in the absence of external stimuli.
Collapse
Affiliation(s)
- Nauman Nazeer
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
- Faculty of Sustainable Design & Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
42
|
Yang T, Li J, Jia Q, Zhan S, Zhang Q, Wang Y, Wang X. Antimicrobial peptide 17BIPHE2 inhibits the proliferation of lung cancer cells in vitro and in vivo by regulating the ERK signaling pathway. Oncol Lett 2021; 22:501. [PMID: 33981363 PMCID: PMC8108245 DOI: 10.3892/ol.2021.12762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
In 2018, there were 18.1 million new cancer cases and 9.6 million cancer-related deaths worldwide, among which the incidence rate of lung cancer (11.6%) and fatality rate (18.4%) both ranked first. The antimicrobial peptide LL-37 is an important component of the natural immune system and possesses several biological properties, including antibacterial, antiviral and anticancer effects. The antimicrobial peptide 17BIPHE2, the shortest synthetic peptide derivative of LL-37, exhibits biological activities similar to those of LL-37. The objective of the present study was to investigate the mechanism of action of exogenous 17BIPHE2 against lung cancer cells. The human lung adenocarcinoma cell line A549 was treated with 17BIPHE2. Changes in cell proliferation, migration, invasion, mitochondrial membrane potential (ΔΨm), and the levels of reactive oxygen species (ROS), Ca2+ and apoptosis-related proteins, including BAX, BCL-2 and ERK, were detected using flow cytometry, transmission electron microscopy and western blotting. The results showed that 17BIPHE2 significantly increased the apoptosis rate of A549 cells and elevated BAX expression, ERK phosphorylation, and ROS and Ca2+ levels, but decreased the expression of BCL-2, ERK and Ki67. In addition, the peptide reduced ΔΨm and the cell migration ability of A549 cells and inhibited tumor growth. ERK inhibition significantly attenuated the anticancer effect of 17BIPHE2. The present observations suggested that 17BIPHE2 can effectively inhibit cancer cells by regulating the ERK signaling pathway.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Clinical Laboratory, Yinchuan Maternal and Child Health Care Hospital, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jun Li
- Department of Clinical Laboratory, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Qinqin Jia
- Department of Laboratory Medicine, Health Center, Chun Rong, Gansu 745211, P.R. China
| | - Shisheng Zhan
- Department of Clinical Laboratory, Hebei Yanda Lu Daopei Hospital, Langfang, Hebei 065200, P.R. China
| | - Qiannan Zhang
- Department of Laboratory Medicine, College of Clinical Medicine, Shuangyi Campus, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yarong Wang
- Department of Pathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, P.R. China
| | - Xiuqing Wang
- Department of Laboratory Medicine, College of Clinical Medicine, Shuangyi Campus, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
43
|
Oyardi Ö, Savage PB, Erturan Z, Bozkurt-Guzel C. In vitro assessment of CSA-131 and CSA-131 poloxamer form for the treatment of Stenotrophomonas maltophilia infections in cystic fibrosis. J Antimicrob Chemother 2021; 76:443-450. [PMID: 33094334 DOI: 10.1093/jac/dkaa434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/18/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Stenotrophomonas maltophilia is a Gram-negative bacterium resistant to several antibiotics and its prevalence in cystic fibrosis (CF) patients is increasing. OBJECTIVES To evaluate the effects of ceragenins, non-peptide mimics of antimicrobial peptides, against both planktonic and biofilm forms of S. maltophilia and the cytotoxicity of ceragenins to the IB3-1 CF cell line. METHODS Ceragenin CSA-131, with and without 5% Pluronic® F127 (a non-ionic amphiphilic poloxamer), and ceragenin CSA-13 were evaluated against S. maltophilia clinical isolates (n = 40). MICs and MBCs of ceragenins and conventional antibiotics were determined. Time-kill curve experiments were performed with 1×, 2× and 4× MICs of ceragenins. The highest non-cytotoxic concentrations of ceragenins against IB3-1, a CF cell line, were determined by MTT assay. The effects of ceragenins against biofilm adhesion, formation and mature biofilms were investigated. RESULTS CSA-131 with Pluronic® F127 displayed the lowest MICs (MIC50/MIC90: 1/2 mg/L) followed by CSA-131 (MIC50/MIC90: 2/4 mg/L), while those of CSA-13 were much higher (MIC50/MIC90: 16/32 mg/L). According to time-kill curve results, all concentrations at 4× MICs of ceragenins showed bactericidal activity (3 log reduction) after 4 h. While CSA-131 and CSA-131-poloxamer inhibited biofilm adhesion and formation by 87.74% and 83.42%, respectively, after 24 h, CSA-131 was more effective on mature biofilms. Formulating CSA-131 in poloxamer micelles did not affect the cytotoxicity of CSA-131 to IB3-1 cells. CONCLUSIONS CSA-131 could be a potential antimicrobial agent for the treatment of S. maltophilia infections in CF, due to its low cytotoxicity on the CF cell line and good antimicrobial and antibiofilm effects.
Collapse
Affiliation(s)
- Özlem Oyardi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, 84602, Provo, UT, USA
| | - Zayre Erturan
- Department of Medical Microbiology, Faculty of Medicine, Istanbul University, 34093, Istanbul, Turkey
| | - Cagla Bozkurt-Guzel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
| |
Collapse
|
44
|
Pompilio A, Scribano D, Sarshar M, Di Bonaventura G, Palamara AT, Ambrosi C. Gram-Negative Bacteria Holding Together in a Biofilm: The Acinetobacter baumannii Way. Microorganisms 2021; 9:1353. [PMID: 34206680 PMCID: PMC8304980 DOI: 10.3390/microorganisms9071353] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Bacterial biofilms are a serious public-health problem worldwide. In recent years, the rates of antibiotic-resistant Gram-negative bacteria associated with biofilm-forming activity have increased worrisomely, particularly among healthcare-associated pathogens. Acinetobacter baumannii is a critically opportunistic pathogen, due to the high rates of antibiotic resistant strains causing healthcare-acquired infections (HAIs). The clinical isolates of A. baumannii can form biofilms on both biotic and abiotic surfaces; hospital settings and medical devices are the ideal environments for A. baumannii biofilms, thereby representing the main source of patient infections. However, the paucity of therapeutic options poses major concerns for human health infections caused by A. baumannii strains. The increasing number of multidrug-resistant A. baumannii biofilm-forming isolates in association with the limited number of biofilm-eradicating treatments intensify the need for effective antibiofilm approaches. This review discusses the mechanisms used by this opportunistic pathogen to form biofilms, describes their clinical impact, and summarizes the current and emerging treatment options available, both to prevent their formation and to disrupt preformed A. baumannii biofilms.
Collapse
Affiliation(s)
- Arianna Pompilio
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, Service of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
- Dani Di Giò Foundation-Onlus, 00193 Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Giovanni Di Bonaventura
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, Service of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS, 00166 Rome, Italy
| |
Collapse
|
45
|
Sahoo A, Swain SS, Behera A, Sahoo G, Mahapatra PK, Panda SK. Antimicrobial Peptides Derived From Insects Offer a Novel Therapeutic Option to Combat Biofilm: A Review. Front Microbiol 2021; 12:661195. [PMID: 34248873 PMCID: PMC8265172 DOI: 10.3389/fmicb.2021.661195] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Biofilms form a complex layer with defined structures, that attach on biotic or abiotic surfaces, are tough to eradicate and tend to cause some resistance against most antibiotics. Several studies confirmed that biofilm-producing bacteria exhibit higher resistance compared to the planktonic form of the same species. Antibiotic resistance factors are well understood in planktonic bacteria which is not so in case of biofilm producing forms. This may be due to the lack of available drugs with known resistance mechanisms for biofilms. Existing antibiotics cannot eradicate most biofilms, especially of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). Insects produce complex and diverse set of chemicals for survival and defense. Antimicrobial peptides (AMPs), produced by most insects, generally have a broad spectrum of activity and the potential to bypass the resistance mechanisms of classical antibiotics. Besides, AMPs may well act synergistically with classical antibiotics for a double-pronged attack on infections. Thus, AMPs could be promising alternatives to overcome medically important biofilms, decrease the possibility of acquired resistance and treatment of multidrug-resistant pathogens including ESKAPE. The present review focuses on insect-derived AMPs with special reference to anti-biofilm-based strategies. It covers the AMP composition, pathways and mechanisms of action, the formation of biofilms, impact of biofilms on human diseases, current strategies as well as therapeutic options to combat biofilm with antimicrobial peptides from insects. In addition, the review also illustrates the importance of bioinformatics tools and molecular docking studies to boost the importance of select bioactive peptides those can be developed as drugs, as well as suggestions for further basic and clinical research.
Collapse
Affiliation(s)
- Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences, SUM Hospital, Siksha O Anusandhan University, Bhubaneswar, India
| | - Shasank Sekhar Swain
- Division of Microbiology & NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Ayusman Behera
- Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
| | - Gunanidhi Sahoo
- Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar, India
| | | | - Sujogya Kumar Panda
- Centre of Environment, Climate Change and Public Health, RUSA 2.0, Utkal University, Vani Vihar, Bhubaneswar, India
| |
Collapse
|
46
|
Harrison ZL, Awais R, Harris M, Raji B, Hoffman BC, Baker DL, Jennings JA. 2-Heptylcyclopropane-1-Carboxylic Acid Disperses and Inhibits Bacterial Biofilms. Front Microbiol 2021; 12:645180. [PMID: 34177826 PMCID: PMC8221421 DOI: 10.3389/fmicb.2021.645180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Fatty-acid signaling molecules can inhibit biofilm formation, signal dispersal events, and revert dormant cells within biofilms to a metabolically active state. We synthesized 2-heptylcyclopropane-1-carboxylic acid (2CP), an analog of cis-2-decenoic acid (C2DA), which contains a cyclopropanated bond that may lock the signaling factor in an active state and prevent isomerization to its least active trans-configuration (T2DA). 2CP was compared to C2DA and T2DA for ability to disperse biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa. 2CP at 125 μg/ml dispersed approximately 100% of S. aureus cells compared to 25% for C2DA; both 2CP and C2DA had significantly less S. aureus biofilm remaining compared to T2DA, which achieved no significant dispersal. 2CP at 125 μg/ml dispersed approximately 60% of P. aeruginosa biofilms, whereas C2DA and T2DA at the same concentration dispersed 40%. When combined with antibiotics tobramycin, tetracycline, or levofloxacin, 2CP decreased the minimum concentration required for biofilm inhibition and eradication, demonstrating synergistic and additive responses for certain combinations. Furthermore, 2CP supported fibroblast viability above 80% for concentrations below 1 mg/ml. This study demonstrates that 2CP shows similar or improved efficacy in biofilm dispersion, inhibition, and eradication compared to C2DA and T2DA and thus may be promising for use in preventing infection for healthcare applications.
Collapse
Affiliation(s)
- Zoe L Harrison
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| | - Rukhsana Awais
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| | - Michael Harris
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| | - Babatunde Raji
- Department of Chemistry, University of Memphis, Memphis, TN, United States
| | - Brian C Hoffman
- Department of Chemistry, University of Memphis, Memphis, TN, United States
| | - Daniel L Baker
- Department of Chemistry, University of Memphis, Memphis, TN, United States
| | | |
Collapse
|
47
|
Fu J, Zhang Y, Lin S, Zhang W, Shu G, Lin J, Li H, Xu F, Tang H, Peng G, Zhao L, Chen S, Fu H. Strategies for Interfering With Bacterial Early Stage Biofilms. Front Microbiol 2021; 12:675843. [PMID: 34168632 PMCID: PMC8217469 DOI: 10.3389/fmicb.2021.675843] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/03/2021] [Indexed: 01/12/2023] Open
Abstract
Biofilm-related bacteria show high resistance to antimicrobial treatments, posing a remarkable challenge to human health. Given bacterial dormancy and high expression of efflux pumps, persistent infections caused by mature biofilms are not easy to treat, thereby driving researchers toward the discovery of many anti-biofilm molecules that can intervene in early stage biofilms formation to inhibit further development and maturity. Compared with mature biofilms, early stage biofilms have fragile structures, vigorous metabolisms, and early attached bacteria are higher susceptibility to antimicrobials. Thus, removing biofilms at the early stage has evident advantages. Many reviews on anti-biofilm compounds that prevent biofilms formation have already been done, but most of them are based on compound classifications to introduce anti-biofilm effects. This review discusses the inhibitory effects of anti-biofilm compounds on early stage biofilms formation from the perspective of the mechanisms of action, including hindering reversible adhesion, reducing extracellular polymeric substances production, interfering in the quorum sensing, and modifying cyclic di-GMP. This information can be exploited further to help researchers in designing new molecules with anti-biofilm activity.
Collapse
Affiliation(s)
- Jingyuan Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuning Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhao
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiqi Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
48
|
Ridyard KE, Overhage J. The Potential of Human Peptide LL-37 as an Antimicrobial and Anti-Biofilm Agent. Antibiotics (Basel) 2021; 10:antibiotics10060650. [PMID: 34072318 PMCID: PMC8227053 DOI: 10.3390/antibiotics10060650] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The rise in antimicrobial resistant bacteria threatens the current methods utilized to treat bacterial infections. The development of novel therapeutic agents is crucial in avoiding a post-antibiotic era and the associated deaths from antibiotic resistant pathogens. The human antimicrobial peptide LL-37 has been considered as a potential alternative to conventional antibiotics as it displays broad spectrum antibacterial and anti-biofilm activities as well as immunomodulatory functions. While LL-37 has shown promising results, it has yet to receive regulatory approval as a peptide antibiotic. Despite the strong antimicrobial properties, LL-37 has several limitations including high cost, lower activity in physiological environments, susceptibility to proteolytic degradation, and high toxicity to human cells. This review will discuss the challenges associated with making LL-37 into a viable antibiotic treatment option, with a focus on antimicrobial resistance and cross-resistance as well as adaptive responses to sub-inhibitory concentrations of the peptide. The possible methods to overcome these challenges, including immobilization techniques, LL-37 delivery systems, the development of LL-37 derivatives, and synergistic combinations will also be considered. Herein, we describe how combination therapy and structural modifications to the sequence, helicity, hydrophobicity, charge, and configuration of LL-37 could optimize the antimicrobial and anti-biofilm activities of LL-37 for future clinical use.
Collapse
|
49
|
Schafer ME, Browne H, Goldberg JB, Greenberg DE. Peptides and Antibiotic Therapy: Advances in Design and Delivery. Acc Chem Res 2021; 54:2377-2385. [PMID: 33881843 DOI: 10.1021/acs.accounts.1c00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibiotic resistance (AMR) is an increasing public health crisis worldwide. This threatens our ability to adequately care for patients with infections due to multi-drug-resistant (MDR) pathogens. As such, there is an urgent need to develop new classes of antimicrobials that are not based on currently utilized antibiotic scaffolds. One promising avenue of antimicrobial research that deserves renewed examination involves the use of peptides. Although antimicrobial peptides (AMPs) have been studied for a number of years, innovations in peptide design and their applications are increasingly making this approach a viable alternative to traditional small-molecule antibiotics. This review will provide updates on two ways in which peptides are being explored as antibiotics. The first topic will focus on novel types of peptides and conjugation methods that are being exploited to act as antibiotics themselves. These direct-acting modified peptides could serve as potentially useful drugs while mitigating many of the known liabilities of AMPs. The second topic relates to the use of peptides as delivery vehicles for other active compounds with antimicrobial activity. Cell-penetrating peptides (CPPs) are peptides designed to carry compounds across cell membranes and are a promising method for delivering a variety of antimicrobial compounds. When conjugated to other compounds, CPPs have been shown to be effective at increasing the uptake of both small- and large-molecular-weight compounds. This includes conjugation to antisense molecules and traditional antibiotics, resulting in increased effectiveness of these antimicrobials. One particular approach utilizes CPPs conjugated to phosphorodiamidate morpholino oligomers (PMOs). PMOs are designed to target particular pathogens in a gene-specific way. They target mRNA and block protein translation. Peptide-conjugated PMOs (PPMOs) allow for efficient delivery into the Gram-negative cytoplasm, and recent updates to their in vitro and in vivo activity are reviewed. This includes recent data to suggest that PPMOs maintain activity in the setting of multi-drug-resistant (MDR) strains, an important finding as it relates to the further development of this therapeutic approach. Other topics include the ability to have activity in the biofilm setting, a finding that likely relates to the peptide portion of the conjugate. Finally, what is known and anticipated related to the development of resistance to these peptides will be discussed.
Collapse
Affiliation(s)
- Morgan E. Schafer
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics and Center for Cystic Fibrosis and Airway Diseases Research, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1510 Clifton Road NE, Suite 3009, Atlanta, Georgia 30322, United States
| | | | - Joanna B. Goldberg
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics and Center for Cystic Fibrosis and Airway Diseases Research, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1510 Clifton Road NE, Suite 3009, Atlanta, Georgia 30322, United States
| | | |
Collapse
|
50
|
Greer HM, Overton K, Ferguson MA, Spain EM, Darling LEO, Núñez ME, Volle CB. Extracellular Polymeric Substance Protects Some Cells in an Escherichia coli Biofilm from the Biomechanical Consequences of Treatment with Magainin 2. Microorganisms 2021; 9:microorganisms9050976. [PMID: 33946431 PMCID: PMC8147140 DOI: 10.3390/microorganisms9050976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial biofilms have long been recognized as a source of persistent infections and industrial contamination with their intransigence generally attributed to their protective layer of extracellular polymeric substances (EPS). EPS, consisting of secreted nucleic acids, proteins, and polysaccharides, make it difficult to fully eliminate biofilms by conventional chemical or physical means. Since most bacteria are capable of forming biofilms, understanding how biofilms respond to new antibiotic compounds and components of the immune system has important ramifications. Antimicrobial peptides (AMPs) are both potential novel antibiotic compounds and part of the immune response in many different organisms. Here, we use atomic force microscopy to investigate the biomechanical changes that occur in individual cells when a biofilm is exposed to the AMP magainin 2 (MAG2), which acts by permeabilizing bacterial membranes. While MAG2 is able to prevent biofilm initiation, cells in an established biofilm can withstand exposure to high concentrations of MAG2. Treated cells in the biofilm are classified into two distinct populations after treatment: one population of cells is indistinguishable from untreated cells, maintaining cellular turgor pressure and a smooth outer surface, and the second population of cells are softer than untreated cells and have a rough outer surface after treatment. Notably, the latter population is similar to planktonic cells treated with MAG2. The EPS likely reduces the local MAG2 concentration around the stiffer cells since once the EPS was enzymatically removed, all cells became softer and had rough outer surfaces. Thus, while MAG2 appears to have the same mechanism of action in biofilm cells as in planktonic ones, MAG2 cannot eradicate a biofilm unless coupled with the removal of the EPS.
Collapse
Affiliation(s)
- Helen M. Greer
- Department of Biology, Cottey College, Nevada, MO 64772, USA; (H.M.G.); (K.O.)
| | - Kanesha Overton
- Department of Biology, Cottey College, Nevada, MO 64772, USA; (H.M.G.); (K.O.)
| | - Megan A. Ferguson
- Department of Chemistry, State University of New York, New Paltz, NY 12561, USA;
| | - Eileen M. Spain
- Department of Chemistry, Occidental College, Los Angeles, CA 90041, USA;
| | - Louise E. O. Darling
- Department of Biological Sciences and Program in Biochemistry, Wellesley College, Wellesley, MA 02481, USA;
| | - Megan E. Núñez
- Department of Chemistry and Program in Biochemistry, Wellesley College, Wellesley, MA 02481, USA;
| | - Catherine B. Volle
- Departments of Biology and Chemistry, Cornell College, Mount Vernon, IA 52314, USA
- Correspondence: ; Tel.: +1-(319)-895-4413
| |
Collapse
|