1
|
Juza A, Kołodziej-Spirodek L, Gutkowski K, Partyka M, Dąbrowski M. Distinguishing exocrine pancreas disease-associated diabetes from type 2 diabetes based on anthropometric and metabolic parameters. World J Diabetes 2025; 16:95102. [DOI: 10.4239/wjd.v16.i2.95102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/28/2024] [Accepted: 10/29/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Adult-onset diabetes is most often considered to be type 2 diabetes. However, other types of diabetes can develop in adults, including exocrine pancreas disease-associated diabetes, also called type 3c diabetes. Differential diagnosis between these types of diabetes still remains a diagnostic challenge.
AIM To define anthropometric and laboratory markers that will allow for early diagnosis of pancreatic disease-associated diabetes.
METHODS The study group included 44 patients with pancreatogenic diabetes (26 with pancreatic cancer and 18 with chronic pancreatitis), while the control group consisted of 35 patients with type 2 diabetes. We analyzed several parameters, including sex, age, body mass index (BMI), fasting plasma glucose, fasting C-peptide and insulin with homeostasis model assessment of insulin resistance (HOMA-IR) index calculation, adrenomedullin, adiponectin and creatinine levels with epidermal growth factor receptor (eGFR) calculation. We also developed an equation, termed type 3c diabetes index, which utilized BMI, fasting insulin and adrenomedullin levels, and eGFR to better identify patients with type 3c diabetes.
RESULTS Compared to patients with type 2 diabetes, patients with pancreatogenic diabetes had significantly lower BMI (25.11 ± 4.87 kg/m2vs 30.83 ± 5.21 kg/m2), fasting C-peptide (0.81 ± 0.42 nmol/L vs 1.71 ± 0.80 nmol/L), insulin (76.81 ± 63.34 pmol/L vs 233.19 ± 164.51 pmol/L) and HOMA-IR index, despite similar fasting plasma glucose levels. Patients with pancreatogenic diabetes also had lower adrenomedullin levels (0.41 ± 0.25 ng/mL vs 0.63 ± 0.38 ng/mL) but higher adiponectin levels (13.08 ± 7.20 μg/mL vs 8.28 ± 4.01 μg/mL) and eGFR levels (100.53 ± 21.60 mL/min/1.73 m2vs 85.14 ± 19.24 mL/min/1.73 m2). Finally, patients with pancreatogenic diabetes had significantly lower Type 3c diabetes index values.
CONCLUSION Patients with pancreatogenic diabetes differ from patients with type 2 diabetes in anthropometric and laboratory parameters. The type 3c diabetes index had the highest discriminating value, above any single parameter.
Collapse
Affiliation(s)
- Anna Juza
- College of Medical Sciences, Institute of Medical Sciences, University of Rzeszów, Rzeszów 35-959, Poland
- Diabetic Outpatient Clinic & Department of Gastroenterology and Hepatology with the Subunit of Internal Diseases, University Clinical Hospital, Rzeszów 35-055, Poland
| | - Lilianna Kołodziej-Spirodek
- Diabetic Outpatient Clinic & Department of Gastroenterology and Hepatology with the Subunit of Internal Diseases, University Clinical Hospital, Rzeszów 35-055, Poland
| | - Krzysztof Gutkowski
- College of Medical Sciences, Institute of Medical Sciences, University of Rzeszów, Rzeszów 35-959, Poland
| | - Mariusz Partyka
- College of Medical Sciences, Institute of Medical Sciences, University of Rzeszów, Rzeszów 35-959, Poland
- Department of Internal Diseases, Nephrology and Endocrinology with the Nuclear Medicine Laboratory and the Dialysis Center & Endocrinology Outpatient Clinic, Clinical Provincial Hospital No. 2 in Rzeszów, Rzeszów 35-301, Poland
| | - Mariusz Dąbrowski
- College of Medical Sciences, Institute of Medical Sciences, University of Rzeszów, Rzeszów 35-959, Poland
| |
Collapse
|
2
|
Cruciat RC, Gazi G, Ismaiel A, Leucuta DC, Al Srouji N, Popa SL, Ismaiel M, Ensar D, Dumitrascu DL. Unlocking the potential of biomarkers: The promise of adrenomedullin and its precursors in diagnosing and assessing heart failure. Int J Cardiol 2025; 418:132659. [PMID: 39426419 DOI: 10.1016/j.ijcard.2024.132659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/09/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Several studies have examined the potential of adrenomedullin (ADM), pro-adrenomedullin (Pro-ADM), and mid-regional-pro-ADM (MR-Pro-ADM) as biomarkers for diagnosing and assessing the severity of heart failure (HF), with conflicting results. We aimed to investigate their diagnostic utility and their correlation with HF severity based on the New York Heart Association (NYHA) classification. METHODS We searched PubMed, EMBASE, and Scopus using a predefined search string. The quality assessment of included studies was conducted using the Newcastle Ottawa Scale (NOS), and the primary outcome was the mean difference (MD) in serum levels of ADM, Pro-ADM, and MR-Pro-ADM, in addition to the area under the curve (AUC). RESULTS A total of 28 articles fulfilled our inclusion criteria and were included in our qualitative and quantitative synthesis, with a total of 15,405 subjects. Significant MD in ADM levels in HF patients vs. controls (6.024 [95 % CI 1.691, 10.356]), NYHA I vs. controls (-1.202 [95 % CI -2.111, -0.292]), NYHA IV vs. controls (-7.536 [95 % CI -12.680, -2.393]), NYHA III vs. NYHA IV (-4.438 [95 % CI -7.612, -1.263]), and NYHA I-II vs NYHA III-IV (-2.351 [95 % CI -4.361, -0.341]) were observed. Moreover, a significant MD was observed in pro-ADM levels in NYHA I-II patients vs. controls (-0.960 [95 % CI -1.479, -0.440]), NYHA III-IV vs. controls (-1.979 [95 % CI -2.958, -1.000]), and NYHA I-II vs. NYHA III-IV (-0.966 [95 % CI -1.407, -0.526]). Furthermore, MR-Pro-ADM levels were significantly different in NYHA I-II vs. NYHA III-IV (-0.428 [95 % CI -0.492, -0.365]). MR-Pro-ADM predicted HF with an AUC of 0.781 (95 % CI 0.755, 0.806). CONCLUSIONS Among HF patients, there was a significant increase in ADM levels compared to control subjects, and these levels increased with the progression of NYHA classes. Similarly, both Pro-ADM and MR-Pro-ADM displayed higher concentrations in NYHA class III-IV HF patients compared to those in NYHA class I-II. However, MR-Pro-ADM exhibited lower accuracy in predicting HF compared to established biomarkers.
Collapse
Affiliation(s)
- Robert Cristian Cruciat
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Gabi Gazi
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Abdulrahman Ismaiel
- 2nd Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania.
| | - Daniel-Corneliu Leucuta
- Department of Medical Informatics and Biostatistics, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania.
| | - Nahlah Al Srouji
- 2nd Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Stefan-Lucian Popa
- 2nd Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania.
| | - Mohamed Ismaiel
- Department of General Surgery, Altnagelvin Hospital, Londonderry BT47 6LS, United Kingdom
| | - Dilara Ensar
- Department of Cardiology, Tallaght University Hospital, Dublin, Ireland
| | - Dan L Dumitrascu
- 2nd Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania.
| |
Collapse
|
3
|
Yang Z, Li H, Wu P, Li Q, Yu C, Wang D, Li W. Multi-biological functions of intermedin in diseases. Front Physiol 2023; 14:1233073. [PMID: 37745233 PMCID: PMC10511904 DOI: 10.3389/fphys.2023.1233073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Intermedin (IMD) is a member of the calcitonin gene-related peptide (CGRP)/calcitonin (CT) superfamily, and it is expressed extensively throughout the body. The typical receptors for IMD are complexes composed of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein (RAMP), which leads to a biased activation towards Gαs. As a diagnostic and prognostic biomarker, IMD regulates the initiation and metastasis of multiple tumors. Additionally, IMD functions as a proangiogenic factor that can restrain excessive vascular budding and facilitate the expansion of blood vessel lumen, ultimately resulting in the fusion of blood vessels. IMD has protective roles in various diseases, including ischemia-reperfusion injury, metabolic disease, cardiovascular diseases and inflammatory diseases. This review systematically elucidates IMD's expression, structure, related receptors and signal pathway, as well as its comprehensive functions in the context of acute kidney injury, obesity, diabetes, heart failure and sepsis. However, the precise formation process of IMD short peptides in vivo and their downstream signaling pathway have not been fully elucidated yet. Further in-depth studies are need to translate IMD research into clinical applications.
Collapse
Affiliation(s)
- Zhi Yang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Wu
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyan Li
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - ChunYan Yu
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Denian Wang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Li Z, Guo J, Bian Y, Zhang M. Intermedin protects thapsigargin‑induced endoplasmic reticulum stress in cardiomyocytes by modulating protein kinase A and sarco/endoplasmic reticulum Ca 2+‑ATPase. Mol Med Rep 2020; 23:107. [PMID: 33300086 PMCID: PMC7723158 DOI: 10.3892/mmr.2020.11746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Intermedin (IMD) is a calcitonin/calcitonin-related peptide that elicits cardioprotective effects in a variety of heart diseases, such as cardiac hypertrophy and heart failure. However, the molecular mechanism of IMD remains unclear. The present study investigated the effects of IMD on neonatal rat ventricular myocytes treated with thapsigargin. The results of the present study demonstrated that thapsigargin induced apoptosis in cardiomyocytes in a dose- and time-dependent manner. Thapsigargin induced endoplasmic reticulum stress, as determined by increased expression levels of 78-kDa glucose-regulated protein, C/EBP-homologous protein and caspase-12, which were dose-dependently attenuated by pretreatment with IMD. In addition, IMD treatment counteracted the thapsigargin-induced suppression of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity and protein expression levels, and cytoplasmic Ca2+ overload. IMD treatment also augmented the phosphorylation of phospholamban, which is a crucial regulator of SERCA. Additionally, treatment with the protein kinase A antagonist H-89 inhibited the IMD-mediated cardioprotective effects, including SERCA activity restoration, anti-Ca2+ overload, endoplasmic reticulum stress inhibition and antiapoptosis effects. In conclusion, the results of the present study suggested that IMD may protect cardiomyocytes against thapsigargin-induced endoplasmic reticulum stress and the associated apoptosis at least partly by activating the protein kinase A/SERCA pathway.
Collapse
Affiliation(s)
- Zhidong Li
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jia Guo
- Department of Cardiology, Shanxi Medical University First Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Yunfei Bian
- Department of Cardiology, Shanxi Medical University Second Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Mingsheng Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
5
|
Neuroprotection of Intermedin Against Cerebral Ischemia/Reperfusion Injury Through Cerebral Microcirculation Improvement and Apoptosis Inhibition. J Mol Neurosci 2020; 71:767-777. [PMID: 32910355 DOI: 10.1007/s12031-020-01697-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/01/2020] [Indexed: 01/06/2023]
Abstract
Ischemic stroke is the primary cause of disability and mortality worldwide. Ischemia/reperfusion (I/R)-induced microcirculatory dysfunction and organ injury generally occur after ischemic stroke. Several studies have shown that intermedin (IMD) has a regulating function on cerebral microcirculation and blood-brain barrier via relaxing cerebral vessels and improving the local blood supply after cerebral ischemia. However, a unified conclusion has not been reached, and the underlying mechanism remains unclear. To observe and analyze the changes of cerebral microcirculation perfusion of cerebral IRI by IMD post-treatment in the rats and further explore the mechanism underlying the beneficial effect of IMD on cerebral IRI. Thirty-nine rats were divided into three groups: sham, I/R, and I/R + IMD groups. After IMD ischemia post-treatment, the rat cerebral infarction rate and the degree of neurological deficit were evaluated by TTC staining and neurological function score; the changes in the amount of cerebral microcirculation implantation on the injured side of the rats were observed by laser Doppler; the pathological changes and cell ultrastructure of rat cortex and hippocampus were observed by HE staining and transmission electron microscopy; the neuron apoptosis in the rat cortex and hippocampus was detected by TUNEL staining and immunohistochemical staining. Impaired neurological function, abnormal cortical/hippocampal neuron morphology, and the proportion of cerebral infarction were significantly improved in the IMD group compared with the I/R group, which suggested a possible neuroprotective role of IMD. IMD treatment also increased the average perfusion of cerebral surface microcirculation in rats by astonished 42.7 times. Finally, IMD administration decreased the caspase-3- and Bax-positive cell numbers and apoptotic cell ratio. IMD has a significant protective effect on neuronal damage caused by cerebral I/R in rats by improving cerebral microcirculation and inhibiting apoptosis.
Collapse
|
6
|
Zhang LS, Liu Y, Chen Y, Ren JL, Zhang YR, Yu YR, Jia MZ, Ning ZP, Du J, Tang CS, Qi YF. Intermedin alleviates pathological cardiac remodeling by upregulating klotho. Pharmacol Res 2020; 159:104926. [PMID: 32502636 DOI: 10.1016/j.phrs.2020.104926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/26/2020] [Accepted: 05/10/2020] [Indexed: 11/19/2022]
Abstract
Cardiac remodeling is accompanied by cardiac hypertrophy, fibrosis, dysfunction, and eventually leading to heart failure. Intermedin (IMD), as a paracrine/autocrine peptide, has a protective effect in cardiovascular diseases. In this study, we elucidated the role and the underlying mechanism of IMD in pathological remodeling. Pathological remodeling mouse models were induced by abdominal aorta constriction for 4 weeks or angiotensin II (Ang II) infusion for 2 weeks in wildtype, IMD-overexpression, IMD-knockout and klotho-knockdown mice. Western blot, real-time PCR, histological staining, echocardiography and hemodynamics were used to detect the role of IMD in cardiac remodeling. Cardiac hypertrophy, fibrosis and dysfunction were significantly aggravated in IMD-knockout mice versus wildtype mice, and the expression of klotho was downregulated. Conversely, cardiac remodeling was alleviated in IMD-overexpression mice, and the expression of klotho was upregulated. Hypertension induced by Ang II infusion rather than abdominal aorta constriction was mitigated by IMD. However, the cardioprotective effect of IMD was blocked in klotho-knockdown mice. Similar results were found in cultured neonatal rat cardiomyocytes, which was pretreated with IMD before Ang II stimulation. Mechanistically, IMD inhibited the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and the activity of calcineurin to protect against cardiac hypertrophy through upregulating klotho in vivo and in vitro. Furthermore, peroxisome proliferator-activated receptor γ (PPARγ) might mediate IMD upregulating klotho. In conclusion, pathological remodeling may be alleviated by endogenous IMD, which inhibits the expression of calcineurin and p-CaMKII by upregulating klotho via the PPARγ pathway. It suggested that IMD might be a therapeutic target for heart disease.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Aorta, Abdominal/physiopathology
- Aorta, Abdominal/surgery
- Calcineurin/metabolism
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cells, Cultured
- Constriction
- Disease Models, Animal
- Fibrosis
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Klotho Proteins
- Mice, Inbred C57BL
- Mice, Knockout
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Neuropeptides/genetics
- Neuropeptides/metabolism
- PPAR gamma/metabolism
- Peptide Hormones/pharmacology
- Phosphorylation
- Rats, Sprague-Dawley
- Signal Transduction
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Yan Liu
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Ministry of Education, Capital Medical University, Beijing, 100029, China
| | - Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Zhong-Ping Ning
- Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Ministry of Education, Capital Medical University, Beijing, 100029, China
| | - Chao-Shu Tang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100083, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China.
| |
Collapse
|
7
|
Holmes D, Corr M, Thomas G, Harbinson M, Campbell M, Spiers P, Bell D. Protective effects of intermedin/adrenomedullin-2 in a cellular model of human pulmonary arterial hypertension. Peptides 2020; 126:170267. [PMID: 32017948 DOI: 10.1016/j.peptides.2020.170267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/18/2022]
Abstract
Proliferation of pulmonary fibroblasts (PF) and distal migration of smooth muscle cells (PSM) are hallmarks of pulmonary arterial hypertension (PAH). Intermedin/adrenomedullin-2 (IMD/AM2) belongs to the Calcitonin Gene-Related Peptide (CGRP)/Adrenomedullin (AM) superfamily. These peptides act via Calcitonin-Like Receptors (CLR) combined with one of three Receptor activity-modifying proteins (RAMPs). IMD/AM2 is a potent pulmonary vasodilator in animal studies. The aim was to describe expression of IMD/AM2, AM and receptor components in human pulmonary vascular cells and to elucidate effects of IMD/AM2 on human PSM migration and PF proliferation. Gene expression was detected by immunofluorescence, immunoblotting and qRT-PCR. Normotension and hypertension were simulated by applying pulsatile mechanical stretch (Flexcell® apparatus). Viable cell numbers were determined by dye exclusion. PSM chemotaxis was measured via Dunn chamber. IMD/AM2 protein was co-expressed with AM and their receptor components in pulmonary artery and microvascular endothelial (PAEC, PMVEC) and non-endothelial cells (PF, PSM), and localised to vesicles. IMD/AM2 was secreted under basal conditions, most abundantly from PF and PMVEC. Secretion from PF and PSM was enhanced by stretch. IMD/AM2 mRNA expression increased in response to hypertensive stretch of PSM. IMD/AM2 inhibited PDGF (10-7 M)-mediated PSM migration maximally at 3 × 10-10 M and PF proliferation maximally at 3 × 10-9 M. Angiotensin II (5 × 10-8 M), normotensive and hypertensive stretch augmented PF proliferation. IMD/AM2 (10-9 M) abolished the proliferative effects of Angiotensin II and normotensive stretch and attenuated the proliferative effect of hypertensive stretch alone and combined with angiotensin II. These findings indicate an important counter-regulatory role for IMD/AM2 in PAH.
Collapse
Affiliation(s)
- David Holmes
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom
| | - Michael Corr
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom
| | - Gavin Thomas
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom
| | - Mark Harbinson
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom
| | - Malcolm Campbell
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom
| | - Paul Spiers
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom
| | - David Bell
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom.
| |
Collapse
|
8
|
Wang Y, Wu Z, Tian J, Mi Y, Ren X, Kang J, Zhang W, Zhou X, Wang G, Li R. Intermedin protects HUVECs from ischemia reperfusion injury via Wnt/β-catenin signaling pathway. Ren Fail 2019; 41:159-166. [PMID: 30931679 PMCID: PMC6450471 DOI: 10.1080/0886022x.2019.1587468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Intermedin (IMD) is a member of the calcitonin gene-related peptide (CGRP) superfamily and a pro-angiogenic factor. In the present study, we identified activation of the Wnt/β-catenin signaling pathway by IMD. Adding CoCl2 HUVECs was used to establish an in vitro model. The migration of HUVECs was measured by wound healing assays and transwell migration assays. Capillary formation was measured using tube formation assays. Immunocytochemistry (ICC) analysis was used to evaluate VEGF and RAMP2 expression in HUVECs. The relevant signaling molecules were detected with western blot. Our study shows that IMD could promote H/R impaired HUVECs migration and tube formation in vitro. On the other hand, inhibition of Wnt/β-catenin signaling led to the suppression of this promotion of migration and tube formation. This result suggests that Wnt/β-catenin signaling is correlated to IMD induced angiogenesis. Analysis of results from ICC assays indicated that IMD works through increasing levels of VEGF and RAMP2. Meanwhile, the Wnt/β-catenin signaling specific inhibitor IWR-1-endo was shown to down-regulate VEGF and RAMP2 expression. Western blot results further confirmed the signaling mechanism by which IMD promotes angiogenesis. Thus, Wnt/β-catenin signaling plays an important role in IMD induced neovascularization. The data further suggest that the PI3K axis contributes positively downstream.
Collapse
Affiliation(s)
- Yanhong Wang
- a Department of Microbiology and Immunology , Shanxi Medical University , Taiyuan , China.,b Department of Nephrology , The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute , Taiyuan , China
| | - Zhijing Wu
- a Department of Microbiology and Immunology , Shanxi Medical University , Taiyuan , China
| | - Jihua Tian
- a Department of Microbiology and Immunology , Shanxi Medical University , Taiyuan , China
| | - Yang Mi
- c Department of Urology , First Hospital of Shanxi Medical University , Taiyuan , China
| | - Xiaojun Ren
- d Department of Nephrology , Shanxi Dayi Hospital of Shanxi Medical University , Taiyuan , China
| | - Jing Kang
- a Department of Microbiology and Immunology , Shanxi Medical University , Taiyuan , China
| | - Wan Zhang
- d Department of Nephrology , Shanxi Dayi Hospital of Shanxi Medical University , Taiyuan , China
| | - Xiaoshuang Zhou
- b Department of Nephrology , The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute , Taiyuan , China
| | - Guiqin Wang
- a Department of Microbiology and Immunology , Shanxi Medical University , Taiyuan , China
| | - Rongshan Li
- b Department of Nephrology , The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute , Taiyuan , China
| |
Collapse
|
9
|
Roehrkasse AM, Booe JM, Lee SM, Warner ML, Pioszak AA. Structure-function analyses reveal a triple β-turn receptor-bound conformation of adrenomedullin 2/intermedin and enable peptide antagonist design. J Biol Chem 2018; 293:15840-15854. [PMID: 30139742 DOI: 10.1074/jbc.ra118.005062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/20/2018] [Indexed: 12/26/2022] Open
Abstract
The cardioprotective vasodilator peptide adrenomedullin 2/intermedin (AM2/IMD) and the related adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) signal through three heterodimeric receptors comprising the calcitonin receptor-like class B G protein-coupled receptor (CLR) and a variable receptor activity-modifying protein (RAMP1, -2, or -3) that determines ligand selectivity. The CGRP receptor (RAMP1:CLR) favors CGRP binding, whereas the AM1 (RAMP2:CLR) and AM2 (RAMP3:CLR) receptors favor AM binding. How AM2/IMD binds the receptors and how RAMPs modulate its binding is unknown. Here, we show that AM2/IMD binds the three purified RAMP-CLR extracellular domain (ECD) complexes with a selectivity profile that is distinct from those of CGRP and AM. AM2/IMD bound all three ECD complexes but preferred the CGRP and AM2 receptor complexes. A 2.05 Å resolution crystal structure of an AM2/IMD antagonist fragment-bound RAMP1-CLR ECD complex revealed that AM2/IMD binds the complex through a unique triple β-turn conformation that was confirmed by peptide and receptor mutagenesis. Comparisons of the receptor-bound conformations of AM2/IMD, AM, and a high-affinity CGRP analog revealed differences that may have implications for biased signaling. Guided by the structure, enhanced-affinity AM2/IMD antagonist variants were developed, including one that discriminates the AM1 and AM2 receptors with ∼40-fold difference in affinities and one stabilized by an intramolecular disulfide bond. These results reveal differences in how the three peptides engage the receptors, inform development of AM2/IMD-based pharmacological tools and therapeutics, and provide insights into RAMP modulation of receptor pharmacology.
Collapse
Affiliation(s)
- Amanda M Roehrkasse
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jason M Booe
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Sang-Min Lee
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Margaret L Warner
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Augen A Pioszak
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
10
|
Metwalley KA, Farghaly HS, Sherief T. Plasma adrenomedullin level in children with obesity: relationship to left ventricular function. World J Pediatr 2018; 14:84-91. [PMID: 29411326 DOI: 10.1007/s12519-017-0106-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Obese children are at increased risk for abnormal cardiac structure and function. Little is known about adrenomedullin (AM), a cytokine produced in various organs and tissues, as a biomarker of cardiac hypertrophy in obese children. This study aimed to assess the plasma AM levels in a cohort of obese children and its relationship to left ventricular (LV) functions. METHODS The study included 60 obese children and 60 non-obese children matched for age and gender as control group. Blood pressure, serum lipid profile, fasting glucose, insulin and plasma AM and the homeostatic model assessment of insulin resistance (HOMA-IR) were measured. Cardiac dimensions and LV functions were assessed using conventional echocardiography. RESULTS Compared to control subjects, obese children had higher blood pressure (P = 0.01), insulin (P = 0.001), HOMA-IR (P = 0.001), and AM (P = 0.001). Moreover, obese children had higher LV mass index (LVMI) (P = 0.001), indicating LV hypertrophy; prolonged isovolumic relaxation times (P = 0.01), prolonged mitral deceleration time (DcT) (P = 0.01) and reduced ratio of mitral E-to-mitral A-wave peak velocity (P = 0.01), indicating LV diastolic dysfunction. Laboratory abnormalities were only present in children with LV hypertrophy. In multivariate analysis in obese children with LV hypertrophy, AM levels were positively correlated with LVMI [odds ratio (OR) 1.14, 95% confidence interval (Cl) 1.08-1.13, P = 0.0001] and mitral DcT (OR 2.25, 95% CI 1.15-2.05, P = 0.01) in the presence of higher blood pressure and HOMA-IR. A cut-off value of AM at 52 pg/mL could differentiate obese children with and without left ventricular hypertrophy at a sensitivity of 94.32% and specificity of 92.45%. CONCLUSIONS Plasma AM levels may be elevated in obese children particularly those with LV hypertrophy and is correlated with higher blood pressure and insulin resistance. Measurement of plasma AM levels in obese children may help to identify those at high risk of developing LV hypertrophy and dysfunction.
Collapse
Affiliation(s)
- Kotb Abbass Metwalley
- Pediatric Endocrinology Unit, Department of Pediatrics, Faculty of Medicine, Assiut University, B.O, Assiut, 71111, Egypt.
| | - Hekma Saad Farghaly
- Pediatric Endocrinology Unit, Department of Pediatrics, Faculty of Medicine, Assiut University, B.O, Assiut, 71111, Egypt
| | - Tahra Sherief
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
11
|
Zhang SY, Xu MJ, Wang X. Adrenomedullin 2/intermedin: a putative drug candidate for treatment of cardiometabolic diseases. Br J Pharmacol 2017; 175:1230-1240. [PMID: 28407200 DOI: 10.1111/bph.13814] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/15/2017] [Accepted: 03/30/2017] [Indexed: 11/28/2022] Open
Abstract
Adrenomedullin (ADM) 2/intermedin (IMD) is a short peptide that belongs to the CGRP superfamily. Although it shares receptors with CGRP, ADM and amylin, ADM2 has significant and unique functions in the cardiovascular system. In the past decade, the cardiovascular effect of ADM2 has been carefully analysed. In this review, progress in understanding the effects of ADM2 on the cardiovascular system and its protective role in cardiometabolic diseases are summarized. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Song-Yang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Ming-Jiang Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| |
Collapse
|
12
|
D'Elia E, Iacovoni A, Vaduganathan M, Lorini FL, Perlini S, Senni M. Neprilysin inhibition in heart failure: mechanisms and substrates beyond modulating natriuretic peptides. Eur J Heart Fail 2017; 19:710-717. [PMID: 28326642 DOI: 10.1002/ejhf.799] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 12/28/2022] Open
Abstract
The autonomic nervous system, the renin-angiotensin-aldosterone system, and the natriuretic peptide system represent critical regulatory pathways in heart failure and as such have been the major targets of pharmacological development. The introduction and approval of angiotensin receptor neprilysin inhibitors (ARNi) have broadened the available drug treatments of patients with chronic heart failure with reduced ejection fraction. Neprilysin catalyses the degradation of a number of vasodilator peptides, including the natriuretic peptides, bradykinin, substance P, and adrenomedullin, as well as vasoconstrictor peptides, including endothelin-1 and angiotensin I and II. We review the multiple, potentially competing, substrates for neprilysin inhibition, and the resultant composite clinical effects of ARNi therapy. A mechanistic understanding of this novel therapeutic class may provide important insights into the expected on-target and off-target effects when this agent is more widely prescribed.
Collapse
Affiliation(s)
- Emilia D'Elia
- Cardiovascular Department, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Attilio Iacovoni
- Cardiovascular Department, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Muthiah Vaduganathan
- Brigham and Women's Hospital Heart & Vascular Center and Harvard Medical School, Boston, MA, USA
| | | | - Stefano Perlini
- Internal Medicine Department, IRCCS Polyclinic San Matteo, University of Pavia, Pavia, Italy
| | - Michele Senni
- Cardiovascular Department, Hospital Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
13
|
García-Ponce A, Chánez Paredes S, Castro Ochoa KF, Schnoor M. Regulation of endothelial and epithelial barrier functions by peptide hormones of the adrenomedullin family. Tissue Barriers 2016; 4:e1228439. [PMID: 28123925 DOI: 10.1080/21688370.2016.1228439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 01/16/2023] Open
Abstract
The correct regulation of tissue barriers is of utmost importance for health. Barrier dysfunction accompanies inflammatory disorders and, if not controlled properly, can contribute to the development of chronic diseases. Tissue barriers are formed by monolayers of epithelial cells that separate organs from their environment, and endothelial cells that cover the vasculature, thus separating the blood stream from underlying tissues. Cells within the monolayers are connected by intercellular junctions that are linked by adaptor molecules to the cytoskeleton, and the regulation of these interactions is critical for the maintenance of tissue barriers. Many endogenous and exogenous molecules are known to regulate barrier functions in both ways. Proinflammatory cytokines weaken the barrier, whereas anti-inflammatory mediators stabilize barriers. Adrenomedullin (ADM) and intermedin (IMD) are endogenous peptide hormones of the same family that are produced and secreted by many cell types during physiologic and pathologic conditions. They activate certain G-protein-coupled receptor complexes to regulate many cellular processes such as cytokine production, actin dynamics and junction stability. In this review, we summarize current knowledge about the barrier-stabilizing effects of ADM and IMD in health and disease.
Collapse
Affiliation(s)
- Alexander García-Ponce
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Sandra Chánez Paredes
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Karla Fabiola Castro Ochoa
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| |
Collapse
|