1
|
Qin YJ, Zhang P, Zhang P, Li J, Yang Q, Sun JL, Liang YZ, Wang LL, Zhang LZ, Han Y. The impact of endogenous N/OFQ on DPN: Insights into lower limb blood flow regulation in rats. Neuropeptides 2025; 109:102492. [PMID: 39644710 DOI: 10.1016/j.npep.2024.102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, often accompanied by impaired vascular endothelial function in the lower limbs. This dysfunction is characterized by a reduced vasodilatory response, leading to decreased blood flow in the lower limbs and ultimately contributing to the development of diabetic peripheral neuropathy. To delve deeper into this pathological process, the study employed bioinformatics to identify and analyze genes highly active in DPN. The investigation revealed that Membrane metallo-endopeptidase (MME) was effectively mitigated by its antagonist. Male Sprague-Dawley (SD) rats served as the model to systematically explore the intrinsic connection among the nociceptible/orphanin FQ-N/OFQ receptor (N/OFQ-NOP) system, femoral artery blood flow in the lower extremities, MME, and DPN. The rats were randomized into two groups: a control group and a DPN group induced by a single intraperitoneal injection of 55 mg/kg streptozotocin (STZ), with 6 rats in each group. The findings indicated that compared to the control group, the DPN group exhibited a significant reduction in femoral artery blood flow. This was accompanied by a notable increase in serum N/OFQ concentration, heightened expression of opioid-related nociceptive protein receptor 1 (OPRL1) and MME in femoral artery tissues of the lower limbs, and an elevated sciatic nerve stimulation threshold. These results suggest that the serum N/OFQ level in DPN rats is increased, which may promote the occurrence of peripheral neuropathy by up regulating MME and reducing peripheral flow distribution.
Collapse
Affiliation(s)
- Yuan-Jing Qin
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Po Zhang
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Peng Zhang
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Jing Li
- Department of Endocrine, Central Hospital of China Railway 12th Bureau Group, 182 Yingze Road, Taiyuan 030001, Shanxi, China
| | - Qixing Yang
- Department of Anesthesiology, Linfen People's Hospital, Linfen 041000, China
| | - Jun-Li Sun
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Yu-Zhang Liang
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Li-Li Wang
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Lin-Zhong Zhang
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Yi Han
- College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China.
| |
Collapse
|
2
|
Al-Hassany L, Acarsoy C, Ikram MK, Bos D, MaassenVanDenBrink A. Sex-Specific Association of Cardiovascular Risk Factors With Migraine: The Population-Based Rotterdam Study. Neurology 2024; 103:e209700. [PMID: 39083723 PMCID: PMC11319068 DOI: 10.1212/wnl.0000000000209700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Although several lines of evidence suggest a link between migraine and cardiovascular events, less is known about the association between cardiovascular risk factors (CVRFs) and migraine. This knowledge is clinically important to provide directions on mitigating the cardiovascular risk in patients with migraine. We hypothesized that CVRFs are associated with a higher migraine prevalence. Therefore, our primary objective was to investigate sex-specific associations between CVRFs and lifetime prevalence of migraine. METHODS We performed cross-sectional analyses within an ongoing population-based cohort study (Rotterdam Study), including middle-aged and elderly individuals. By means of (structured) interviews, physical examinations, and blood sampling, we obtained information on the lifetime prevalence of migraine and the following traditional CVRFs: current smoking, obesity, hypercholesterolemia, hypertension, and diabetes mellitus. Similarly, we obtained information on quantitative component data on these CVRFs, including pack-years of smoking, lipid levels, systolic and diastolic blood pressure (BP), body mass index, and fasting glucose levels. Patients with migraine were age-matched to individuals without migraine, and we performed conditional logistic regression analyses to investigate the sex-stratified association of CVRFs with migraine. RESULTS In total, 7,266 community-dwelling middle-aged and elderly persons were included (median age 66.6 [IQR 56.4-74.8] years, 57.5% females). The lifetime prevalence of migraine was 14.9%. In females, current smoking (odds ratio (OR) 0.72, 95% CI 0.58-0.90), more pack-years (OR per SD increase 0.91, 95% CI 0.84-1.00), diabetes mellitus (OR 0.74, 95% CI 0.56-0.98), and higher fasting glucose levels (OR per SD increase in glucose 0.90, 95% CI 0.82 - 0.98) were all related to a lower migraine prevalence while a higher diastolic BP related to a higher migraine prevalence (OR per SD increase 1.16, 95% CI 1.04-1.29). In males, no significant associations between CVRFs and migraine were observed. DISCUSSION Traditional CVRFs were either unrelated or inversely related to migraine in middle-aged and elderly individuals, but only in females. In males, we did not find any association between CVRFs and migraine. Because only an increased diastolic BP was related to a higher migraine prevalence in females, our study contributes to the hypothesis that migraine is not directly associated with traditional CVRFs. Future studies are warranted to extrapolate these findings to younger populations.
Collapse
Affiliation(s)
- Linda Al-Hassany
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (L.A-H., A.M.), and Departments of Epidemiology (C.A., M.K.I., D.B.), Neurology (M.K.I.), Radiology and Nuclear Medicine (D.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Cevdet Acarsoy
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (L.A-H., A.M.), and Departments of Epidemiology (C.A., M.K.I., D.B.), Neurology (M.K.I.), Radiology and Nuclear Medicine (D.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M Kamran Ikram
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (L.A-H., A.M.), and Departments of Epidemiology (C.A., M.K.I., D.B.), Neurology (M.K.I.), Radiology and Nuclear Medicine (D.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Daniel Bos
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (L.A-H., A.M.), and Departments of Epidemiology (C.A., M.K.I., D.B.), Neurology (M.K.I.), Radiology and Nuclear Medicine (D.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Antoinette MaassenVanDenBrink
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (L.A-H., A.M.), and Departments of Epidemiology (C.A., M.K.I., D.B.), Neurology (M.K.I.), Radiology and Nuclear Medicine (D.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Wu J, Fang J, Yuan X, Ma L, Zheng L, Lin Q, An X, Wang Z, Ma Q. Associations of type 2 diabetes and the risk of migraine in Chinese populations. DIABETES & METABOLISM 2024; 50:101518. [PMID: 38272255 DOI: 10.1016/j.diabet.2024.101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 01/07/2024] [Indexed: 01/27/2024]
Abstract
AIM We aimed to explore the relationship between type 2 diabetes mellitus (T2DM) and the incidence rate of migraine in a Chinese population, and analyze the clinical characteristics of migraine patients with T2DM. METHODS Data on the study cohort of 9873 individuals were obtained from the China Health and Retirement Longitudinal Study (CHARLS). The incidence rate of migraine from 2015 to 2018 was assessed. The Cox proportional hazards model was used to estimate hazard ratios (HRs) and their 95% confidence intervals (CIs) for the relationship between T2DM and the incidence of migraine. In addition, a cross-sectional study including 168 migraine patients was conducted in Xiamen, China. Migraine patients were grouped according to their T2DM status. Multivariable linear regression models were used to estimate βs and their 95% CIs for the relationship between migraine characteristics and T2DM. RESULTS The cumulative incidence rate of migraine from 2015 to 2018 in the T2DM group and control group was 7.26% [6.04%.8.65%] and 8.91% [8.27%.9.58%], respectively. The risk of migraine in patients with T2DM was reduced by 21% (HR 0.79 [0.65;0.95]) compared to patients with no T2DM after adjustment for confounders. The cross-sectional study showed that the presence of T2DM significantly reduced migraine frequency and relieved migraine intensity. CONCLUSION This was the first study to validate that T2DM reduced the risk of migraine in a Chinese population cohort. Patients with migraine and T2DM may experience significant relief from their headache symptoms. Carrying out relevant mechanistic research may help to identify new targets for migraine treatment and contribute to further understanding the impact of T2DM or related metabolic disorders on an individual's health.
Collapse
Affiliation(s)
- Jielong Wu
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; School of Medicine, Xiamen University, China; National Institute for Data Science in Health and Medicine, Xiamen University, China
| | - Jie Fang
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; The School of Clinical Medicine, Fujian Medical University, China; Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, China; Xiamen Key Laboratory of Brain Center, China; Xiamen Medical Quality Control Center for Neurology, China; Fujian Provincial Clinical Research Center for Brain Diseases, China; Xiamen Clinical Research Center for Neurological Diseases, China
| | - Xiaodong Yuan
- Department of Gynecology of Xiamen Maternal and Child Health Care Hospital, China
| | - Lingshan Ma
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; School of Medicine, Xiamen University, China; National Institute for Data Science in Health and Medicine, Xiamen University, China
| | - Liangcheng Zheng
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; The School of Clinical Medicine, Fujian Medical University, China; Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, China; Xiamen Key Laboratory of Brain Center, China; Xiamen Medical Quality Control Center for Neurology, China; Fujian Provincial Clinical Research Center for Brain Diseases, China; Xiamen Clinical Research Center for Neurological Diseases, China
| | - Qing Lin
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; The School of Clinical Medicine, Fujian Medical University, China; Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, China; Xiamen Key Laboratory of Brain Center, China; Xiamen Medical Quality Control Center for Neurology, China; Fujian Provincial Clinical Research Center for Brain Diseases, China; Xiamen Clinical Research Center for Neurological Diseases, China
| | - Xingkai An
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; The School of Clinical Medicine, Fujian Medical University, China; Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, China; Xiamen Key Laboratory of Brain Center, China; Xiamen Medical Quality Control Center for Neurology, China; Fujian Provincial Clinical Research Center for Brain Diseases, China; Xiamen Clinical Research Center for Neurological Diseases, China
| | - Zhanxiang Wang
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, China; Xiamen Key Laboratory of Brain Center, China; Xiamen Medical Quality Control Center for Neurology, China; Fujian Provincial Clinical Research Center for Brain Diseases, China; Xiamen Clinical Research Center for Neurological Diseases, China; School of Medicine, Xiamen University, China; National Institute for Data Science in Health and Medicine, Xiamen University, China; Department of Neurosurgery and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qilin Ma
- Department of Neurology and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; The School of Clinical Medicine, Fujian Medical University, China; Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, China; Xiamen Key Laboratory of Brain Center, China; Xiamen Medical Quality Control Center for Neurology, China; Fujian Provincial Clinical Research Center for Brain Diseases, China; Xiamen Clinical Research Center for Neurological Diseases, China; School of Medicine, Xiamen University, China; National Institute for Data Science in Health and Medicine, Xiamen University, China.
| |
Collapse
|
4
|
Ma X, Guo Z, Li MR, Chen L, Zhao X, Wang TQ, Sun T. Epidural administration of large dose of opioid μ receptor agonist may impair cardiac functions and myocardial viability via desensitizing transient receptor potential vanilloid 1. Toxicol Appl Pharmacol 2024; 483:116802. [PMID: 38184280 DOI: 10.1016/j.taap.2023.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
The incidence of postoperative myocardial injury remains high as the underlying pathogenesis is still unknown. The dorsal root ganglion (DRG) neurons express transient receptor potential vanilloid 1 (TRPV1) and its downstream effector, calcitonin gene-related peptide (CGRP) participating in transmitting pain signals and cardiac protection. Opioids remain a mainstay therapeutic option for moderate-to-severe pain relief clinically, as a critical component of multimodal postoperative analgesia via intravenous and epidural delivery. Evidence indicates the interaction of opioids and TRPV1 activities in DRG neurons. Here, we verify the potential impairment of myocardial viability by epidural usage of opioids in postoperative analgesia. We found that large dose of epidural morphine (50 μg) significantly worsened the cardiac performance (+dP/dtmax reduction by 11% and -dP/dtmax elevation by 24%, all P < 0.001), the myocardial infarct size (morphine vs Control, 0.54 ± 0.09 IS/AAR vs. 0.23 ± 0.06 IS/AAR, P < 0.001) and reduced CGRP in the myocardium (morphine vs. Control, 9.34 ± 2.24 pg/mg vs. 21.23 ± 4.32 pg/mg, P < 0.001), while induced definite suppression of nociception in the postoperative animals. It was demonstrated that activation of μ-opioid receptor (μ-OPR) induced desensitization of TRPV1 by attenuating phosphorylation of the channel in the dorsal root ganglion neurons, via inhibiting the accumulation of cAMP. CGRP may attenuated the buildup of ROS and the reduction of mitochondrial membrane potential in cardiomyocytes induced by hypoxia/reoxygenation. The findings of this study indicate that epidurally giving large dose of μ-OPR agonist may aggravate myocardial injury by inhibiting the activity of TRPV1/CGRP pathway.
Collapse
Affiliation(s)
- Xiang Ma
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan 030001, Shanxi, China
| | - Zheng Guo
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan 030001, Shanxi, China; Department of Anaesthesia, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), National Education Commission, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan 030001, Shanxi, China.
| | - Mu-Rong Li
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan 030001, Shanxi, China
| | - Lu Chen
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan 030001, Shanxi, China
| | - Xing Zhao
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan 030001, Shanxi, China
| | - Tian-Qi Wang
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan 030001, Shanxi, China
| | - Tao Sun
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan 030001, Shanxi, China
| |
Collapse
|
5
|
Kokabi F, Ebrahimi S, Mirzavi F, Ghiasi Nooghabi N, Hashemi SF, Hashemy SI. The neuropeptide substance P/neurokinin-1 receptor system and diabetes: From mechanism to therapy. Biofactors 2023. [PMID: 36651605 DOI: 10.1002/biof.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
Diabetes is a significant public health issue known as the world's fastest-growing disease condition. It is characterized by persistent hyperglycemia and subsequent chronic complications leading to organ dysfunction and, ultimately, the failure of target organs. Substance P (SP) is an undecapeptide that belongs to the family of tachykinin (TK) peptides. The SP-mediated activation of the neurokinin 1 receptor (NK1R) regulates many pathophysiological processes in the body. There is also a relation between the SP/NK1R system and diabetic processes. Importantly, deregulated expression of SP has been reported in diabetes and diabetes-associated chronic complications. SP can induce both diabetogenic and antidiabetogenic effects and thus affect the pathology of diabetes destructively or protectively. Here, we review the current knowledge of the functional relevance of the SP/NK1R system in diabetes pathogenesis and its exploitation for diabetes therapy. A comprehensive understanding of the role of the SP/NK1R system in diabetes is expected to shed further light on developing new therapeutic possibilities for diabetes and its associated chronic conditions.
Collapse
Affiliation(s)
- Fariba Kokabi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | | | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Tokumoto M, Nakasa T, Shirakawa Y, Nekomoto A, Ikuta Y, Ishikawa M, Miyaki S, Adachi N. The role of substance P on maintaining ligament homeostasis by inhibiting endochondral ossification during osteoarthritis progression. Connect Tissue Res 2023; 64:82-92. [PMID: 35856812 DOI: 10.1080/03008207.2022.2099847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Osteoarthritis (OA) is characterized by the degeneration of various tissues, including ligaments. However, pathological changes such as chondrogenesis and ossification in ligaments during OA are still unclear. Substance P (SP), a neuropeptide, has various functions including bone metabolism. This study aimed to analyze the expression and function of SP in OA ligaments, and the therapeutic potential of SP agonists in OA mice. MATERIALS AND METHODS Expressions of SP, SOX9, and MMP13 were histologically analyzed in the posterior cruciate ligament (PCL) in humans with OA and Senescence-accelerated mouse-prone 8 (SAMP8) mice as a spontaneous OA model. The effect of SP agonists on chondrogenesis was evaluated using human ligament cells. Finally, SP agonists were administered intraperitoneally to destabilized medial meniscus (DMM) mice, and the PCL was histologically evaluated. RESULTS In PCL of humans and mice, the expression of SP, SOX9, and MMP13 was upregulated as OA progressed, but their expression was downregulated in severe degeneration. SP and SOX9 were co-expressed in chondrocyte-like cells. In ligament cells, SP agonists downregulated SOX9, RUNX2, and COL10A1. On evaluating chondrogenesis in ligament cells, pellet diameter was reduced in those treated with the SP agonists compared to those untreated. Administration of SP agonists ameliorated PCL degeneration in DMM mice. The Osteoarthritis Research Society and ligament scores in mice with SP agonists were significantly lower than those without SP agonists. CONCLUSIONS SP plays an important role in maintaining ligament homeostasis by inhibiting endochondral ossification during OA progression. Targeting SP has therapeutic potential for preventing ligament degeneration.
Collapse
Affiliation(s)
- Maya Tokumoto
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Yoshiko Shirakawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akinori Nekomoto
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasunari Ikuta
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Artificial Joints and Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
7
|
Genetic Overlap Analysis Identifies a Shared Etiology between Migraine and Headache with Type 2 Diabetes. Genes (Basel) 2022; 13:genes13101845. [PMID: 36292730 PMCID: PMC9601333 DOI: 10.3390/genes13101845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Migraine and headache frequently co-occur with type 2 diabetes (T2D), suggesting a shared aetiology between the two conditions. We used genome-wide association study (GWAS) data to investigate the genetic overlap and causal relationship between migraine and headache with T2D. Using linkage disequilibrium score regression (LDSC), we found a significant genetic correlation between migraine and T2D (rg = 0.06, p = 1.37 × 10−5) and between headache and T2D (rg = 0.07, p = 3.0 × 10−4). Using pairwise GWAS (GWAS-PW) analysis, we identified 11 pleiotropic regions between migraine and T2D and 5 pleiotropic regions between headache and T2D. Cross-trait SNP meta-analysis identified 23 novel SNP loci (Pmeta < 5 × 10−8) associated with migraine and T2D, and three novel SNP loci associated with headache and T2D. Cross-trait gene-based overlap analysis identified 33 genes significantly associated (Pgene-based < 3.85 × 10−6) with migraine and T2D, and 11 genes associated with headache and T2D, with 7 genes (EHMT2, SLC44A4, PLEKHA1, CFDP1, TMEM170A, CHST6, and BCAR1) common between them. There was also a significant overlap of genes nominally associated (Pgene-based < 0.05) with both migraine and T2D (Pbinomial-test = 2.83 × 10−46) and headache and T2D (Pbinomial-test = 4.08 × 10−29). Mendelian randomisation (MR) analyses did not provide consistent evidence for a causal relationship between migraine and T2D. However, we found headache was causally associated (inverse-variance weighted, ORIVW = 0.90, Pivw = 7 × 10−3) with T2D. Our findings robustly confirm the comorbidity of migraine and headache with T2D, with shared genetically controlled biological mechanisms contributing to their co-occurrence, and evidence for a causal relationship between headache and T2D.
Collapse
|
8
|
Yu FSX, Lee PSY, Yang L, Gao N, Zhang Y, Ljubimov AV, Yang E, Zhou Q, Xie L. The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Prog Retin Eye Res 2022; 89:101039. [PMID: 34991965 PMCID: PMC9250553 DOI: 10.1016/j.preteyeres.2021.101039] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes, with several underlying pathophysiological mechanisms, some of which are still uncertain. The cornea is an avascular tissue and sensitive to hyperglycemia, resulting in several diabetic corneal complications including delayed epithelial wound healing, recurrent erosions, neuropathy, loss of sensitivity, and tear film changes. The manifestation of DPN in the cornea is referred to as diabetic neurotrophic keratopathy (DNK). Recent studies have revealed that disturbed epithelial-neural-immune cell interactions are a major cause of DNK. The epithelium is supplied by a dense network of sensory nerve endings and dendritic cell processes, and it secretes growth/neurotrophic factors and cytokines to nourish these neighboring cells. In turn, sensory nerve endings release neuropeptides to suppress inflammation and promote epithelial wound healing, while resident immune cells provide neurotrophic and growth factors to support neuronal and epithelial cells, respectively. Diabetes greatly perturbs these interdependencies, resulting in suppressed epithelial proliferation, sensory neuropathy, and a decreased density of dendritic cells. Clinically, this results in a markedly delayed wound healing and impaired sensory nerve regeneration in response to insult and injury. Current treatments for DPN and DNK largely focus on managing the severe complications of the disease. Cell-based therapies hold promise for providing more effective treatment for diabetic keratopathy and corneal ulcers.
Collapse
Affiliation(s)
- Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Patrick S Y Lee
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Alexander V Ljubimov
- Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ellen Yang
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
9
|
Lei Y, Li XX, Guo Z. Impact of timing of morphine treatment on infarct size in experimental animal model of acute myocardial ischemia and reperfusion. Eur J Pharmacol 2022; 928:175094. [PMID: 35714691 DOI: 10.1016/j.ejphar.2022.175094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Morphine is generally used in clinical treatment for the patients who have not been effectively alleviated for chest pain after the treatment with nitrites or who contraindicate nitrite drugs. However, it was reported that the treatment with morphine in acute myocardial infarction or acute coronary artery syndromes induced increase in myocardial injury even increase of the mortality of the patients. After comparing the reported laboratory studies showing the cardioprotective effects and the clinical observations presenting the harmful consequences, we query whether the timing of the morphine treatment makes the difference in the prognosis of the ischemic/infarct myocardium. We found that intravenous injections of morphine (0.3 mg/kg) at 15 min before the acute myocardial ischemia, at 5 min and 20 min or 60 min after ligation of the coronary artery in separate groups of rats scheduled for acute myocardial ischemia, for 30 min or 90 min followed by reperfusion for 120 min, induced different results, reduction in the size of infarction, no effect and increases of the infarct sizes, respectively. The opioid μ- and kappa-receptors mediated the detrimental effect of morphine on the myocardial injury. The findings of this study suggest that administration of morphine may cause different consequences when used at different time in the pathology of acute myocardial ischemia and reperfusion. The underlying mechanisms in the pathology of acute myocardial ischemia warrant further study.
Collapse
Affiliation(s)
- Yi Lei
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China
| | - Xiao-Xi Li
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China; Department of Anaesthesia, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Zheng Guo
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China; Department of Anaesthesia, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), National Education Commission, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
10
|
Widiapradja A, Kasparian AO, McCaffrey SL, Kolb LL, Imig JD, Lacey JL, Melendez GC, Levick SP. Replacement of Lost Substance P Reduces Fibrosis in the Diabetic Heart by Preventing Adverse Fibroblast and Macrophage Phenotype Changes. Cells 2021; 10:2659. [PMID: 34685639 PMCID: PMC8534147 DOI: 10.3390/cells10102659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023] Open
Abstract
Reduced levels of the sensory nerve neuropeptide substance P (SP) have been reported in the diabetic rat heart, the consequence being a loss of cardioprotection in response to ischemic post-conditioning. We considered whether this loss of SP also predisposes the heart to non-ischemic diabetic cardiomyopathy in the form of fibrosis and hypertrophy. We report that diabetic Leprdb/db mice have reduced serum SP and that administration of exogenous replacement SP ameliorated cardiac fibrosis. Cardiac hypertrophy did not occur in Leprdb/db mice. Cardiac fibroblasts exposed to high glucose converted to a myofibroblast phenotype and produced excess extracellular matrix proteins; this was prevented by the presence of SP in the culture media. Cardiac fibroblasts exposed to high glucose produced increased amounts of the receptor for advanced glycation end products, reactive oxygen species and inflammatory cytokines, all of which were prevented by SP. Cultured macrophages assumed an M1 pro-inflammatory phenotype in response to high glucose as indicated by increased TNF-α, CCL2, and IL-6. SP promoted a shift to the reparative M2 macrophage phenotype characterized by arginase-1 and IL-10. Leprdb/db mice showed increased left ventricular M1 phenotype macrophages and an increase in the M1/M2 ratio. Replacement SP in Leprdb/db mice restored a favorable M1 to M2 balance. Together these findings indicate that a loss of SP predisposes the diabetic heart to developing fibrosis. The anti-fibrotic actions of replacement SP involve direct effects on cardiac fibroblasts and macrophages to oppose adverse phenotype changes. This study identifies the potential of replacement SP to treat diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Alexander Widiapradja
- Kolling Institute, St Leonards, NSW 2065, Australia; (A.W.); (A.O.K.); (S.L.M.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Ainsley O. Kasparian
- Kolling Institute, St Leonards, NSW 2065, Australia; (A.W.); (A.O.K.); (S.L.M.)
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Samuel L. McCaffrey
- Kolling Institute, St Leonards, NSW 2065, Australia; (A.W.); (A.O.K.); (S.L.M.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Lauren L. Kolb
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (L.L.K.); (J.D.I.)
| | - John D. Imig
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (L.L.K.); (J.D.I.)
| | - Jessica L. Lacey
- Section on Cardiology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (J.L.L.); (G.C.M.)
- Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Giselle C. Melendez
- Section on Cardiology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (J.L.L.); (G.C.M.)
- Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Scott P. Levick
- Kolling Institute, St Leonards, NSW 2065, Australia; (A.W.); (A.O.K.); (S.L.M.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
11
|
Rivera-Mancilla E, Al-Hassany L, Villalón CM, MaassenVanDenBrink A. Metabolic Aspects of Migraine: Association With Obesity and Diabetes Mellitus. Front Neurol 2021; 12:686398. [PMID: 34177788 PMCID: PMC8219973 DOI: 10.3389/fneur.2021.686398] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
Migraine is a disabling neurovascular disorder, characterized by moderate to severe unilateral headaches, nausea, photophobia, and/or phonophobia, with a higher prevalence in women than in men, which can drastically affect the quality of life of migraine patients. In addition, this chronic disorder is related with metabolic comorbidities associated with the patient's lifestyle, including obesity and diabetes mellitus (DM). Beyond the personal and socioeconomic impact caused by migraine, obesity and DM, it has been suggested that these metabolic disorders seem to be related to migraine since: (i) they are a risk factor for developing cardiovascular disorders or chronic diseases; (ii) they can be influenced by genetic and environmental risk factors; and (iii) while clinical and epidemiological studies suggest that obesity is a risk factor for migraine, DM (i.e., type 1 and type 2 DM) have been reported to be either a protective or a risk factor in migraine. On this basis, and given the high worldwide prevalence of migraine, obesity, and DM, this article provides a narrative review of the current literature related to the association between the etiology and pathophysiology of migraine and these metabolic disorders, considering lifestyle aspects, as well as the possible involvement of neurotransmitters, neuropeptides, and/or sex hormones. While a link between migraine and metabolic disorders has been suggested, many studies are contradictory and the mechanisms involved in this association are not yet sufficiently established. Therefore, further research should be focused on understanding the possible mechanisms involved.
Collapse
Affiliation(s)
- Eduardo Rivera-Mancilla
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Linda Al-Hassany
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
12
|
Fu Y, Zhou JD, Sang XY, Zhao QT. Gualou-Xiebai-Banxia decoction protects against type II diabetes with acute myocardial ischemia by attenuating oxidative stress and apoptosis via PI3K/Akt/eNOS signaling. Chin J Nat Med 2021; 19:161-169. [PMID: 33781449 DOI: 10.1016/s1875-5364(21)60017-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 01/08/2023]
Abstract
Gualou-Xiebai-Banxia decoction has a long history of medical use for treating cardiovascular diseases in China. In this study, we investigated the protective effect and underlying mechanisms GXB in type II diabetes with acute myocardial ischemia (T2DM-AMI) rats. We hypothesized that GXB may display its protective effect on T2DM-AMI by reducing endothelial progenitor cells (EPCs) apoptosisviaactivating PI3K (phosphatidyl inositol 3-kinase)/Akt (serine/threonine protein kinase B)/eNOS (endothelial nitric oxide synthase) signaling. Rats were challenged with a high-fat diet and intraperitoneal injection of streptozotocin to induce a model of type II diabetes mellitus (T2DM) and coronary ligation to induce acute myocardial infarction (AMI). Changes in metabolites were assessed via enzyme-linked immunoassay and biochemical examination. The number and apoptosis rate of EPCs in peripheral blood were detected by flow cytometry. Target mRNAs and proteins in EPCs were analyzed by RT-PCR and Western blot analysis. The results demonstrated that GXB treatment decreased T2DM-AMI-associated changes in plasma fasting blood glucose, muscular enzymes, and blood lipids, and reduced oxidative stress. Furthermore, EPC apoptosis was increased in T2DM-AMI rats and was associated with decreased mRNA and protein levels of PI3K, Akt, and eNOS compared to the controls. Conversely, T2DM-AMI rats treated with GXB exhibited more circulating EPCs and downregulated levels of cell apoptosis, combined with increased mRNA and protein levels of PI3K, Akt, and eNOS compared to those of untreated T2DM-AMI rats. Our study showed that GXB treatment mitigated EPC apoptosis and promoted PI3K/Akt/eNOS signaling in T2DM-AMI rats.
Collapse
Affiliation(s)
- Yao Fu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ji-Dong Zhou
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiao-Yu Sang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qi-Tao Zhao
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
13
|
Zhang XY, Guo Z, Li TP, Sun T. Dietary capsaicin normalizes CGRP peptidergic DRG neurons in experimental diabetic peripheral neuropathy. Sci Rep 2021; 11:1704. [PMID: 33462325 PMCID: PMC7814129 DOI: 10.1038/s41598-021-81427-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetic sensory neuropathy leads to impairment of peripheral sensory nerves and downregulation of calcitonin gene-related peptide (CGRP) in a functionally specific subset of peripheral sensory neurons mediating pain. Whether CGRP plays a neuroprotective role in peripheral sensory nerve is unclear. We evaluated alterations in noxious thermal sensation and downregulation of CGRP in the 8 weeks after induction of diabetes in rats. We supplemented capsaicin in the diet of the animals to upregulate CGRP and reversed the downregulation of the neuropeptide in the dorsal root ganglion (DRG) neurons dissociated from the diabetic animals, via gene transfection and exogenous CGRP, to test disease-preventing and disease-limiting effects of CGRP. Significant preservation of the nociceptive sensation, CGRP in spinal cord and DRG neurons, and number of CGRP-expressing neurons was found in the diabetic animals given capsaicin. Improvement in the survival of the neurons and the outgrowth of neurites was achieved in the neurons transfected by LV-CGRP or by exogenous CGRP, paralleling the correction of abnormalities of intracellular reactive oxygen species and mitochondrial transmembrane potentials. The results suggest that downregulation of CGRP impairs viability, regeneration and function of peripheral sensory neurons while capsaicin normalizes the CGRP peptidergic DRG neurons and function of the sensory nerves.
Collapse
Affiliation(s)
- Xiao-Yi Zhang
- Department of Anesthesiology, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China
| | - Zheng Guo
- Department of Anesthesiology, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China. .,Department of Anesthesiology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China. .,Key Laboratory of Cellular Physiology (Shanxi Medical University), National Education Commission, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China.
| | - Tu-Ping Li
- Department of Anesthesiology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Tao Sun
- Department of Anesthesiology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
14
|
Bencsik P, Gömöri K, Szabados T, Sántha P, Helyes Z, Jancsó G, Ferdinandy P, Görbe A. Myocardial ischaemia reperfusion injury and cardioprotection in the presence of sensory neuropathy: Therapeutic options. Br J Pharmacol 2020; 177:5336-5356. [PMID: 32059259 PMCID: PMC7680004 DOI: 10.1111/bph.15021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
During the last decades, mortality from acute myocardial infarction has been dramatically reduced. However, the incidence of post-infarction heart failure is still increasing. Cardioprotection by ischaemic conditioning had been discovered more than three decades ago. Its clinical translation, however, is still an unmet need. This is mainly due to the disrupted cardioprotective signalling pathways in the presence of different cardiovascular risk factors, co-morbidities and the medication being taken. Sensory neuropathy is one of the co-morbidities that has been shown to interfere with cardioprotection. In the present review, we summarize the diverse aetiology of sensory neuropathies and the mechanisms by which these neuropathies may interfere with ischaemic heart disease and cardioprotective signalling. Finally, we suggest future therapeutic options targeting both ischaemic heart and sensory neuropathy simultaneously. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Péter Bencsik
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
| | - Kamilla Gömöri
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
| | - Tamara Szabados
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
| | - Péter Sántha
- Department of Physiology, Faculty of MedicineUniversity of SzegedSzegedHungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical SchoolUniversity of PécsPécsHungary
- Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research CentreUniversity of PécsPécsHungary
| | - Gábor Jancsó
- Department of Physiology, Faculty of MedicineUniversity of SzegedSzegedHungary
| | - Péter Ferdinandy
- Pharmahungary GroupSzegedHungary
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| |
Collapse
|
15
|
Guo Y, Chen H, Jiang Y, Yuan Y, Zhang Q, Guo Q, Gong P. CGRP regulates the dysfunction of peri-implant angiogenesis and osseointegration in streptozotocin-induced diabetic rats. Bone 2020; 139:115464. [PMID: 32504826 DOI: 10.1016/j.bone.2020.115464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 02/08/2023]
Abstract
Diabetes is a chronic systematic disease which results in neuropathy and dysfunctional bone metabolism and microcirculation. Calcitonin gene related peptide (CGRP) is an important neuropeptide that is involved in bone formation and vascular response. This study aimed to elucidate the role of CGRP in diabetic peri-implant angiogenesis and osteogenesis, which is yet to be reported. In vivo, we injected streptozotocin into SD rats to establish an experimental diabetes model. We then implanted 1 mm × 5 mm Ti implants into rat tibiae and injected lentivirus into the bone marrow cavity to overexpress or silence the peri-implant CGRP expression. We also applied overexpression lentivirus and silencing short hair RNA (shRNA) in rat bone marrow mesenchymal stem cells (BMSCs) to investigate the biological effects of CGRP in vitro. Through the investigation of diabetic neurons, blood, and peri-implant bone, we could observe that diabetes led to decreased synthesis and expression of CGRP, and high CGRP expression were only seen in peri-implant tissues in the early-to-middle phase of diabetic bone integration. Microfil perfusion followed by micro-CT analysis showed that the overexpression of CGRP enhanced peri-implant angiogenesis via increased vessel volume and thickness. Regarding osteogenesis, CGRP was found to improve the impaired osseointegration, as observed through micro-CT reconstruction and H&E staining. Similarly, overCGRP alleviated the hyperglycemia-triggered decrease in mineralization, and rescued ALP activity and the mRNA and protein expression of VEGF-A, ALP, and OPN. CGRP also attenuated the high glucose-induced production of reactive oxygen species (ROS). Our results demonstrate the potential promotive role of CGRP in early-to-middle phase of osseointegration, as CGRP could regulate the diabetes-induced dysfunctions in peri-implant angiogenesis and osseointegration. Our study provides a new insight into the diabetic peri-implant vasculature and the potential positive effect of CGRP on diabetic peri-implant vessels and bone.
Collapse
Affiliation(s)
- Yanjun Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huilu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Effect of ropivacaine on peripheral neuropathy in streptozocin diabetes-induced rats through TRPV1-CGRP pathway. Biosci Rep 2020; 39:220953. [PMID: 31661547 PMCID: PMC6851513 DOI: 10.1042/bsr20190817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
Objective To determine the effect of ropivacaine on peripheral neuropathy in diabetic rats and its possible mechanism. Methods Forty-eight Sprague–Dawley rats were randomly divided into six groups: nondiabetic control group, nondiabetic group A (0.25% ropivacaine), nondiabetic group B (0.75% ropivacaine), diabetic control group (diabetic peripheral neuropathy (DPN) +artificial cerebrospinal fluid), diabetic group A (DPN+0.25% ropivacaine), and diabetic group B (DPN + 0.75% ropivacaine), with eight rats in each group. Within an hour of the last administration, the sciatic motor nerve conduction velocity (MNCV) of each group was measured, and the morphological changes of rat sciatic nerve were observed by HE, Weil’s staining and electron microscopy. The expression of transient receptor potential vanilloid (TRPV1) in the spinal cord dorsal horn of rats was analyzed by immunohistochemistry, and the expression of Calcitonin gene-related peptide (CGRP) protein in the spinal cord was analyzed by Western blot. Results Compared with the nondiabetic control group, elevated blood glucose, decreased weight and reduced average mechanical withdrawal threshold (MWT), additionally, the sciatic nerves showed significantly slowed conduction velocity (both P<0.001) and damaged pathological structure, the expression of TRPV1 and CGRP were decreased (both P<0.001) in the diabetic groups. Compared with the diabetic control group, down-regulation of TRPV1 and CGRP in spinal cord was significant for the diabetic groups A and B treated with 0.25 and 0.75% ropivacaine, the higher concentration of ropivacaine correlated with a greater change. Conclusion Ropivacaine can significantly block sciatic nerve conduction velocity in DPN rats in a concentration-dependent manner, which may be related to the expression of the TRPV1-CGRP pathway.
Collapse
|
17
|
Fagherazzi G, El Fatouhi D, Fournier A, Gusto G, Mancini FR, Balkau B, Boutron-Ruault MC, Kurth T, Bonnet F. Associations Between Migraine and Type 2 Diabetes in Women: Findings From the E3N Cohort Study. JAMA Neurol 2020; 76:257-263. [PMID: 30556831 DOI: 10.1001/jamaneurol.2018.3960] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Importance Little is known about the associations between migraine and type 2 diabetes and the temporality of the association between these 2 diseases. Objective To evaluate the association between migraine and type 2 diabetes incidence as well as the evolution of the prevalence of active migraine before and after type 2 diabetes diagnosis. Design, Setting, and Participants We used data from the E3N cohort study, a French prospective population-based study initiated in 1990 on a cohort of women born between 1925 and 1950. The E3N study participants are insured by a health insurance plan that mostly covers teachers. From the eligible women in the E3N study, we included those who completed the 2002 follow-up questionnaire with information available on migraine. We then excluded prevalent cases of type 2 diabetes, leaving a final sample of women who were followed up between 2004 and 2014. All potential occurrences of type 2 diabetes were identified through a drug reimbursement database. Statistical analyses were performed in March 2018. Exposures Self-reported migraine occurrence. Main Outcomes and Measures Pharmacologically treated type 2 diabetes. Results From the 98 995 women in the study, 76 403 women completed the 2002 follow-up survey. Of these, 2156 were excluded because they had type 2 diabetes, leaving 74 247 women. Participants had a mean (SD) age of 61 (6) years at baseline, and all were free of type 2 diabetes. During 10 years of follow-up, 2372 incident type 2 diabetes cases occurred. A lower risk of type 2 diabetes was observed for women with active migraine compared with women with no migraine history (univariate hazard ratio, 0.80 [95% CI, 0.67-0.96], multivariable-adjusted hazard ratio, 0.70 [95% CI, 0.58-0.85]). We also observed a linear decrease in active migraine prevalence from 22% (95% CI, 16%-27%) to 11% (95% CI, 10%-12%) during the 24 years prior to diabetes diagnosis, after adjustment for potential type 2 diabetes risk factors. A plateau of migraine prevalence around 11% was then observed for 22 years after diagnosis. Conclusions and Relevance We observed a lower risk of developing type 2 diabetes for women with active migraine and a decrease in active migraine prevalence prior to diabetes diagnosis. Further targeted research should focus on understanding the mechanisms involved in explaining these findings.
Collapse
Affiliation(s)
- Guy Fagherazzi
- Center for Research in Epidemiology and Population Health, UMR 1018, Institut National de la Santé et de la Recherche Médicale (INSERM) U1018, Paris-South Paris Saclay University, Gustave Roussy Institute, Villejuif, France.,Paris-South Paris Saclay University, Villejuif, France
| | - Douae El Fatouhi
- Center for Research in Epidemiology and Population Health, UMR 1018, Institut National de la Santé et de la Recherche Médicale (INSERM) U1018, Paris-South Paris Saclay University, Gustave Roussy Institute, Villejuif, France.,Paris-South Paris Saclay University, Villejuif, France
| | - Agnès Fournier
- Center for Research in Epidemiology and Population Health, UMR 1018, Institut National de la Santé et de la Recherche Médicale (INSERM) U1018, Paris-South Paris Saclay University, Gustave Roussy Institute, Villejuif, France.,Paris-South Paris Saclay University, Villejuif, France
| | - Gaelle Gusto
- Center for Research in Epidemiology and Population Health, UMR 1018, Institut National de la Santé et de la Recherche Médicale (INSERM) U1018, Paris-South Paris Saclay University, Gustave Roussy Institute, Villejuif, France.,Paris-South Paris Saclay University, Villejuif, France
| | - Francesca Romana Mancini
- Center for Research in Epidemiology and Population Health, UMR 1018, Institut National de la Santé et de la Recherche Médicale (INSERM) U1018, Paris-South Paris Saclay University, Gustave Roussy Institute, Villejuif, France.,Paris-South Paris Saclay University, Villejuif, France
| | - Beverley Balkau
- Center for Research in Epidemiology and Population Health, UMR 1018, Institut National de la Santé et de la Recherche Médicale (INSERM) U1018, Paris-South Paris Saclay University, Gustave Roussy Institute, Villejuif, France.,Paris-South Paris Saclay University, Villejuif, France.,Center for Research in Epidemiology and Population Health, UMR 1018, Institut National de la Santé et de la Recherche Médicale (INSERM), Versailles Saint Quentin University, Villejuif, France
| | - Marie-Christine Boutron-Ruault
- Center for Research in Epidemiology and Population Health, UMR 1018, Institut National de la Santé et de la Recherche Médicale (INSERM) U1018, Paris-South Paris Saclay University, Gustave Roussy Institute, Villejuif, France.,Paris-South Paris Saclay University, Villejuif, France
| | - Tobias Kurth
- Institute of Public Health Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fabrice Bonnet
- Center for Research in Epidemiology and Population Health, UMR 1018, Institut National de la Santé et de la Recherche Médicale (INSERM) U1018, Paris-South Paris Saclay University, Gustave Roussy Institute, Villejuif, France.,Paris-South Paris Saclay University, Villejuif, France.,Centre Hospitalier Universitaire de Rennes, Université de Rennes 1, Rennes, France
| |
Collapse
|
18
|
Wang Q, Li ZX, Li YJ, He ZG, Chen YL, Feng MH, Li SY, Wu DZ, Xiang HB. Identification of lncRNA and mRNA expression profiles in rat spinal cords at various time‑points following cardiac ischemia/reperfusion. Int J Mol Med 2019; 43:2361-2375. [PMID: 30942426 PMCID: PMC6488167 DOI: 10.3892/ijmm.2019.4151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/20/2019] [Indexed: 12/21/2022] Open
Abstract
The identification of the expression patterns of long non-coding RNAs (lncRNAs) and mRNAs in the spinal cord under normal and cardiac ischemia/reperfusion (I/R) conditions is essential for understanding the genetic mechanisms underlying the pathogenesis of cardiac I/R injury. The present study used high-throughput RNA sequencing to investigate differential gene and lncRNA expression patterns in the spinal cords of rats during I/R-induced cardiac injury. Male Sprague Dawley rats were assigned to the following groups: i) Control; ii) 2 h (2 h post-reperfusion); and iii) 0.5 h (0.5 h post-reperfusion). Further mRNA/lncRNA microarray analysis revealed that the expression profiles of lncRNA and mRNA in the spinal cords differed markedly between the control and 2 h groups, and in total 7,980 differentially expressed (>2-fold) lncRNAs (234 upregulated, 7,746 downregulated) and 3,428 mRNAs (767 upregulated, 2,661 downregulated) were identified. Reverse transcription-quantitative polymerase chain reaction analysis was performed to determine the expression patterns of several lncRNAs. The results indicated that the expression levels of lncRNA NONRATT025386 were significantly upregulated in the 2 and 0.5 h groups when compared with those in the control group, whereas the expression levels of NONRATT016113, NONRATT018298 and NONRATT018300 were elevated in the 2 h group compared with those in the control group; however, there was no statistically significant difference between the 0.5 h and control groups. Furthermore, the expression of lncRNA NONRATT002188 was significantly downregulated in the 0.5 and 2 h groups when compared with the control group. The present study determined the expression pattern of lncRNAs and mRNAs in rat spinal cords during cardiac I/R. It was suggested that lncRNAs and mRNAs from spinal cords may be novel therapeutic targets for the treatment of I/R-induced cardiac injury.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu-Juan Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Gang He
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ying-Le Chen
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Mao-Hui Feng
- Department of Oncology, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, Hubei 430071, P.R. China
| | - Shun-Yuan Li
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Duo-Zhi Wu
- Department of Anesthesiology, People's Hospital of Hainan Province, Haikou, Hainan 570311, P.R. China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
19
|
Affiliation(s)
- Amy A. Gelfand
- Child and Adolescent Headache Program, UCSF Benioff Children’s Hospital, University of California, San Francisco
- Associate Editor, JAMA Neurology
| | - Elizabeth Loder
- Division of Headache, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
20
|
Levick SP. Understanding the Complex Roles of Substance P in the Diseased Heart. Heart Lung Circ 2018; 27:1394-1397. [PMID: 30262153 DOI: 10.1016/j.hlc.2018.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 08/30/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Scott P Levick
- Kolling Institute for Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
21
|
Guo Z, Liu N, Chen L, Zhao X, Li MR. Independent roles of CGRP in cardioprotection and hemodynamic regulation in ischemic postconditioning. Eur J Pharmacol 2018; 828:18-25. [DOI: 10.1016/j.ejphar.2018.03.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 11/26/2022]
|