1
|
Luan X, Chen P, Miao L, Yuan X, Yu C, Di G. Ferroptosis in organ ischemia-reperfusion injuries: recent advancements and strategies. Mol Cell Biochem 2025; 480:19-41. [PMID: 38556592 DOI: 10.1007/s11010-024-04978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/24/2024] [Indexed: 04/02/2024]
Abstract
Ferroptosis is a newly discovered type of regulated cell death participated in multiple diseases. Different from other classical cell death programs such as necrosis and apoptosis, ferroptosis involving iron-catalyzed lipid peroxidation is characterized by Fe2+ accumulation and mitochondria alterations. The phenomenon of oxidative stress following organ ischemia-reperfusion (I/R) has recently garnered attention for its connection to the onset of ferroptosis and subsequent reperfusion injuries. This article provides a comprehensive overview underlying the mechanisms of ferroptosis, with a further focus on the latest research progress regarding interference with ferroptotic pathways in organ I/R injuries, such as intestine, lung, heart, kidney, liver, and brain. Understanding the links between ferroptosis and I/R injury may inform potential therapeutic strategies and targeted agents.
Collapse
Affiliation(s)
- Xiaoyu Luan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Longyu Miao
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xinying Yuan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Chaoqun Yu
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Zhu Y, Zhang P, Huo X, Ling Y, Lv X, Lin S, Song H. Single-cell and spatial transcriptomics reveal apelin/APJ pathway's role in microvessel formation and tumour progression in hepatocellular carcinoma. J Cell Mol Med 2024; 28:e70152. [PMID: 39434201 PMCID: PMC11493554 DOI: 10.1111/jcmm.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
The apelin receptor (APJ) is a key player in tumour angiogenesis, but its role in hepatocellular carcinoma (HCC) remains unclear. This study aims to elucidate the function of the apelin/APJ pathway in HCC using a multi-omics approach and identify potential therapeutic biomarkers. Differentially expressed genes related to the apelin/APJ axis were identified from bulk transcriptomics to reveal HCC-associated disparities. Single-cell and spatial transcriptomics were used to localize and analyse the function of these genes. Machine learning models were constructed to predict outcomes based on apelin/APJ expression, and experimental validation was conducted to explore the pathway's impact on HCC angiogenesis. Single cell analysis revealed an overexpression of APJ/Aplin in the endothelium. The stemness of endothelial cell (EC) with high apelin/APJ was enhanced, as well as the expression of TGFb, oxidative stresses and PI3K/AKT pathway genes. Spatial transcriptomics confirmed that EC populations with high APJ scores were enriched within the tumour. Machine learning models showed high prognostic accuracy. High APJ expression was linked to worse outcomes (p = 0.001), and AUC values were high (1 year, 3 year, 5 year) (0.95, 0.97, 0.98). Immune suppression and non-responsiveness of immune therapy were also seen in high-risk groups. The experimental validation showed that silencing apelin reduced angiogenesis (p < 0.05), endothelial proliferation, decreased expression of ANG2, KLF2, VEGFA and lower ERK1/2 phosphorylation. Apelin may serve as a potential therapeutic target in HCC, given its role in promoting tumour angiogenesis and poor patient outcomes.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/blood supply
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/blood supply
- Humans
- Apelin Receptors/metabolism
- Apelin Receptors/genetics
- Apelin/genetics
- Apelin/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Gene Expression Regulation, Neoplastic
- Transcriptome
- Single-Cell Analysis
- Signal Transduction
- Microvessels/pathology
- Microvessels/metabolism
- Gene Expression Profiling
- Disease Progression
- Prognosis
- Cell Line, Tumor
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Male
Collapse
Affiliation(s)
- Yongfu Zhu
- The First Department of OncologyThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Department of Dr. Hu Guojun Specialist ClinicThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Pengcheng Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zheiiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xingxing Huo
- Experimental Center of Clinical Research, Scientific Research DepartmentThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Yi Ling
- The First Clinical Medical CollegeAnhui University of Chinese MedicineHefeiAnhuiChina
| | - Xiang Lv
- Department of OncologyShanghai Traditional Chinese Medicine HospitalShanghaiChina
| | - Shengyou Lin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zheiiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Hang Song
- School of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| |
Collapse
|
3
|
Hemat Jouy S, Mohan S, Scichilone G, Mostafa A, Mahmoud AM. Adipokines in the Crosstalk between Adipose Tissues and Other Organs: Implications in Cardiometabolic Diseases. Biomedicines 2024; 12:2129. [PMID: 39335642 PMCID: PMC11428859 DOI: 10.3390/biomedicines12092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Adipose tissue was previously regarded as a dormant organ for lipid storage until the identification of adiponectin and leptin in the early 1990s. This revelation unveiled the dynamic endocrine function of adipose tissue, which has expanded further. Adipose tissue has emerged in recent decades as a multifunctional organ that plays a significant role in energy metabolism and homeostasis. Currently, it is evident that adipose tissue primarily performs its function by secreting a diverse array of signaling molecules known as adipokines. Apart from their pivotal function in energy expenditure and metabolism regulation, these adipokines exert significant influence over a multitude of biological processes, including but not limited to inflammation, thermoregulation, immune response, vascular function, and insulin sensitivity. Adipokines are pivotal in regulating numerous biological processes within adipose tissue and facilitating communication between adipose tissue and various organs, including the brain, gut, pancreas, endothelial cells, liver, muscle, and more. Dysregulated adipokines have been implicated in several metabolic diseases, like obesity and diabetes, as well as cardiovascular diseases. In this article, we attempted to describe the significance of adipokines in developing metabolic and cardiovascular diseases and highlight their role in the crosstalk between adipose tissues and other tissues and organs.
Collapse
Affiliation(s)
- Shaghayegh Hemat Jouy
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran;
| | - Sukrutha Mohan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Giorgia Scichilone
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Amro Mostafa
- Department of Pharmacology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Abeer M. Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Song Q, Wang X, Cao Z, Xin C, Zhang J, Li S. The Apelin/APJ System: A Potential Therapeutic Target for Sepsis. J Inflamm Res 2024; 17:313-330. [PMID: 38250143 PMCID: PMC10800090 DOI: 10.2147/jir.s436169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024] Open
Abstract
Apelin is the native ligand for the G protein-coupled receptor APJ. Numerous studies have demonstrated that the Apelin/APJ system has positive inotropic, anti-inflammatory, and anti-apoptotic effects and regulates fluid homeostasis. The Apelin/APJ system has been demonstrated to play a protective role in sepsis and may serve as a promising therapeutic target for the treatment of sepsis. Better understanding of the mechanisms of the effects of the Apelin/APJ system will aid in the development of novel drugs for the treatment of sepsis. In this review, we provide a brief overview of the physiological role of the Apelin/APJ system and its role in sepsis.
Collapse
Affiliation(s)
- Qing Song
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Xi Wang
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Zhenhuan Cao
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Chun Xin
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Jingyuan Zhang
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Suwei Li
- Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| |
Collapse
|
5
|
Zhang KL, Li SM, Hou JY, Hong YH, Chen XX, Zhou CQ, Wu H, Zheng GH, Zeng CT, Wu HD, Fu JY, Wang T. Elabela, a Novel Peptide, Exerts Neuroprotective Effects Against Ischemic Stroke Through the APJ/miR-124-3p/CTDSP1/AKT Pathway. Cell Mol Neurobiol 2023:10.1007/s10571-023-01352-6. [PMID: 37106272 DOI: 10.1007/s10571-023-01352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Elabela (ELA), which is the second endogenous peptide ligand of the apelin receptor (APJ) to be discovered, has been widely studied for potential use as a therapeutic peptide. However, its role in ischemic stroke (IS), which is a leading cause of disability and death worldwide and has limited therapeutic options, is uncertain. The aim of the present study was to investigate the beneficial effects of ELA on neuron survival after ischemia and the underlying molecular mechanisms. Primary cortical neurons were isolated from the cerebral cortex of pregnant C57BL/6J mice. Flow cytometry and immunofluorescence showed that ELA inhibited oxygen-glucose deprivation (OGD) -induced apoptosis and axonal damage in vitro. Additionally, analysis of the Gene Expression Omnibus database revealed that the expression of microRNA-124-3p (miR-124-3p) was decreased in blood samples from patients with IS, while the expression of C-terminal domain small phosphatase 1 (CTDSP1) was increased. These results indicated that miR-124-3p and CTDSP1 were related to ischemic stroke, and there might be a negative regulatory relationship between them. Then, we found that ELA significantly elevated miR-124-3p expression, suppressed CTDSP1 expression, and increased p-AKT expression by binding to the APJ receptor under OGD in vitro. A dual-luciferase reporter assay confirmed that CTDSP1 was a direct target of miR-124-3p. Furthermore, adenovirus-mediated overexpression of CTDSP1 exacerbated neuronal apoptosis and axonal damage and suppressed AKT phosphorylation, while treatment with ELA or miR-124-3p mimics reversed these effects. In conclusion, these results indicated that ELA could alleviate neuronal apoptosis and axonal damage by upregulating miR-124-3p and activating the CTDSP1/AKT signaling pathway. This study, for the first time, verified the protective effect of ELA against neuronal injury after ischemia and revealed the underlying mechanisms. We demonstrated the potential for the use of ELA as a therapeutic agent in the treatment of ischemic stroke.
Collapse
Grants
- No. JCYJ20190808101405466, JCYJ20210324115003008, JCYJ20220530144404009 the Shenzhen Fundamental Research Program
- No. JCYJ20190808101405466, JCYJ20210324115003008, JCYJ20220530144404009 the Shenzhen Fundamental Research Program
- No. FTWS2019001, FTWS2021016, FTWS2022018 the Futian District Health and Public Welfare Research Project of Shenzhen City
- No. FTWS2019001, FTWS2021016, FTWS2022018 the Futian District Health and Public Welfare Research Project of Shenzhen City
- No. 81070125, 81270213, 81670306 National Natural Science Foundation of China
- No. 2010B031600032, 2014A020211002 the Science and Technology Foundation in Guangdong Province
- No. 2017A030313503 the National Natural Science Foundation of Guangdong Province
- No. 201806020084 the Science and Technology Foundation in Guangzhou City
- No. 13ykzd16, 17ykjc18 the Fundamental Research Funds for the Central Universities
Collapse
Affiliation(s)
- Kang-Long Zhang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Shuang-Mei Li
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Jing-Yu Hou
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Ying-Hui Hong
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Xu-Xiang Chen
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Chang-Qing Zhou
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Hao Wu
- Department of Emergency, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Guang-Hui Zheng
- Department of Emergency, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Chao-Tao Zeng
- Department of Emergency, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Hai-Dong Wu
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Jia-Ying Fu
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Tong Wang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Özsoyler İ, Uçak HA, Badak TO, Çakallıoğlu A, Bayraktar M, Arslan AS. The impact of the apelinergic system in coronary collateral formation. TURK GOGUS KALP DAMAR CERRAHISI DERGISI 2023; 31:192-198. [PMID: 37484641 PMCID: PMC10357849 DOI: 10.5606/tgkdc.dergisi.2023.24422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/23/2023] [Indexed: 07/25/2023]
Abstract
Background This study aims to examine the relationship between the development of coronary collateral circulation and serum elabela levels. Methods Between January 2020 and December 2021, a total of 50 control individuals (29 males, 21 females; mean age: 63.2±10.0 years; range, 52 to 73 years) with no significant coronary artery disease as confirmed by angiography (Group 1) and 100 patients (55 males, 45 females; mean age: 66.6±9.6 years; range, 56 to 75 years) with coronary artery disease were included. The patients were further divided into two equal groups according to the Rentrop classification as poor (Group 2) and good coronary collateral circulation (Group 3). All groups were compared in terms of several parameters, particularly serum elabela levels. Results Serum elabela levels were found to be statistically higher in the group with good collateral than the other groups (p<0.05). Low serum elabela levels increased the risk of developing weak collaterals by 2.43 times. Conclusion The elabela protein is directly related to good collateral development and can be considered a potential agent for treatment.
Collapse
Affiliation(s)
- İbrahim Özsoyler
- Department of Cardiovascular Surgery, Health Sciences University, Adana Şehir Training and Research Hospital, Adana, Türkiye
| | - Haci Ali Uçak
- Department of Cardiovascular Surgery, Health Sciences University, Adana Şehir Training and Research Hospital, Adana, Türkiye
| | - Tolga Onur Badak
- Department of Cardiovascular Surgery, Health Sciences University, Adana Şehir Training and Research Hospital, Adana, Türkiye
| | - Ahmet Çakallıoğlu
- Department of Cardiovascular Surgery, Health Sciences University, Adana Şehir Training and Research Hospital, Adana, Türkiye
| | - Muhammet Bayraktar
- Department of Public Health, Niğde Ömer Halisdemir University Faculty of Medicine, Niğde, Türkiye
| | - Ahmet Süha Arslan
- Department of Cardiovascular Surgery, Health Sciences University, Adana Şehir Training and Research Hospital, Adana, Türkiye
| |
Collapse
|
7
|
Li W, Xu P, Kong L, Feng S, Shen N, Huang H, Wang W, Xu X, Wang X, Wang G, Zhang Y, Sun W, Hu W, Liu X. Elabela-APJ axis mediates angiogenesis via YAP/TAZ pathway in cerebral ischemia/reperfusion injury. Transl Res 2023; 257:78-92. [PMID: 36813109 DOI: 10.1016/j.trsl.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
Angiogenesis helps to improve neurological recovery by repairing damaged brain tissue and restoring cerebral blood flow (CBF). The role of the Elabela (ELA)-Apelin receptor (APJ) system in angiogenesis has gained much attention. We aimed to investigate the function of endothelial ELA on postischemic cerebral angiogenesis. Here, we demonstrated that the endothelial ELA expression was upregulated in the ischemic brain and treatment with ELA-32 mitigated brain injury and enhanced the restoration of CBF and newly formed functional vessels following cerebral ischemia/reperfusion (I/R) injury. Furthermore, ELA-32 incubation potentiated proliferation, migration, and tube formation abilities of the mouse brain endothelial cells (bEnd.3 cells) under oxygen-glucose deprivation/reoxygenation (OGD/R) condition. RNA sequencing analysis indicated that ELA-32 incubation had a role in the Hippo signaling pathway, and improved angiogenesis-related gene expression in OGD/R-exposed bEnd.3 cells. Mechanistically, we depicted that ELA could bind to APJ and subsequently activate YAP/TAZ signaling pathway. Silence of APJ or pharmacological blockade of YAP abolished the pro-angiogenesis effects of ELA-32. Together, these findings highlight the ELA-APJ axis as a potential therapeutic strategy for ischemic stroke by showing how activation of this pathway promotes poststroke angiogenesis.
Collapse
Affiliation(s)
- Wenyu Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Pengfei Xu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Lingqi Kong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuo Feng
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Nan Shen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongmei Huang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wuxuan Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiang Xu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinyue Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Guoping Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Sun
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Hu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinfeng Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
8
|
Xu P, Kong L, Tao C, Zhu Y, Cheng J, Li W, Shen N, Li R, Zhang C, Wang L, Zhang Y, Wang G, Liu X, Sun W, Hu W. Elabela-APJ axis attenuates cerebral ischemia/reperfusion injury by inhibiting neuronal ferroptosis. Free Radic Biol Med 2023; 196:171-186. [PMID: 36681202 DOI: 10.1016/j.freeradbiomed.2023.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/27/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
Ferroptosis is a form of non-apoptotic cell death caused by iron-dependent peroxidation of lipids. It contributes to ischemic stroke-induced neuronal damage. Elabela (ELA), a novel endogenous ligand for Apelin receptor (APJ), regulates oxidative stress and exerts a protective role in cardiovascular disease. However, the effect of ELA-APJ axis on cellular ferroptosis in cerebral ischemia/reperfusion (I/R) remains elusive. The present study showed that ELA and APJ were expressed on neurons and increased after cerebral I/R injury. The I/R insult triggered typical molecular and morphological features of neuronal ferroptosis, including iron and MDA accumulation, mitochondrial shrink and membrane rupture, upregulation of positive ferroptosis regulators and downregulation of negative regulators. ELA-32 treatment reduced brain infarction and ameliorated neurobehavioral deficits and cognitive dysfunction. Moreover, ELA-32 administration alleviated neuronal ferroptosis, accompanied by reduced iron deposition, decreased mitochondrial damage, relived lipid peroxidation and glutathione reduction. Such effects of ELA-32 were abolished by AAV-APJ-RNAi or nuclear factor erythroid 2-related factor 2 (NRF2) inhibitor ML385. Mechanistically, ELA was shown to bind to APJ and activate NRF2/ARE anti-oxidative signaling pathway via Gα13. Together, these findings suggested that ELA-APJ axis mitigates neuronal ferroptosis after ischemic stroke and that the ELA-32 peptide may be a putative therapeutic avenue for ischemic stroke.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Lingqi Kong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Chunrong Tao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yuyou Zhu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Juan Cheng
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wenyu Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Nan Shen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Rui Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Chao Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Li Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Guoping Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xinfeng Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Wen Sun
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Wei Hu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
9
|
Promising novel therapeutic targets for kidney disease: Emphasis on kidney-specific proteins. Drug Discov Today 2023; 28:103466. [PMID: 36509391 DOI: 10.1016/j.drudis.2022.103466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Worldwide, around 850 million people are diagnosed with kidney disease but the available treatment options are still limited. Preclinical studies propose a plethora of druggable targets that can attenuate kidney disease and could qualify as novel therapeutic strategies, although most of these targets still await clinical testing. Here, we review some promising candidate targets for chronic kidney disease: intermedin, periostin, sirtuin, the cannabinoid receptor, Klotho, and uromodulin. For acute kidney injury, we discuss Apelin, Elabela, growth differentiation factor-15, Fyn kinase, and Klotho. Target selection for further clinical development should consider redundancies with the standard of care, potential synergistic effects with existing treatments, as well as the potential of additional effects on the cardiovascular system as a common comorbidity in patients with kidney disease.
Collapse
|
10
|
Adiarto S, Prakoso R, Firdaus I, Indriani S, Rudiktyo E, Widyantoro B, Ambari AM, Sukmawan R. A Novel Peptide Elabela is Associated with Hypertension-Related Subclinical Atherosclerosis. High Blood Press Cardiovasc Prev 2023; 30:37-44. [PMID: 36449232 DOI: 10.1007/s40292-022-00554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION Elabela is a newly identified peptide which, alongside apelin, acts as an endogenous ligand that activates the angiotensin receptor-like 1 receptor. Previous studies have shown the association of elabela with hypertension, but information about the role of elabela in hypertension-related subclinical atherosclerosis is scarce. AIM We aimed to determine the elabela levels in hypertensive patients and explore its association with subclinical atherosclerosis. METHODS A total of 104 subjects with hypertension were included in the study. Elabela levels were measured using an enzyme-linked immunosorbent assay, by first extracting the peptide following the manufacturer's instructions. Subclinical atherosclerosis was assessed by measuring the carotid intima-media thickness (IMT) using ultrasound. RESULTS Compared to stage 1, elabela levels decreased in stage 2 hypertension (0.23 [0.13, 0.45] ng/ml vs. 0.14 [0.09, 0.23] ng/ml; P = 0.000), and in the group with increased carotid IMT compared to normal IMT (0.24 [0.13, 0.38] ng/ml vs. 0.15 [0.10, 0.23] ng/ml; P = 0.005). Additionally, a linear correlation analysis showed that elabela had a significant negative correlation with systolic blood pressure (r = - 0.340, P = 0.000) and carotid IMT (r = - 0.213; P = 0.030). In multivariate analysis, lower elabela levels were associated with a higher cardiovascular risk group in this study (OR 5.0, 95% CI 1.8-13.5, P < 0.001). CONCLUSIONS This study demonstrated for the first time that circulating elabela declined in a higher stage of hypertension and hypertensive patients with increased carotid IMT, implicating that elabela may be involved in the pathogenesis of hypertension-associated subclinical atherosclerosis.
Collapse
Affiliation(s)
- Suko Adiarto
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia.
| | - Radityo Prakoso
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Isman Firdaus
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Suci Indriani
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Estu Rudiktyo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Bambang Widyantoro
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Ade Meidian Ambari
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Renan Sukmawan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| |
Collapse
|
11
|
Respekta N, Pich K, Dawid M, Mlyczyńska E, Kurowska P, Rak A. The Apelinergic System: Apelin, ELABELA, and APJ Action on Cell Apoptosis: Anti-Apoptotic or Pro-Apoptotic Effect? Cells 2022; 12:cells12010150. [PMID: 36611944 PMCID: PMC9818302 DOI: 10.3390/cells12010150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
The apelinergic system comprises two peptide ligands, apelin and ELABELA, and their cognate G-protein-coupled receptor, the apelin receptor APJ. Apelin is a peptide that was isolated from bovine stomach extracts; the distribution of the four main active forms, apelin-36, -17, -13, and pyr-apelin-13 differs between tissues. The mature form of ELABELA-32 can be transformed into forms called ELABELA-11 or -21. The biological function of the apelinergic system is multifaceted, and includes the regulation of angiogenesis, body fluid homeostasis, energy metabolism, and functioning of the cardiovascular, nervous, respiratory, digestive, and reproductive systems. This review summarises the mechanism of the apelinergic system in cell apoptosis. Depending on the cell/tissue, the apelinergic system modulates cell apoptosis by activating various signalling pathways, including phosphoinositide 3-kinase (PI3K), extracellular signal-regulated protein kinase (ERK1/2), protein kinase B (AKT), 5'AMP-activated protein kinase(AMPK), and protein kinase A (PKA). Apoptosis is critically important during various developmental processes, and any dysfunction leads to pathological conditions such as cancer, autoimmune diseases, and developmental defects. The purpose of this review is to present data that suggest a significant role of the apelinergic system as a potential agent in various therapies.
Collapse
|
12
|
Janssens P, Decuypere JP, Bammens B, Llorens-Cortes C, Vennekens R, Mekahli D. The emerging role of the apelinergic system in kidney physiology and disease. Nephrol Dial Transplant 2022; 37:2314-2326. [PMID: 33744967 DOI: 10.1093/ndt/gfab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
The apelinergic system (AS) is a novel pleiotropic system with an essential role in renal and cardiovascular physiology and disease, including water homeostasis and blood pressure regulation. It consists of two highly conserved peptide ligands, apelin and apela, and a G-protein-coupled apelin receptor. The two ligands have many isoforms and a short half-life and exert both similar and divergent effects. Vasopressin, apelin and their receptors colocalize in hypothalamic regions essential for body fluid homeostasis and interact at the central and renal levels to regulate water homeostasis and diuresis in inverse directions. In addition, the AS and renin-angiotensin system interact both systemically and in the kidney, with implications for the cardiovascular system. A role for the AS in diverse pathological states, including disorders of sodium and water balance, hypertension, heart failure, pre-eclampsia, acute kidney injury, sepsis and diabetic nephropathy, has recently been reported. Furthermore, several metabolically stable apelin analogues have been developed, with potential applications in diverse diseases. We review here what is currently known about the physiological functions of the AS, focusing on renal, cardiovascular and metabolic homeostasis, and the role of the AS in associated diseases. We also describe several hurdles and research opportunities worthy of the attention of the nephrology community.
Collapse
Affiliation(s)
- Peter Janssens
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussell), Department of Nephrology, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Jean-Paul Decuypere
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Bert Bammens
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.,Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, Collège de France, INSERM U1050, CNRS UMR 7241, Paris, France
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, VIB-KU Leuven Center for Brain and Disease, KU Leuven, Leuven, Belgium and
| | - Djalila Mekahli
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Pediatric Nephrology and Organ Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Ivanov MN, Stoyanov DS, Pavlov SP, Tonchev AB. Distribution, Function, and Expression of the Apelinergic System in the Healthy and Diseased Mammalian Brain. Genes (Basel) 2022; 13:2172. [PMID: 36421846 PMCID: PMC9690544 DOI: 10.3390/genes13112172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 07/27/2023] Open
Abstract
Apelin, a peptide initially isolated from bovine stomach extract, is an endogenous ligand for the Apelin Receptor (APLNR). Subsequently, a second peptide, ELABELA, that can bind to the receptor has been identified. The Apelin receptor and its endogenous ligands are widely distributed in mammalian organs. A growing body of evidence suggests that this system participates in various signaling cascades that can regulate cell proliferation, blood pressure, fluid homeostasis, feeding behavior, and pituitary hormone release. Additional research has been done to elucidate the system's potential role in neurogenesis, the pathophysiology of Glioblastoma multiforme, and the protective effects of apelin peptides on some neurological and psychiatric disorders-ischemic stroke, epilepsy, Parkinson's, and Alzheimer's disease. This review discusses the current knowledge on the apelinergic system's involvement in brain physiology in health and disease.
Collapse
Affiliation(s)
- Martin N. Ivanov
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology, Research Institute, Medical University-Varna, 9000 Varna, Bulgaria
| | - Dimo S. Stoyanov
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
| | - Stoyan P. Pavlov
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
| | - Anton. B. Tonchev
- Department of Anatomy and Cell Biology, Medical University-Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology, Research Institute, Medical University-Varna, 9000 Varna, Bulgaria
| |
Collapse
|
14
|
GÜLER Ö, TUĞAN YILDIZ B, HAKKOYMAZ H, AYDIN S, YARDIM M. Levels of Serum and Urine Catecholaminergic and Apelinergic System Members in Acute Ischemic Stroke Patients. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNIVERSITESI TIP FAKÜLTESI DERGISI 2022. [DOI: 10.17517/ksutfd.1168625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Objective: To compare levels of catecholaminergic system members, renalase, cerebellin, and their substrates, epinephrine, norepinephrine, and dopamine, and apelinergic system members, apelin, elabela, and nitric oxide in the blood and urine of patients with acute ischemic stroke and healthy controls.
Materials and Methods: 42 patients with acute ischemic stroke and 42 age and sex-matched healthy controls were included in the study. Blood and urine samples were collected simultaneously and within the first 24 hours after the onset of acute stroke clinical manifestations and were measured using an ELISA method.
Results: The levels of serum and urine cerebellin, renalase, epinephrine, norepinephrine, dopamine, apelin, elebela, and nitric oxide were similar in ischemic stroke and in control groups (P>0.05). Strong correlations were found between renalase, cerebellin, and catecholamine levels in serum and urine (p
Collapse
|
15
|
Protective effects of apelin on gastric mucosa. Tissue Cell 2022; 78:101885. [PMID: 35940035 DOI: 10.1016/j.tice.2022.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022]
|
16
|
Sahinturk S, Demirel S, Ozyener F, Isbil N. Vascular Functional Effect Mechanisms of Elabela in Rat Thoracic Aorta. Ann Vasc Surg 2022; 84:381-397. [PMID: 35472496 DOI: 10.1016/j.avsg.2022.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Elabela is a recently discovered peptide hormone. The present study aims to investigate the vasorelaxant effect mechanisms of elabela in the rat thoracic aorta. METHODS The vascular rings obtained from the thoracic aortas of the male Wistar albino rats were placed in the isolated tissue bath system. Resting tension was set to 1 gram. After the equilibration period, the vessel rings were contracted with phenylephrine or potassium chloride. Once a stable contraction was achieved, elabela-32 was applied cumulatively (10-9-10-6 molar) to the vascular rings. The experimental protocol was repeated in the presence of specific signaling pathway inhibitors or potassium channel blockers to determine the effect mechanisms of elabela. RESULTS Elabela showed a significant vasorelaxant effect in a concentration-dependent manner (P < 0.001). The vasorelaxant effect level of elabela was significantly reduced by the apelin receptor antagonist F13A, cyclooxygenase inhibitor indomethacin, adenosine monophosphate-activated protein kinase inhibitor dorsomorphin, protein kinase C inhibitor bisindolmaleimide, large-conductance calcium-activated potassium channel blocker iberiotoxin, and intermediate-conductance calcium-activated potassium channel blocker TRAM-34 (P < 0.001). However, the vasorelaxant effect level of elabela was not significantly affected by the endothelial nitric oxide synthase inhibitor nitro-L-arginine methyl ester and mitogen-activated protein kinase inhibitor U0126. CONCLUSIONS Elabela exhibits a prominent vasodilator effect in rat thoracic aorta. Apelin receptor, prostanoids, adenosine monophosphate-activated protein kinase, protein kinase C, and calcium-activated potassium channels are involved in the vasorelaxant effect mechanisms of elabela.
Collapse
Affiliation(s)
- Serdar Sahinturk
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey.
| | - Sadettin Demirel
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| | - Fadil Ozyener
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| | - Naciye Isbil
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| |
Collapse
|
17
|
Sumbul HE, Gulumsek E, Avci BS, Ay N, Okyay RA, Sahin AR, Gold J, Avci A, Koc M. Serum Elabela level is significantly increased in patients with acromegaly. Ir J Med Sci 2022; 192:665-670. [PMID: 35665895 DOI: 10.1007/s11845-022-03042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Although the bioactive peptides associated with the apelinergic system are known to be associated with heart failure and ischemic heart disease, there are no data on their association with acromegaly. AIM We aimed to investigate the change in serum Elabela levels, a novel peptide of the apelinergic system, in patients with acromegaly. METHODS Our study included 30 treatment naive patients who were recently diagnosed with acromegaly, and 50 age-and-sex-matched healthy controls. In addition to routine history, physical examination and laboratory examinations, serum Elabela level was measured. Participants were divided into two groups as individuals with and without acromegaly and compared to each other. RESULTS Diastolic blood pressure (DBP) and systolic blood pressure (SBP) were found to be higher in patients with acromegaly. Serum glucose, Hs-CRP, NT-proBNP, insulin-like growth factor-1, growth hormone and serum Elabela levels were higher in patients with acromegaly (p < 0.05 for each). Left ventricular ejection fraction (LV-EF) was found to be lower in patients with acromegaly than the patients in healthy control group (p < 0.05). In multivariate analysis; age, systolic blood pressure, NT-proBNP, Insulin-like growth factor 1 and growth hormone levels were found to be very closely and positively related to serum Elabela level (p < 0.05 for each). CONCLUSIONS Serum Elabela level can be used as an early and objective indicator of early cardiovascular involvement in patients with acromegaly. Further research is needed to clarify the role of serum Elabela levels on cardiovascular system in acromegaly patients.
Collapse
Affiliation(s)
- Hilmi Erdem Sumbul
- Department of Internal Medicine, Health Science University, Adana City Research and Training Hospital, Adana, Turkey
| | - Erdinc Gulumsek
- Department of Gastroenterology, Health Science University, Adana City Research and Training Hospital, Adana, Turkey
| | - Begum Seyda Avci
- Department of Internal Medicine, Health Science University, Adana City Research and Training Hospital, Adana, Turkey
| | - Nurettin Ay
- Department of Internal Medicine, Health Science University, Adana City Research and Training Hospital, Adana, Turkey
| | - Ramazan Azim Okyay
- Health Science University, Adana City Research and Training Hospital, Adana, Turkey
| | - Ahmet Riza Sahin
- Department of Infectious Diseases and Clinical Microbiology, Health Science University, Adana City Research and Training Hospital, Adana, Turkey
| | | | - Akkan Avci
- Department of Emergency Medicine, Health Science University, Adana City Research and Training Hospital, Dr. Mithat Özsan Bulvarı Kışla Mah. 4522 Sok. No: 1 Yüreğir, 01060, Adana, Turkey.
| | - Mevlut Koc
- Department of Cardiology, Health Science University, Adana City Research and Training Hospital, Adana, Turkey
| |
Collapse
|
18
|
Sahinturk S, Demirel S, Isbil N, Ozyener F. Potassium Channels Contributes to Apelin-induced Vasodilation in Rat
Thoracic Aorta. Protein Pept Lett 2022; 29:538-549. [DOI: 10.2174/0929866529666220516141317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
Background:
Apelin is a newly discovered peptide hormone and originally discovered
endogenous apelin receptor ligand.
Objective:
In this study, we aimed to investigate the possible roles of potassium channel subtypes in
the vasorelaxant effect mechanisms of apelin.
Methods:
The vascular rings obtained from the thoracic aortas of the male Wistar Albino rats were
placed into the isolated tissue bath system. The resting tension was set to 2 g. After the equilibration
period, the aortic rings were precontracted with 10-5 M phenylephrine (PHE) or 45 mM KCl.
Pyroglutamyl-apelin-13 ([Pyr1]apelin-13), which is the dominant apelin isoform in the human
cardiovascular tissues and human plasma, was applied cumulatively (10-10-10-6 M) to the aortic
rings in the plateau phase. The experimental protocol was repeated in the presence of specific K+
channel subtype blockers to determine the role of K+ channels in the vasorelaxant effect
mechanisms of apelin.
Results:
[Pyr1]apelin-13 induced a concentration-dependent vasorelaxation (p < 0.001). The
maximum relaxation level was approximately 52%, according to PHE-induced contraction.
Tetraethylammonium, iberiotoxin, 4-Aminopyridine, glyburide, anandamide, and BaCl2 statistically
significantly decreased the vasorelaxant effect level of [Pyr1]apelin-13 (p < 0.001). However,
apamin didn’t statistically significantly change the vasorelaxant effect level of [Pyr1]apelin-13.
Conclusion:
In conclusion, our findings suggest that BKCa, IKCa, Kv, KATP, Kir, and K2P channels
are involved in the vasorelaxant effect mechanisms of apelin in the rat thoracic aorta.
Collapse
Affiliation(s)
- Serdar Sahinturk
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| | - Sadettin Demirel
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| | - Naciye Isbil
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| | - Fadil Ozyener
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| |
Collapse
|
19
|
Palmer ES, Irwin N, O’Harte FPM. Potential Therapeutic Role for Apelin and Related Peptides in Diabetes: An Update. Clin Med Insights Endocrinol Diabetes 2022; 15:11795514221074679. [PMID: 35177945 PMCID: PMC8844737 DOI: 10.1177/11795514221074679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an epidemic with an ever-increasing global prevalence. Current treatment strategies, although plentiful and somewhat effective, often fail to achieve desired glycaemic goals in many people, leading ultimately to disease complications. The lack of sustained efficacy of clinically-approved drugs has led to a heightened interest in the development of novel alternative efficacious antidiabetic therapies. One potential option in this regard is the peptide apelin, an adipokine that acts as an endogenous ligand of the APJ receptor. Apelin exists in various molecular isoforms and was initially studied for its cardiovascular benefits, however recent research suggests that it also plays a key role in glycaemic control. As such, apelin peptides have been shown to improve insulin sensitivity, glucose tolerance and lower circulating blood glucose. Nevertheless, native apelin has a short biological half-life that limits its therapeutic potential. More recently, analogues of apelin, particularly apelin-13, have been developed that possess a significantly extended biological half-life. These analogues may represent a promising target for future development of therapies for metabolic disease including diabetes and obesity.
Collapse
Affiliation(s)
- Ethan S Palmer
- Ethan S Palmer, Diabetes Research Group, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK.
| | | | | |
Collapse
|
20
|
The role of potassium channels on vasorelaxant effects of elabela in rat thoracic aorta. TURK GOGUS KALP DAMAR CERRAHISI DERGISI 2022; 30:18-25. [PMID: 35444849 PMCID: PMC8990140 DOI: 10.5606/tgkdc.dergisi.2022.22756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023]
Abstract
Background This study aims to investigate the roles of potassium channel subtypes in the vasorelaxant effect mechanism of elabela, which is a recently discovered endogenous apelin receptor ligand. Methods The vascular rings (4-mm) obtained from the thoracic aortas of 20 male Wistar Albino rats were placed into the isolated tissue bath system. The resting tension was set to 1 g. The aortic rings were contracted with 10-5 molar phenylephrine after the equilibration period (90 min). Elabela was applied cumulatively (10-10-10-6 molar) to the aortic rings in the plateau phase. The experimental protocol was repeated in the presence of specific potassium channel subtype inhibitors to determine the role of potassium channels in the vasorelaxant effect mechanism of elabela. Results Elabela induced a concentration-dependent vasorelaxation (p<0.001). The maximum relaxation level was approximately 51% according to phenylephrineinduced contraction. Vasorelaxant effect level of elabela statistically significantly decreased after removal of the endothelium (p<0.05). Tetraethylammonium (1 milimolar), 4-Aminopyridine (1 milimolar), glyburide (10 micromolar), and barium chloride (30 micromolar) statistically significantly decreased the vasorelaxant effect level of elabela (p<0.001, p<0.001, p<0.01, and p<0.05 respectively). However, anandamide (10 micromolar) and apamin (100 nanomolar) did not statistically significantly change the vasorelaxant effect level of elabela. Conclusion Our results suggest that large-conductance calciumactivated, voltage-gated, adenosine triphosphate-sensitive, and inward-rectifier potassium channels are involved in the vasorelaxant effect mechanism of elabela in the rat thoracic aorta.
Collapse
|
21
|
Gulumsek E, Sumbul HE, Yesildal F, Kizildag C, Ozturk DD, Avci BS, Aktas B, Avci A, Bayrak E, Tas A, Kara B. Serum Elabela level is related to endoscopic activity index in patients with active ulcerative colitis. Ir J Med Sci 2022; 191:1171-1176. [PMID: 35000117 DOI: 10.1007/s11845-021-02914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND In ulcerative colitis patients, Elabela levels and the relation of Elabela with laboratory parameters is unknown. AIM The purpose of this study was to investigate the serum Elabela levels in UC patients and its relationship with other clinical and laboratory findings. METHODS Forty-three patients with UC and 40 healthy controls (group I) similar in age and gender were included in the study. Routine patient history, physical examination, and laboratory tests were followed by analysis of serum Elabela levels. Endoscopic activity index (EAI) of patients with UC was calculated. There were two groups of patients: those in remission (group II) and with active disease (group III). RESULTS Groups I, II, and III had 40, 22, and 21 participants, respectively. Serum Elabela levels were found to be 3.32 ± 1.25 ng/mL in group I, 3.38 ± 0.88 ng/mL in group II, and 5.48 ± 1.61 ng/mL in group III. Comparing the serum Elabela levels, a statistically significant difference was found between three groups (p < 0.001). Serum Elabela level showed a significant and positive correlation with EAI, leukocyte count, and hs-CRP, while a negative correlation was found with hemoglobin levels in univariate analysis (p < 0.001, for each). In linear regression analysis, these parameters were found to be associated with EAI and hs-CRP (p = 0.049, β = 0.337, and p = 0.015, β = 0.396, respectively). CONCLUSION Elabela concentrations in patients with active UC was significantly higher and was associated with EAI and hs-CRP. Blood Elabela concentrations can be useful in the diagnosis and follow-up of patients with active UC.
Collapse
Affiliation(s)
- Erdinc Gulumsek
- Department of Gastroenterology, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Hilmi Erdem Sumbul
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Dr. Mithat Özsan Bulvarı Kışla Mah. 4522 Sok. No: 1 Yüreğir, Adana, Turkey.
| | - Fatih Yesildal
- Department of Medical Biochemistry, Suleyman Yalcin City Hospital, Goztepe Prof. Dr, Istanbul, Turkey
| | - Cisem Kizildag
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Dr. Mithat Özsan Bulvarı Kışla Mah. 4522 Sok. No: 1 Yüreğir, Adana, Turkey
| | - Dilan Damla Ozturk
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Dr. Mithat Özsan Bulvarı Kışla Mah. 4522 Sok. No: 1 Yüreğir, Adana, Turkey
| | - Begum Seyda Avci
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Dr. Mithat Özsan Bulvarı Kışla Mah. 4522 Sok. No: 1 Yüreğir, Adana, Turkey
| | - Beytullah Aktas
- Department of Internal Medicine, University of Health Sciences - Adana Health Practice and Research Center, Dr. Mithat Özsan Bulvarı Kışla Mah. 4522 Sok. No: 1 Yüreğir, Adana, Turkey
| | - Akkan Avci
- Department of Emergency Medicine, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Edip Bayrak
- Department of Infectious Disease, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Adnan Tas
- Department of Gastroenterology, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Banu Kara
- Department of Gastroenterology, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| |
Collapse
|
22
|
Xu F, Wu M, Lu X, Zhang H, Shi L, Xi Y, Zhou H, Wang J, Miao L, Gong DW, Cui W. Effect of Fc-Elabela-21 on renal ischemia/reperfusion injury in mice: Mediation of anti-apoptotic effect via Akt phosphorylation. Peptides 2022; 147:170682. [PMID: 34742787 DOI: 10.1016/j.peptides.2021.170682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Renal ischemia/reperfusion injury (IRI) is the most common cause of acute kidney injury (AKI), and patients with AKI have a high rate of mortality. Apelin is a therapeutic candidate for treatment of IRI and Elabela (ELA) is a recently discovered hormone that also activates the apelin receptor (APJ). We examined the use of ELA as a preventive treatment for IRI using in vitro and in vivo models. METHODS Male mice were subjected to renal IRI, with or without administration of a stabilized form of ELA (Fc-ELA-21) for 4 days. Renal tubular lesions were measured using H&E staining, reactive oxygen species (ROS) were measured using a dihydroethidium stain assay, and renal cell apoptosis was measured using the TUNEL assay and flow cytometry. Immortalized human proximal tubular epithelial (HK-2) cells were pretreated with or without LY294002 and/or ELA-32, maintained at normoxic or hypoxic conditions, and then returned to normal culture conditions to mimic IRI. Cell apoptosis was determined using the TUNEL assay and cell proliferation was determined using the MTT assay. The levels of Akt, p-Akt, ERK1/2, p- ERK1/2, Bcl-2, Bax, caspase-3 and cleaved caspase-3 were measured using western blotting. RESULTS Fc-ELA-21 administration reduced renal tissue damage, ROS production, and apoptosis in mice that had renal IRI. ELA-32 reduced HK-2 cell apoptosis and restored the proliferation of cells subjected to IRI. Akt phosphorylation had a role in the anti-apoptotic effect of ELA. CONCLUSION This study of in vitro and in vivo models of IRI indicated that the preventive and anti-apoptotic effects of ELA were mediated via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Feng Xu
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China; Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Man Wu
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Xuehong Lu
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Hong Zhang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Lin Shi
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Yue Xi
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Huifen Zhou
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Junhong Wang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Lining Miao
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Da-Wei Gong
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| |
Collapse
|
23
|
de Oliveira AA, Vergara A, Wang X, Vederas JC, Oudit GY. Apelin pathway in cardiovascular, kidney, and metabolic diseases: Therapeutic role of apelin analogs and apelin receptor agonists. Peptides 2022; 147:170697. [PMID: 34801627 DOI: 10.1016/j.peptides.2021.170697] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
The apelin/apelin receptor (ApelinR) signal transduction pathway exerts essential biological roles, particularly in the cardiovascular system. Disturbances in the apelin/ApelinR axis are linked to vascular, heart, kidney, and metabolic disorders. Therefore, the apelinergic system has surfaced as a critical therapeutic strategy for cardiovascular diseases (including pulmonary arterial hypertension), kidney disease, insulin resistance, hyponatremia, preeclampsia, and erectile dysfunction. However, apelin peptides are susceptible to rapid degradation through endogenous peptidases, limiting their use as therapeutic tools and translational potential. These proteases include angiotensin converting enzyme 2, neutral endopeptidase, and kallikrein thereby linking the apelin pathway with other peptide systems. In this context, apelin analogs with enhanced proteolytic stability and synthetic ApelinR agonists emerged as promising pharmacological alternatives. In this review, we focus on discussing the putative roles of the apelin pathway in various physiological systems from function to dysfunction, and emphasizing the therapeutic potential of newly generated metabolically stable apelin analogs and non-peptide ApelinR agonists.
Collapse
Affiliation(s)
- Amanda A de Oliveira
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ander Vergara
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaopu Wang
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
24
|
Ma Z, Zhao L, Zhang YP, Zhong JC, Yang XC. Declined ELABELA plasma levels in hypertension patients with atrial fibrillation: a case control study. BMC Cardiovasc Disord 2021; 21:390. [PMID: 34384364 PMCID: PMC8359615 DOI: 10.1186/s12872-021-02197-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/04/2021] [Indexed: 02/22/2023] Open
Abstract
Background Atrial fibrillation (AF) is a common arrhythmia in patients with hypertension. ELABELA, which has cardioprotective effects, is decreased in the plasma of patients with hypertension and might be associated with AF in the hypertensive population. This study aims to measure the ELABELA plasma levels in hypertension patients with and without AF and to analyse the related factors. Methods A total of 162 hypertension patients with or without AF were recruited for our monocentric observational study. Subjects were excluded if they had a history of valvular heart disease, rheumatic heart disease, cardiomyopathy, thyroid diseases, or heart failure. The patients’ histories were recorded, and laboratory examinations were conducted. Plasma ELABELA was detected by immunoassay. Echocardiographs were performed, and parameters were collected by two experienced doctors. Binary logistic regression analysis was used to identify the association between ELABELA plasma level and AF in patients with hypertension. Results Plasma ELABELA levels were lower in hypertension patients with AF than in those without AF (2.0 [1.5, 2.8] vs. 4.0 [3.4, 5.0] ng/ml, P < 0.001). ELABELA levels were correlated with age, heart rate, BNP levels and left atrial dimension. In addition to the left atrial dimension, ELABELA plasma levels were associated with AF in patients with hypertension (OR 0.081, 95% CI 0.029–0.224, P < 0.001). ELABELA levels were further decreased in the persistent AF subgroup compared with the paroxysmal AF subgroup (1.8 [1.4, 2.5] vs. 2.2 [1.8, 3.0] ng/ml, P = 0.012) and correlated with HR, BNP and ESR levels. Conclusions ELALABELA levels were decreased in hypertension patients with AF and further lowered in the persistent AF subgroup. Decreased ELABELA plasma levels were associated with AF in hypertension patients and may be an underlying risk factor. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02197-x.
Collapse
Affiliation(s)
- Zheng Ma
- Department of Cardiology, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiao Minxiang, Dongcheng District, Beijing, 100730, China
| | - Lei Zhao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ye-Ping Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Xin-Chun Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
25
|
Tian QP, Liu ML, Zhang YR, Ji DR, Liu SM, Zhao J, Qi YF. Plasma Level of Elabela in Patients with Coronary Heart Disease and Its Correlation with the Disease Classification. Int Heart J 2021; 62:752-755. [PMID: 34276017 DOI: 10.1536/ihj.20-817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study aimed to evaluate the concentration of plasma elabela (ELA) in patients with coronary heart disease (CHD) and its correlation with the disease classification.We enrolled 238 patients diagnosed by coronary angiography as CHD and 86 controls. The CHD group was divided into three subgroups: stable angina (SA), unstable angina (UAP), and acute myocardial infarction (AMI). The plasma levels of ELA were measured in all participants and compared among different groups. The relationship between ELA and CHD classification was analyzed.ELA levels were markedly higher by 10.71% in patients with CHD than in controls (P < 0.05). The concentration of ELA in UAP and AMI subgroups were higher than in controls and SA subgroup. The former difference was significant (P < 0.05), but the latter was not. In addition, the ELA concentration was not correlated with SYNTAX score, left ventricular ejection fraction, and other biochemical variables.The newfound hormone, ELA, significantly increased in patients with UAP and AMI. There is a tendency that ELA levels might be correlated with CHD classification, but not with lesion severity. ELA may play a role in acute coronary syndrome.
Collapse
Affiliation(s)
- Qing-Ping Tian
- Department of Geriatrics, Peking University First Hospital
| | - Mei-Lin Liu
- Department of Geriatrics, Peking University First Hospital
| | - Ya-Rong Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center
| | - Deng-Ren Ji
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center
| | - Shi-Meng Liu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center
| | - Jie Zhao
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center
| | - Yong-Fen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center
| |
Collapse
|
26
|
Yavuz F, Kaplan M. Association Between Serum Elabela Levels and Chronic Totally Occlusion in Patients with Stable Angina Pectoris. Arq Bras Cardiol 2021; 117:503-510. [PMID: 34076064 PMCID: PMC8462951 DOI: 10.36660/abc.20200492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/04/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The beneficial effects of Elabela on the cardiovascular system have been shown in studies. OBJECTIVE To compare serum Elabela levels of chronic total occlusion (CTO) patients with control patients with normal coronary arteries, and to investigate whether there is a correlation with collateral development. METHODS The study was planned cross-sectionally and prospectively. Fifty patients (28.0% female, mean age 61.6±7.3years) with CTO in at least one coronary vessel and 50 patients (38% female, mean age 60,7±6.38 years) with normal coronary arteries were included in the study. Patients in the CTO group were divided into two groups as Rentrop 0-1, those with weak collateral development, and Rentrop 2-3 with good collateral development. In addition to the age, sex, demographic characteristics and routine laboratory tests of the patients, Elabela levels were measured. RESULTS Demographic characteristics and laboratory values were similar in both groups. While the mean NT-proBNP and troponin were higher in the CTO group, the Elabela mean was lower (p <0.05 for all). In the multivariate regression analysis, NT-proBNP and Elabela levels were found to be independent predictors for CTO. Also, Elabela level was found to be statistically higher in Rentrop class 2-3 patients compared to Rentrop class 0-1 patients (p<0.05). CONCLUSION In our study, we showed that the average Elabela level was low in CTO patients compared to normal patients. In addition, we found the level of Elabela to be lower in patients with weak collateral development compared to patients with good collateral development. (Arq Bras Cardiol. 2021; [online].ahead print, PP.0-0).
Collapse
Affiliation(s)
- Fethi Yavuz
- Departamento de Cardiologia, Adıyaman University Training and Research Hospital, Adıyaman - Turquia
| | - Mehmet Kaplan
- Gaziantep University Medicine Faculty, Departamento de Cardiologia, Gaziantep - Turquia
| |
Collapse
|
27
|
The Role of Peptide Hormones Discovered in the 21st Century in the Regulation of Adipose Tissue Functions. Genes (Basel) 2021; 12:genes12050756. [PMID: 34067710 PMCID: PMC8155905 DOI: 10.3390/genes12050756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Peptide hormones play a prominent role in controlling energy homeostasis and metabolism. They have been implicated in controlling appetite, the function of the gastrointestinal and cardiovascular systems, energy expenditure, and reproduction. Furthermore, there is growing evidence indicating that peptide hormones and their receptors contribute to energy homeostasis regulation by interacting with white and brown adipose tissue. In this article, we review and discuss the literature addressing the role of selected peptide hormones discovered in the 21st century (adropin, apelin, elabela, irisin, kisspeptin, MOTS-c, phoenixin, spexin, and neuropeptides B and W) in controlling white and brown adipogenesis. Furthermore, we elaborate how these hormones control adipose tissue functions in vitro and in vivo.
Collapse
|
28
|
Lu X, Liu S, Luan R, Cui W, Chen Y, Zhang Y, Lu Y, Zhang H, Shi L, Miao L, Xu F. Serum elabela and apelin levels during different stages of chronic kidney disease. Ren Fail 2021; 42:667-672. [PMID: 32713238 PMCID: PMC7470108 DOI: 10.1080/0886022x.2020.1792926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The association of serum elabela (ELA) and apelin with the progression of chronic kidney disease (CKD) is unknown. We determined if serum ELA and apelin levels were associated with CKD stage. METHODS This observational study involved 60 CKD patients and 20 healthy, age-, race-, and gender-matched controls. The participants were grouped according to renal function as follows: normal control group, CKD1 group (stage-1 CKD, 20 patients), CKD3 group (stage-3 CKD, 20 patients), and CKD5 group (stage-5 CKD, 20 patients) in accordance with the Kidney Disease Outcomes - Quality Initiative criteria. We recorded the demographic, clinical, and biochemical data of all participants. Serum ELA and apelin levels were measured using commercially available enzyme-linked immunosorbent assays. RESULTS Serum ELA levels gradually and significantly declined with decreases in the estimated glomerular filtration rate (eGFR). Serum ELA showed significant negative correlations with serum creatinine (r = -0.529, p < .001), blood urea nitrogen (r = -0.575, p < .001), systolic blood pressure (r = -0.455, p < .001), and diastolic blood pressure (r = -0.450, p < .001), and significant positive correlations with hemoglobin (r = 0.523, p < .001) and eGFR (r = 0.728, p < .001). Multiple regression analysis showed that eGFR independently influenced serum ELA levels. No significant association was found between serum apelin levels and CKD progression. CONCLUSION In CKD patients, serum ELA levels decreased with decreasing eGFR. This finding may provide a new target for the prediction, diagnosis, and staging of CKD.
Collapse
Affiliation(s)
- Xuehong Lu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Shengmao Liu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Rumei Luan
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yu Chen
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yixian Zhang
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yue Lu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Hong Zhang
- Department of Endocrinology, Huaian First People's Hospital, Nanjing Medical University, Huai'an China
| | - Lin Shi
- Department of Pediatrics, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Lining Miao
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Feng Xu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Ma Z, Zhao L, Martin S, Zhang Y, Dong Y, Zhong JC, Yang XC. Lower Plasma Elabela Levels in Hypertensive Patients With Heart Failure Predict the Occurrence of Major Adverse Cardiac Events: A Preliminary Study. Front Cardiovasc Med 2021; 8:638468. [PMID: 33738301 PMCID: PMC7960768 DOI: 10.3389/fcvm.2021.638468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Elabela, a novel cardiac developmental peptide, has been shown to improve heart dysfunction. However, the roles and correlation of Elabela in predicting adverse cardiac events in hypertensive patients with heart failure (HF) remain largely unclear. Objective: To measure plasma levels of Elabela in hypertensive patients with HF and evaluate its prognostic value. Methods: A single-site, cohort, prospective, observational study was investigated with all subjects, including control subjects and hypertensive patients with or without HF, whom were recruited in Beijing Chaoyang Hospital Affiliated to Capital Medical University form October 2018 to July 2019. The subjects among different groups were matched based on age and sex. The clinical characteristics were collected, and plasma Elabela levels were detected in all subjects. The hypertensive patients with HF were followed up for 180 days, and the major adverse cardiac events (MACE) were recorded. The Cox regression was used to explore the correlation between Elabela level and MACE in hypertensive patients with or without HF. The receiver operating characteristic curves were used to access the predictive power of plasma Elabela level. Results: A total of 308 subjects, including 40 control subjects, 134 hypertensive patients without HF, and 134 hypertensive patients with HF were enrolled in this study. Plasma levels of Elabela were lower in hypertensive patients compared with control subjects [4.9 (2.8, 6.7) vs. 11.8 (9.8, 14.0) ng/ml, P < 0.001]. Furthermore, HF patients with preserved ejection fraction had a higher plasma Elabela level than those with impaired left ventricular systolic function (heart failure with mid-range ejection fraction and heart failure with reduced ejection fraction). The hypertensive patients with HF and higher plasma Elabela levels had a better readmission-free and MACE-free survival than those with lower plasma Elabela levels in survival analysis. The Cox regression analysis revealed that plasma Elabela levels were negatively associated with MACE (HR 0.75, 95% CI 0.61–0.99, P = 0.048) in hypertensive patients with HF. Conclusion: Plasma Elabela levels were decreased in hypertensive patients with left ventricular systolic dysfunction. Thus, Elabela may be potentially used as a novel predictor for MACE in hypertensive patients with HF.
Collapse
Affiliation(s)
- Zheng Ma
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Sara Martin
- Santa Rosa Family Medicine Residency, Santa Rosa, CA, United States
| | - Yeping Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xin-Chun Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Estienne A, Bongrani A, Froment P, Dupont J. Apelin and chemerin receptors are G protein-coupled receptors involved in metabolic as well as reproductive functions: Potential therapeutic implications? ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.coemr.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Fu J, Chen X, Liu X, Xu D, Yang H, Zeng C, Long H, Zhou C, Wu H, Zheng G, Wu H, Wang W, Wang T. ELABELA ameliorates hypoxic/ischemic-induced bone mesenchymal stem cell apoptosis via alleviation of mitochondrial dysfunction and activation of PI3K/AKT and ERK1/2 pathways. Stem Cell Res Ther 2020; 11:541. [PMID: 33317626 PMCID: PMC7734864 DOI: 10.1186/s13287-020-02063-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have exerted their brilliant potential to promote heart repair following myocardial infarction. However, low survival rate of MSCs after transplantation due to harsh conditions with hypoxic and ischemic stress limits their therapeutic efficiency in treating cardiac dysfunction. ELABELA (ELA) serves as a peptide hormone which has been proved to facilitate cell growth, survival, and pluripotency in human embryonic stem cells. Although ELA works as an endogenous ligand of a G protein-coupled receptor APJ (Apelin receptor, APLNR), whether APJ is an essential signal for the function of ELA remains elusive. The effect of ELA on apoptosis of MSCs is still vague. Objective We studied the role of ELABELA (ELA) treatment on the anti-apoptosis of MSCs in hypoxic/ischemic (H/I) conditions which mimic the impaired myocardial microenvironment and explored the possible mechanisms in vitro. Methods MSCs were obtained from donated rats weighing between 80~120 g. MSCs were exposed to serum-free and hypoxic (1% O2) environments for 24 h, which mimics hypoxic/ischemic damage in vivo, using serum-containing normoxic conditions (20% O2) as a negative control. MSCs that were exposed to H/I injury with ELA processing were treated by 5 μM of ELA. Cell viability and apoptosis of MSCs were evaluated by CCK8 and flow cytometry, respectively. Mitochondrial function of MSCs was also assessed according to mitochondrial membrane potential (MMP) and ATP content. The protein expression of key kinases of the PI3K/AKT and ERK1/2 signaling pathways involving t-AKT, p-AKT, t-ERK1/2, and p-ERK1/2, as well as apoptosis-related protein expression of Bcl-2, Bax, and cleaved Caspase 3, were monitored by Western blot. Results We found that ELA treatment of H/I-induced MSCs improved overall cell viability, enhanced Bcl/Bax expression, and decreased Caspase 3 activity. ELA inhibited H/I-induced mitochondrial dysfunction by increasing ATP concentration and suppressing the loss of mitochondrial transmembrane potential. However, this anti-apoptotic property of ELA was restrained in APJ-silenced MSCs. Additionally, ELA treatment induced the phosphorylation of AKT and ERK, while the blockade of PI3K/AKT and ERK1/2 pathways with respective inhibitors, LY294002 and U0126, suppressed the action of ELA. Conclusion ELA positively affected on the survival of MSCs and exhibited anti-apoptotic characteristics when exposed to hypoxic/ischemic condition in vitro. Also, the function of ELA was correlated with the APJ receptor, reduced mitochondrial damage, and activation of the PI3K/AKT and ERK1/2 signal axes.
Collapse
Affiliation(s)
- Jiaying Fu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xuxiang Chen
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Xin Liu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Daishi Xu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Huan Yang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Chaotao Zeng
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Huibao Long
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Changqing Zhou
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Haidong Wu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Guanghui Zheng
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Hao Wu
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Wuming Wang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Tong Wang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China.
| |
Collapse
|
32
|
Wang J, Zhou Y, Wang Q, Du B, Wu Y, Chen Q, Zhang X, Lu Y, Chen S, Sun K. Elabela: A Novel Biomarker for Right Ventricular Pressure Overload in Children With Pulmonary Stenosis or Pulmonary Atresia With Intact Ventricular Septum. Front Cardiovasc Med 2020; 7:581848. [PMID: 33282918 PMCID: PMC7688667 DOI: 10.3389/fcvm.2020.581848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/08/2020] [Indexed: 01/21/2023] Open
Abstract
Background: Assessing right ventricular overload in children is challenging. We conducted this study involving children with pulmonary valvular stenosis (PS) or pulmonary atresia with intact ventricular septum (PA/IVS) to evaluate the potential of a new endogenous ligand of apelin receptor, Elabela (ELA), as a potential biomarker for right heart overload. Methods: In this prospective cohort study, a total of 118 congenital heart diseases patients with right ventricle outflow tract obstruction were recruited from 2018 to 2019. Among them, 44 isolated PS and 7 PA/IVS patients were selected. Their venous blood was collected, and all patients underwent an echocardiographic examination. Among them, post-operative blood was collected from 24 patients with PS after percutaneous balloon pulmonary valvuloplasty. The plasma ELA concentration was measured using enzyme-linked immunosorbent assay. Results: The ELA was significantly associated with the peak transvalvular pulmonary gradient (r = −0.62; p = 0.02), thus reflecting the severity of PS or PA/IVS. The ELA significantly increased at 3 days after intervention, when mechanical obstruction of the right outflow tract was relieved. Based on the receiver-operator characteristic curve results, ELA could be a risk factor for duct dependence in patients with critical PS or PA/IVS who are younger than 6 months (AUC: 0.82). Conclusion: ELA concentration and severity of PS or PA/IVS had a significant negative correlation, indicating that ELA might be a novel biomarker for right ventricular afterload and reflect the immediate pressure changes in the right heart. Furthermore, ELA could predict duct-dependency in PS and PA/IVS patients, as valuable as classical echocardiographic indexes.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhou
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingjie Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Du
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yurong Wu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Zhang
- Clinical Research Unit, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Lu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Li C, Miao X, Wang S, Liu Y, Sun J, Liu Q, Cai L, Wang Y. Elabela may regulate SIRT3-mediated inhibition of oxidative stress through Foxo3a deacetylation preventing diabetic-induced myocardial injury. J Cell Mol Med 2020; 25:323-332. [PMID: 33244875 PMCID: PMC7810951 DOI: 10.1111/jcmm.16052] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 01/13/2023] Open
Abstract
Diabetic cardiomyopathy—pathophysiological heart remodelling and dysfunction that occurs in absence of coronary artery disease, hypertension and/or valvular heart disease—is a common diabetic complication. Elabela, a new peptide that acts via Apelin receptor, has similar functions as Apelin, providing beneficial effects on body fluid homeostasis, cardiovascular health and renal insufficiency, as well as potentially beneficial effects on metabolism and diabetes. In this study, Elabela treatment was found to have profound protective effects against diabetes‐induced cardiac oxidative stress, inflammation, fibrosis and apoptosis; these protective effects may depend heavily upon SIRT3‐mediated Foxo3a deacetylation. Our findings provide evidence that Elabela has cardioprotective effects for the first time in the diabetic model.
Collapse
Affiliation(s)
- Cheng Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao Miao
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shudong Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yucheng Liu
- Osteopathic Medicine Candidate, A.T. Still University School of Osteopathic Medicine in Arizona, Mesa, AZ, USA
| | - Jian Sun
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Quan Liu
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lu Cai
- Departments of Pediatrics, Pediatric Research Institute, The University of Louisville School of Medicine, Louisville, KY, USA.,Norton Children Hospital, Louisville, KY, USA
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
34
|
Guo YY, Li T, Liu H, Tang L, Li YC, Hu HT, Su YF, Lin Y, Wang YY, Li C, Huang HF, Jin L, Liu XM. Circulating levels of Elabela and Apelin in the second and third trimesters of pregnancies with gestational diabetes mellitus. Gynecol Endocrinol 2020; 36:890-894. [PMID: 32208782 DOI: 10.1080/09513590.2020.1739264] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We design this study to detect levels of Elabela (ELA) and Apelin (APLN) in women with and without gestational diabetes mellitus (GDM) in the second and third trimesters, and to identify whether there is any association between ELA, APLN, and metabolic parameters. Seventy-nine GDM and 80 control subjects in the second trimester and 87 GDM and 88 healthy subjects in the third trimester were included. In the second trimester, lower ELA levels [(14.1 versus 16.9) ng/ml, p = .025] and higher APLN levels [(1021.8 versus 923.5) pg/ml, p = .046] were observed in GDM patients compared to controls. ELA levels were positively correlated with fasting plasma glucose (FPG) (r = 0.423, p < .001) in the control group, and APLN levels were negatively correlated with triglycerides (TG) (r = -0.251, p = .025) in the control group and total cholesterol (TC) (r = -0.227, p = .044) in the GDM group. ELA appeared to be related to glucose metabolism and APLN is involved in lipid metabolism during pregnancy. The expression of ELA is significantly downregulated from the second trimester to the third trimester.
Collapse
Affiliation(s)
- Yan-Yan Guo
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tong Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Han Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Tang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Chen Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong-Tao Hu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Nanjing Medical University/Jiangsu Province hospital, Nanjing, China
| | - Yun-Fei Su
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yin-Yu Wang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - He-Feng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Jin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Mei Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Acele A, Bulut A, Donmez Y, Koc M. Serum Elabela Level Significantly Increased in Patients with Complete Heart Block. Braz J Cardiovasc Surg 2020; 35:683-688. [PMID: 33118733 PMCID: PMC7598968 DOI: 10.21470/1678-9741-2019-0461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Objective To investigate the change in serum Elabela level, a new apelinergic system peptide, in patients with complete atrioventricular (AV) block and healthy controls. Methods The study included 50 patients with planned cardiac pacemaker (PM) implantation due to complete AV block and 50 healthy controls with similar age and gender. Elabela level was measured in addition to routine anamnesis, physical examination, and laboratory tests. Patients were divided into two groups, with and without AV block, and then compared. Results In patients with AV block, serum Elabela level was significantly higher and heart rate and cardiac output were significantly lower than in healthy controls. Serum Elabela level was found to be positively correlated with high-sensitive C-reactive protein and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, but negatively correlated with heart rate, high-density lipoprotein cholesterol, and cardiac output. In linear regression analysis, it was found that these parameters were only closely related to heart rate and NT-proBNP. Serum Elabela level was determined in the patients with AV block independently; an Elabela level > 9.5 ng/ml determined the risk of complete AV-block with 90.2% sensitivity and 88.0% specificity. Conclusion In patients with complete AV block, the serum Elabela level increases significantly before the PM implantation procedure. According to the results of our study, it was concluded that serum Elabela level could be used in the early determination of patients with complete AV block.
Collapse
Affiliation(s)
- Armağan Acele
- Adana Health Practice and Research Center University of Health Sciences Department of Cardiology Adana Turkey Department of Cardiology, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Atilla Bulut
- Adana Health Practice and Research Center University of Health Sciences Department of Cardiology Adana Turkey Department of Cardiology, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Yurdaer Donmez
- Adana Health Practice and Research Center University of Health Sciences Department of Cardiology Adana Turkey Department of Cardiology, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| | - Mevlut Koc
- Adana Health Practice and Research Center University of Health Sciences Department of Cardiology Adana Turkey Department of Cardiology, University of Health Sciences - Adana Health Practice and Research Center, Adana, Turkey
| |
Collapse
|
36
|
Fc-Elabela fusion protein attenuates lipopolysaccharide-induced kidney injury in mice. Biosci Rep 2020; 40:226131. [PMID: 32808659 PMCID: PMC7463303 DOI: 10.1042/bsr20192397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022] Open
Abstract
Endotoxemia-induced acute kidney injury (AKI) is a common clinical condition that lacks effective treatments. Elabela (ELA) is a recently discovered kidney peptide hormone, encoded by the gene apela, and has been reported to improve cardio-renal outcomes in sepsis. However, ELA is a small peptide and is largely unsuitable for clinical use because of its short in vivo half-life. In the present study, we evaluated the potential renoprotective effects of a long-acting constant fragment (Fc)-ELA fusion protein in liposaccharide (LPS)-induced AKI in mice. LPS administration in mice for 5 days greatly lowered the gene expression of apela and impaired kidney function, as evidenced by elevated serum creatinine and the ratio of urine protein to creatinine. In addition, renal inflammation and macrophage infiltration were apparent in LPS-challenged mice. Treatment with the Fc-ELA fusion protein partially restored apela expression and attenuated the kidney inflammation. Moreover, LPS treatment induced reactive oxygen species (ROS) production and apoptosis in kidney HK-2 cells as well as in the mouse kidney, which were mitigated by ELA or Fc-ELA treatment. Finally, we found that ELA promoted the survival of HK-2 cells treated with LPS, and this action was abolished by LY204002, a PI3K/Akt inhibitor. Collectively, we have demonstrated that the Fc-ELA fusion protein has significant renoprotective activities against LPS-induced AKI in mice.
Collapse
|
37
|
Buyuksimsek M, Gulumsek E, Aslan MZ, Ozturk HA, Bashir AM, Icen YK, Ay N, Acibucu F, Koc M, Sumbul HE, Saler T. Serum Elabela Levels Are Elevated in Patients with Hyperthyroidism. TOHOKU J EXP MED 2020; 251:255-261. [PMID: 32713880 DOI: 10.1620/tjem.251.255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The apelinergic system plays an important role in the modulation of the cardiovascular system via the apelin peptide and the apelin receptor (APJ receptor). Apelin and elabela, also known toddler, are peptide ligands for the apelin receptor. These two peptides show similar biological actions, such as vasodilatation, increased myocardial contractility, angiogenesis, and energy metabolism. However, the serum levels of elabela in patients with hyperthyroidism are not well known. The aim of this study was to investigate the changes in serum elabela levels in patients with hyperthyroidism and its association with hypertension. This cross-sectional study included 74 patients with newly diagnosed hyperthyroidism due to Graves' disease and 20 healthy individuals. Serum elabela levels were measured by enzyme-linked immunosorbent assay. The patients were divided into two groups: hyperthyroid patients without hypertension (n = 51) and those with hypertension (n = 23). Basal heart rate, serum glucose and high-sensitive C reactive protein were significantly higher in hyperthyroid patients with and those without hypertension than in healthy controls (p < 0.05 for each). Serum elabela levels were significantly elevated in hyperthyroid patients compared with healthy controls, with higher serum elabela levels found in hyperthyroid patients with hypertension than those without hypertension. Linear regression analysis showed that serum elabela levels were correlated with systolic blood pressure (p < 0.001). In conclusion, serum elabela levels were significantly increased in patients with hyperthyroidism, especially in hyperthyroid patients with hypertension. Elevation in serum elabela levels may contribute to alleviation of cardiovascular complications of hyperthyroidism and hypertension.
Collapse
Affiliation(s)
- Mahmut Buyuksimsek
- Department of Medical Oncology, University of Health Sciences-Adana Health Practice and Research Center
| | - Erdinc Gulumsek
- Department of Gastroenterology, University of Health Sciences-Adana Health Practice and Research Center
| | - Muhammed Zubeyir Aslan
- Department of Internal Medicine, University of Health Sciences-Adana Health Practice and Research Center
| | - Huseyin Ali Ozturk
- Department of Internal Medicine, University of Health Sciences-Adana Health Practice and Research Center
| | - Ahmed Muhammad Bashir
- Department of Internal Medicine, University of Health Sciences-Mogadishu Somalia-Turkey Recep Tayyip Erdogan Training and Research Hospital
| | - Yahya Kemal Icen
- Department of Cardiology, University of Health Sciences-Adana Health Practice and Research Center
| | - Nurettin Ay
- Department of Internal Medicine, University of Health Sciences-Adana Health Practice and Research Center
| | - Fettah Acibucu
- Department of Endocrinology, University of Health Sciences-Adana Health Practice and Research Center
| | - Mevlut Koc
- Department of Cardiology, University of Health Sciences-Adana Health Practice and Research Center
| | - Hilmi Erdem Sumbul
- Department of Internal Medicine, University of Health Sciences-Adana Health Practice and Research Center
| | - Tayyibe Saler
- Department of Internal Medicine, University of Health Sciences-Adana Health Practice and Research Center
| |
Collapse
|
38
|
The Elabela in hypertension, cardiovascular disease, renal disease, and preeclampsia: an update. J Hypertens 2020; 39:12-22. [PMID: 32740407 DOI: 10.1097/hjh.0000000000002591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
: Although considerable success has been shown for antihypertensive medications, the resistant hypertension and hypertension-related organ damages are still the important clinical issues and pose as high health and economic pressure. Therefore, novel therapeutic techniques and antihypertensive drugs are needed to advance more effective therapy of hypertension and hypertension-related disease to ameliorate mortality and healthcare costs worldwide. In this review, we highlight the latest progress in supporting the therapeutic potential of Elabela (ELA), a recently discovered early endogenous ligand for G-protein-coupled receptor apelin peptide jejunum, apelin receptor. Systemic administration of ELA exerts vasodilatory, antihypertensive, cardioprotective, and renoprotective effects, whereas central application of ELA increases blood pressure and causes cardiovascular remodeling primarily secondary to the hypertension. In addition, ELA drives extravillous trophoblast differentiation and prevents the pathogenesis of preeclampsia (a gestational hypertensive syndrome) by promoting placental angiogenesis. These findings strongly suggest peripheral ELA's therapeutic potential in preventing and treating hypertension and hypertension-related diseases including cardiovascular disease, kidney disease, and preeclampsia. Since therapeutic use of ELA is mainly limited by its short half-life and parenteral administration, it may be a clinical application candidate for the therapy of hypertension and its complications when fused with a large inert chemicals (e.g. polyethylene glycol, termed polyethylene glycol-ELA-21) or other proteins (e.g. the Fc fragment of IgG and albumin, termed Fc-ELA-21 or albumin-ELA-21), and new delivery methods are encouraged to develop to improve the efficacy of ELA fragments on apelin peptide jejunum or alternative unknown receptors.
Collapse
|
39
|
Pan Y, Li Q, Yan H, Huang J, Wang Z. Apela improves cardiac and renal function in mice with acute myocardial infarction. J Cell Mol Med 2020; 24:10382-10390. [PMID: 32686917 PMCID: PMC7521152 DOI: 10.1111/jcmm.15651] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Apela was recently identified as a new ligand of the apelin peptide jejunum (APJ) receptor. The purpose of this study was to investigate the role of apela in post-myocardial infarction (post-MI) recovery from cardiorenal damage. A murine MI model was established, and apela was then infused subcutaneously for two weeks. Echocardiographs were performed before and after infarction at the indicated times. Renal function was evaluated by serum and urine biochemistry. Immunohistochemistry of heart and kidney tissue was performed by in situ terminal deoxynucleotidyl transferase-mediated dUPT nick end-labelling reaction. Compared to the control group (MI/vehicle), the average value of the left ventricular ejection fraction in apela-treated mice increased by 32% and 39% at 2- and 4-week post-MI, respectively. The mean levels of serum blood urea nitrogen,creatinine, N-terminal pro-brain natriuretic peptide and 24-hour urine protein were significantly decreased at 4-week post-MI in apela-treated mice relative to that of control animals. At the cellular level, we found that apela treatment significantly reduced myocardial fibrosis and cellular apoptosis in heart and kidney tissue. These data suggest that apela improves cardiac and renal function in mice with acute MI. The peptide may be potential therapeutic agent for heart failure.
Collapse
Affiliation(s)
- Yang Pan
- Department of Cardiovascular Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Quanyi Li
- Department of Cardiovascular Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Hong Yan
- Department of Clinical Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Clinical Laboratory, Nanjing Chest Hospital, Nanjing, China
| | - Jin Huang
- Department of Cardiovascular Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Zhi Wang
- Department of Cardiovascular Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, China
| |
Collapse
|
40
|
Interaction of apelin, elabela and nitric oxide in schizophrenia patients. J Med Biochem 2020; 39:184-190. [PMID: 33033451 DOI: 10.2478/jomb-2019-0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/07/2019] [Indexed: 01/25/2023] Open
Abstract
Background Apelin (APLN), elabela (ELA), and nitric oxide (NO) have effects on physiological and behavioural properties in biological systems. This study was designed to determine APLN, ELA and NO levels in schizophrenia patients and assess whether these molecules are of diagnostic value. Methods A total of 33 schizophrenic patients and 32 ageand sex-adjusted healthy participants were included in the study. ELA, APLN and NO levels were measured using ELISA methods. Results Although the ELA and NO levels of the patients were lower than the control group, APLN levels were higher (p = 0.039, p = 0.019, p = 0.048, respectively). There was a significant negative correlation between APLN levels and triglyceride (TG) and body mass index (BMI) levels (r = -0.426, p = < 0.001 and r = -0.330, p = 0.007, respectively). Respectively, the areas under the receiver-operating characteristic (ROC) curves of the ELA/APLN, ELA/NO and APLN/NO ratios were 0.628, 0.590 and 0.709, 95% confident intervals (CI): 0.491-0.764, 0.450-0.730 and 0.579-0.840. Conclusions Decreased levels of ELA and NO and increased APLN levels in schizophrenia suggest that these molecules may be involved in its etiopathology. The APLN/NO ratio also seems to show promise in the diagnosis of the disease and may be used in future.
Collapse
|
41
|
Elabela as a novel marker: Well-correlated with WIfI amputation risk score in lower extremity arterial disease patients. Anatol J Cardiol 2020; 25:330-337. [PMID: 33960308 DOI: 10.14744/anatoljcardiol.2020.17329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Worldwide, over 200 million people are diagnosed with lower extremity arterial disease (LEAD). LEAD significantly increases the risk of death and amputation of the lower limb. A new classification system (WIfI) has been proposed to initially assess all patients with ischemic rest pain or wounds and also predicts 1-year amputation risk. Elabela is a bioactive peptide and a part of the apelinergic system, which has beneficial effects on body fluid homeostasis and cardiovascular health. We aimed to investigate serum Elabela levels in LEAD. METHODS A total of 119 subjects were enrolled in this cross-sectional study, 60 of whom were in the LEAD group and 59 in the control group. All participants underwent physical examination and routine biochemical tests, including serum Elabela levels. Additionally, the LEAD group was divided into subgroups according to the Rutherford classification, ankle-brachial index (ABI) values, and WIfI risk scores. RESULTS Serum low-density lipoprotein, Elabela, and high-sensitivity C-reactive protein (Hs-CRP) levels were statistically higher in the LEAD group (p=0.002, p<0.001, and p<0.001, respectively). In the Rutherford classification, as the stage increased, Elabela and Hs-CRP levels increased similarly (p<0.001). Elabela levels were statistically found to be positively correlated with Hs-CRP and WIfI amputation score but negatively correlated with ABI (p<0.001). CONCLUSION Serum Elabela level, which is known to be increased in inflammatory processes, has the potential in predicting low extremity arterial obstruction and WIfI amputation risk in LEAD patients.
Collapse
|
42
|
Geng Z, Ye C, Tong Y, Zhang F, Zhou YB, Xiong XQ. Exacerbated pressor and sympathoexcitatory effects of central Elabela in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2019; 318:H124-H134. [PMID: 31834836 DOI: 10.1152/ajpheart.00449.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Elabela (ELA) is a newly discovered peptide that acts as a novel endogenous ligand of angiotensin receptor-like 1 (APJ) receptor. This study was designed to evaluate the effects of ELA-21 in paraventricular nucleus (PVN) on blood pressure and sympathetic nerve activity in spontaneously hypertensive rats (SHR). Experiments were performed in male Wistar-Kyoto rats (WKY) and SHR. ELA expression was upregulated in PVN of SHR. PVN microinjection of ELA-21 increased renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), heart rate (HR), plasma norepinephrine, and arginine vasopressin (AVP) levels in SHR. Intravenous injection of ELA-21 significantly decreased MAP and HR in both WKY and SHR, but only induced a slight decrease in RSNA. APJ antagonist F13A in PVN abolished the effects of ELA-21 on RSNA, MAP and HR. Intravenous infusion of both ganglionic blocker hexamethonium and AVP V1a receptor antagonist SR49059 caused significant reduction in the effects of ELA-21 on RSNA, MAP and HR in SHR, while combined administration of hexamethonium and SR49059 abolished the effects of ELA-21. ELA-21 microinjection stimulated Akt and p85α subunit of phosphatidylinositol 3-kinase (PI3K) phosphorylation in PVN, whereas PI3K inhibitor LY294002 or Akt inhibitor MK-2206 almost abolished the effects of ELA-21 on RSNA, MAP, and HR. Chronic PVN infusion of ELA-21 induced sympathetic activation, hypertension, and AVP release accompanied with cardiovascular remodeling in normotensive WKY. In conclusion, ELA-21 in PVN induces exacerbated pressor and sympathoexcitatory effects in hypertensive rats via PI3K-Akt pathway.NEW & NOTEWORTHY We demonstrated that PVN microinjection of ELA-21 increases sympathetic nerve activity and blood pressure, which can be abolished by pretreatment of APJ antagonist. This is the first demonstration that central ELA can induce hypertension. The pressor effects in PVN are mediated by both sympathetic activation and vasopressin release via PI3K-Akt pathway. Our data confirm that ELA is upregulated in the PVN of SHR and so may be involved in the pressor and sympathoexcitatory effects in hypertension.
Collapse
Affiliation(s)
- Zhi Geng
- Department of Cardiac Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Ye
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Tong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye-Bo Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Qing Xiong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Dönmez Y, Acele A. Increased Elabela levels in the acute ST segment elevation myocardial infarction patients. Medicine (Baltimore) 2019; 98:e17645. [PMID: 31651884 PMCID: PMC6824787 DOI: 10.1097/md.0000000000017645] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
Elabela is a bioactive peptide and a part of Apelinergic system. Elabela has an important role in the early embryonic stages. Elabela's beneficial effects in cardiovascular system were shown in some animal models or in vitro studies. Lately, some investigational studies in humans are started to be seen in literature. Our aims were to investigate serum Elabela levels in the first day of ST segment elevation myocardial infarction (STEMI), to compare with healthy controls, and to see if there is a correlation between other cardiac biomarkers in humans.The study was planned as cross-sectional. The patients group had 124 STEMI subjects. They were grouped as inferior (n = 59) and anterior myocardial infarction (n = 65) groups, and compared with the healthy control population (n = 77). Routine blood tests and serum Elabela levels were measured. Transthoracic echocardiography performed to all subjects.Frequency of diabetes mellitus, hypertension, smoking, and hyperlipidemia in both STEMI groups were significantly higher than control subjects. Glucose, high density lipoprotein (HDL) cholesterol, triglyceride, high sensitive C reactive protein (Hs-CRP), troponin I, N-terminal brain natriuretic peptide (NT-ProBNP), and Elabela levels were significantly higher in both STEMI groups. Other laboratory parameters were similar. Group 2 and 3 had significantly lower left ventricular ejection fraction (LVEF) than group 1. Group 3 had also significantly lower LVEF than group 2. There was a positive but moderate correlation between Elabela, troponin I, and NT-ProBNP. Elabela was negatively correlated with LVEF. This correlation was also moderate.We showed increased Elabela levels in STEMI patients in this study. Also, we observed a moderate positive correlation between troponin I, NT-ProBNP, and Elabela.
Collapse
|