1
|
Ignot-Gutiérrez A, Serena-Romero G, Guajardo-Flores D, Alvarado-Olivarez M, Martínez AJ, Cruz-Huerta E. Proteins and Peptides from Food Sources with Effect on Satiety and Their Role as Anti-Obesity Agents: A Narrative Review. Nutrients 2024; 16:3560. [PMID: 39458554 PMCID: PMC11510221 DOI: 10.3390/nu16203560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVE Obesity, clinically defined as a body mass index (BMI) of 30 kg/m2 or higher, is a medical condition characterized by the excessive accumulation of body fat, which can lead to adverse health consequences. As a global public health issue with an escalating prevalence, controlling appetite and satiety is essential for regulating energy balance and managing body weight. Dietary proteins and peptides have gained interest in their potential to prevent and treat obesity by modulating satiety signals. This narrative review analyzes scientific evidence highlighting the role of dietary proteins and peptides in regulating satiety signals and investigates their therapeutic potential in preventing and treating obesity. METHODS A comprehensive literature search was conducted in multiple electronic databases, including PubMed, Scopus, and Web of Science. The search focused on articles examining the impact of dietary proteins and peptides on satiety and obesity, encompassing both preclinical and clinical trials. RESULTS Several studies have demonstrated a correlation between the intake of specific proteins or peptides from plant and animal sources and satiety regulation. These investigations identified mechanisms where amino acids and peptides interact with enteroendocrine cell receptors, activating intracellular signaling cascades that promote the release of anorexigenic gut hormones such as cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY). Both in vitro and in vivo assays have shown that these interactions contribute to appetite regulation and the sensation of satiety. CONCLUSIONS Using proteins and peptides in the diet may be an effective strategy for regulating appetite and controlling body weight. However, more research-including clinical trials-is needed to understand the underlying mechanisms better and optimize the application of these bioactive compounds in preventing and treating obesity.
Collapse
Affiliation(s)
- Anaís Ignot-Gutiérrez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Gloricel Serena-Romero
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico;
| | - Daniel Guajardo-Flores
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico;
| | - Mayvi Alvarado-Olivarez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Armando J. Martínez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Elvia Cruz-Huerta
- Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa-Enríquez 91193, Veracruz, Mexico
| |
Collapse
|
2
|
Balantekin KN, Kretz MJ, Mietlicki-Baase EG. The emerging role of glucagon-like peptide 1 in binge eating. J Endocrinol 2024; 262:e230405. [PMID: 38642585 PMCID: PMC11156433 DOI: 10.1530/joe-23-0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Binge eating is a central component of two clinical eating disorders: binge eating disorder and bulimia nervosa. However, the large treatment gap highlights the need to identify other strategies to decrease binge eating. Novel pharmacotherapies may be one such approach. Glucagon-like peptide-1 (GLP-1) is an intestinal and brain-derived neuroendocrine signal with a critical role in promoting glycemic control through its incretin effect. Additionally, the energy balance effects of GLP-1 are well-established; activation of the GLP-1 receptor (GLP-1R) reduces food intake and body weight. Aligned with these beneficial metabolic effects, there are GLP-1R agonists that are currently used for the treatment of diabetes and obesity. A growing body of literature suggests that GLP-1 may also play an important role in binge eating. Dysregulation of the endogenous GLP-1 system is associated with binge eating in non-human animal models, and GLP-1R agonists may be a promising approach to suppress the overconsumption that occurs during binge eating. Here, we briefly discuss the role of GLP-1 in normal energy intake and reward and then review the emerging evidence suggesting that disruptions to GLP-1 signaling are associated with binge eating. We also consider the potential utility of GLP-1-based pharmacotherapies for reducing binge eating behavior.
Collapse
Affiliation(s)
- Katherine N. Balantekin
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214 USA
- Center for Ingestive Behavior Research, University at Buffalo, Buffalo, NY 14260 USA
| | - Martin J. Kretz
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214 USA
| | - Elizabeth G. Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214 USA
- Center for Ingestive Behavior Research, University at Buffalo, Buffalo, NY 14260 USA
| |
Collapse
|
3
|
Caldarelli M, Rio P, Marrone A, Ocarino F, Chiantore M, Candelli M, Gasbarrini A, Gambassi G, Cianci R. Gut-Brain Axis: Focus on Sex Differences in Neuroinflammation. Int J Mol Sci 2024; 25:5377. [PMID: 38791415 PMCID: PMC11120930 DOI: 10.3390/ijms25105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, there has been a growing interest in the concept of the "gut-brain axis". In addition to well-studied diseases associated with an imbalance in gut microbiota, such as cancer, chronic inflammation, and cardiovascular diseases, research is now exploring the potential role of gut microbial dysbiosis in the onset and development of brain-related diseases. When the function of the intestinal barrier is altered by dysbiosis, the aberrant immune system response interacts with the nervous system, leading to a state of "neuroinflammation". The gut microbiota-brain axis is mediated by inflammatory and immunological mechanisms, neurotransmitters, and neuroendocrine pathways. This narrative review aims to illustrate the molecular basis of neuroinflammation and elaborate on the concept of the gut-brain axis by virtue of analyzing the various metabolites produced by the gut microbiome and how they might impact the nervous system. Additionally, the current review will highlight how sex influences these molecular mechanisms. In fact, sex hormones impact the brain-gut microbiota axis at different levels, such as the central nervous system, the enteric nervous one, and enteroendocrine cells. A deeper understanding of the gut-brain axis in human health and disease is crucial to guide diagnoses, treatments, and preventive interventions.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Andrea Marrone
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Francesca Ocarino
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Monica Chiantore
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
4
|
Clemente-Suárez VJ, Redondo-Flórez L, Rubio-Zarapuz A, Martín-Rodríguez A, Tornero-Aguilera JF. Microbiota Implications in Endocrine-Related Diseases: From Development to Novel Therapeutic Approaches. Biomedicines 2024; 12:221. [PMID: 38255326 PMCID: PMC10813640 DOI: 10.3390/biomedicines12010221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review article delves into the critical role of the human microbiota in the development and management of endocrine-related diseases. We explore the complex interactions between the microbiota and the endocrine system, emphasizing the implications of microbiota dysbiosis for the onset and progression of various endocrine disorders. The review aims to synthesize current knowledge, highlighting recent advancements and the potential of novel therapeutic approaches targeting microbiota-endocrine interactions. Key topics include the impact of microbiota on hormone regulation, its role in endocrine pathologies, and the promising avenues of microbiota modulation through diet, probiotics, prebiotics, and fecal microbiota transplantation. We underscore the importance of this research in advancing personalized medicine, offering insights for more tailored and effective treatments for endocrine-related diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/ Tajo s/n, 28670 Villaviciosa de Odón, Spain;
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| |
Collapse
|
5
|
Isola JVV, Ko S, Ocañas SR, Stout MB. Role of Estrogen Receptor α in Aging and Chronic Disease. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2023; 5:e230005. [PMID: 37425648 PMCID: PMC10327608 DOI: 10.20900/agmr20230005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Estrogen receptor alpha (ERα) plays a crucial role in reproductive function in both sexes. It also mediates cellular responses to estrogens in multiple nonreproductive organ systems, many of which regulate systemic metabolic homeostasis and inflammatory processes in mammals. The loss of estrogens and/or ERα agonism during aging is associated with the emergence of several comorbid conditions, particularly in females undergoing the menopausal transition. Emerging data also suggests that male mammals likely benefit from ERα agonism if done in a way that circumvents feminizing characteristics. This has led us, and others, to speculate that tissue-specific ERα agonism may hold therapeutic potential for curtailing aging and chronic disease burden in males and females that are at high-risk of cancer and/or cardiovascular events with traditional estrogen replacement therapies. In this mini-review, we emphasize the role of ERα in the brain and liver, summarizing recent evidence that indicates these two organs systems mediate the beneficial effects of estrogens on metabolism and inflammation during aging. We also discuss how 17α-estradiol administration elicits health benefits in an ERα-dependent manner, which provides proof-of-concept that ERα may be a druggable target for attenuating aging and age-related disease burden.
Collapse
Affiliation(s)
- José V. V. Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sunghwan Ko
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sarah R. Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
6
|
Omer M, Ngo C, Ali H, Orlovskaya N, Cheong VS, Ballesteros A, Garner MT, Wynn A, Martyniak K, Wei F, Collins BE, Yarmolenko SN, Asiatico J, Kinzel M, Ghosh R, Meckmongkol T, Calder A, Dahir N, Gilbertson TA, Sankar J, Coathup M. The Effect of Omega-9 on Bone Viscoelasticity and Strength in an Ovariectomized Diet-Fed Murine Model. Nutrients 2023; 15:1209. [PMID: 36904208 PMCID: PMC10005705 DOI: 10.3390/nu15051209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Few studies have investigated the effect of a monosaturated diet high in ω-9 on osteoporosis. We hypothesized that omega-9 (ω-9) protects ovariectomized (OVX) mice from a decline in bone microarchitecture, tissue loss, and mechanical strength, thereby serving as a modifiable dietary intervention against osteoporotic deterioration. Female C57BL/6J mice were assigned to sham-ovariectomy, ovariectomy, or ovariectomy + estradiol treatment prior to switching their feed to a diet high in ω-9 for 12 weeks. Tibiae were evaluated using DMA, 3-point-bending, histomorphometry, and microCT. A significant decrease in lean mass (p = 0.05), tibial area (p = 0.009), and cross-sectional moment of inertia (p = 0.028) was measured in OVX mice compared to the control. A trend was seen where OVX bone displayed increased elastic modulus, ductility, storage modulus, and loss modulus, suggesting the ω-9 diet paradoxically increased both stiffness and viscosity. This implies beneficial alterations on the macro-structural, and micro-tissue level in OVX bone, potentially decreasing the fracture risk. Supporting this, no significant differences in ultimate, fracture, and yield stresses were measured. A diet high in ω-9 did not prevent microarchitectural deterioration, nevertheless, healthy tibial strength and resistance to fracture was maintained via mechanisms independent of bone structure/shape. Further investigation of ω-9 as a therapeutic in osteoporosis is warranted.
Collapse
Affiliation(s)
- Mahmoud Omer
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
| | - Hessein Ali
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Nina Orlovskaya
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Vee San Cheong
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK
| | | | | | - Austin Wynn
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Kari Martyniak
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
| | - Boyce E. Collins
- Engineering Research Center for Revolutionizing Biomaterials, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Sergey N. Yarmolenko
- Engineering Research Center for Revolutionizing Biomaterials, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Jackson Asiatico
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Michael Kinzel
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Teerin Meckmongkol
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
- Department of General Surgery, Nemours Children’s Hospital, Orlando, FL 32827, USA
| | - Ashley Calder
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Naima Dahir
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | | | - Jagannathan Sankar
- Engineering Research Center for Revolutionizing Biomaterials, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Melanie Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
7
|
Waclawek T, Park SQ. Potential mechanisms and modulators of food intake during pregnancy. Front Nutr 2023; 10:1032430. [PMID: 36742431 PMCID: PMC9895105 DOI: 10.3389/fnut.2023.1032430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Dietary choice during pregnancy is crucial not only for fetal development, but also for long-term health outcomes of both mother and child. During pregnancy, dramatic changes in endocrine, cognitive, and reward systems have been shown to take place. Interestingly, in different contexts, many of these mechanisms play a key role in guiding food intake. Here, we review how food intake may be impacted as a function of pregnancy-induced changes across species. We first summarize changes in endocrine and metabolic signaling in the course of pregnancy. Then, we show how these may be related to cognitive function and reward processing in humans. Finally, we link these to potential drivers of change in eating behavior throughout the course of pregnancy.
Collapse
Affiliation(s)
- Theresa Waclawek
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany,Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam, Germany
| | - Soyoung Q. Park
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany,Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam, Germany,Charité–Universitätsmedizin Berlin, Neuroscience Research Center, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany,Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany,*Correspondence: Soyoung Q. Park,
| |
Collapse
|
8
|
Vigil P, Meléndez J, Petkovic G, Del Río JP. The importance of estradiol for body weight regulation in women. Front Endocrinol (Lausanne) 2022; 13:951186. [PMID: 36419765 PMCID: PMC9677105 DOI: 10.3389/fendo.2022.951186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Obesity in women of reproductive age has a number of adverse metabolic effects, including Type II Diabetes (T2D), dyslipidemia, and cardiovascular disease. It is associated with increased menstrual irregularity, ovulatory dysfunction, development of insulin resistance and infertility. In women, estradiol is not only critical for reproductive function, but they also control food intake and energy expenditure. Food intake is known to change during the menstrual cycle in humans. This change in food intake is largely mediated by estradiol, which acts directly upon anorexigenic and orexigenic neurons, largely in the hypothalamus. Estradiol also acts indirectly with peripheral mediators such as glucagon like peptide-1 (GLP-1). Like estradiol, GLP-1 acts on receptors at the hypothalamus. This review describes the physiological and pathophysiological mechanisms governing the actions of estradiol during the menstrual cycle on food intake and energy expenditure and how estradiol acts with other weight-controlling molecules such as GLP-1. GLP-1 analogs have proven to be effective both to manage obesity and T2D in women. This review also highlights the relationship between steroid hormones and women's mental health. It explains how a decline or imbalance in estradiol levels affects insulin sensitivity in the brain. This can cause cerebral insulin resistance, which contributes to the development of conditions such as Parkinson's or Alzheimer's disease. The proper use of both estradiol and GLP-1 analogs can help to manage obesity and preserve an optimal mental health in women by reducing the mechanisms that trigger neurodegenerative disorders.
Collapse
Affiliation(s)
- Pilar Vigil
- Reproductive Health Research Institute (RHRI), Santiago, Chile
| | - Jaime Meléndez
- Reproductive Health Research Institute (RHRI), Santiago, Chile
| | - Grace Petkovic
- Arrowe Park Hospital, Department of Paediatrics, Wirral CH49 5PE, Merseyside, United Kingdom
| | - Juan Pablo Del Río
- Unidad de Psiquiatría Infantil y del Adolescente, Clínica Psiquiátrica Universitaria, Universidad de Chile, Santiago, Chile
- Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Millennium Science Initiative, Santiago, Chile
| |
Collapse
|
9
|
Leone A, De Amicis R, Pellizzari M, Bertoli S, Ravella S, Battezzati A. Appetite ratings and ghrelin concentrations in young adults after administration of a balanced meal. Does sex matter? Biol Sex Differ 2022; 13:25. [PMID: 35659737 PMCID: PMC9167557 DOI: 10.1186/s13293-022-00434-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Sex-based differences in appetite ratings have been observed previously. Ghrelin is the only known orexigenic peptide hormone. Sex differences in postprandial ghrelin responses may underlie different perceptions of hunger and satiety, but results are conflicting. We conducted a parallel study to evaluate sex differences in postprandial appetite ratings and ghrelin concentration after administration of a physiological meal among students of University of Milan.
Methods
Twenty-four healthy, normal weight volunteers (12 men and 12 women) aged 18–35 years were recruited. A balanced mixed meal meeting 40% of the estimated daily energy expenditure and providing 60% of calories from carbohydrates, 25% from lipids and 15% from protein was administrated. Sex differences in appetite ratings (satiety, hunger, fullness and desire to eat) and magnitude of ghrelin suppression during postprandial period (up to 180 min) were determined.
Results
In the fasting state, men and women did not differ in appetite ratings and ghrelin concentrations. After feeding, women tended to reach peak of satiety earlier than men, who in turn reached the nadir of hunger later than women (median: 30 min, interquartile range (IQR): 1; 120 vs. 1 min, IQR 1; 1, p = 0.007). Ghrelin suppression was greater in women (median decremental AUC − 95, IQR − 122; − 66) than in men (median decremental AUC − 47, IQR − 87; − 31, p = 0.041).
Conclusions
These findings suggest sex differences in the postprandial appetite regulation that might be important for nutritional strategy to prevent and treat obesity and eating disorders.
Collapse
|
10
|
Targeting the T-type calcium channel Cav3.2 in GABAergic arcuate nucleus neurons to treat obesity. Mol Metab 2021; 54:101391. [PMID: 34767997 PMCID: PMC8640109 DOI: 10.1016/j.molmet.2021.101391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE Cav3.2, a T-type low voltage-activated calcium channel widely expressed throughout the central nervous system, plays a vital role in neuronal excitability and various physiological functions. However, the effects of Cav3.2 on energy homeostasis remain unclear. Here, we examined the role of Cav3.2 expressed by hypothalamic GABAergic neurons in the regulation of food intake and body weight in mice and explored the underlying mechanisms. METHODS Male congenital Cana1h (the gene coding for Cav3.2) global knockout (Cav3.2KO) mice and their wild type (WT) littermates were first used for metabolic phenotyping studies. By using the CRISPR-Cas9 technique, Cav3.2 was selectively deleted from GABAergic neurons in the arcuate nucleus of the hypothalamus (ARH) by specifically overexpressing Cas9 protein and Cav3.2-targeting sgRNAs in ARH Vgat (VgatARH) neurons. These male mutants (Cav3.2KO-VgatARH) were used to determine whether Cav3.2 expressed by VgatARH neurons is required for the proper regulation of energy balance. Subsequently, we used an electrophysiological patch-clamp recording in ex vivo brain slices to explore the impact of Cav3.2KO on the cellular excitability of VgatARH neurons. RESULTS Male Cav3.2KO mice had significantly lower food intake than their WT littermate controls when fed with either a normal chow diet (NCD) or a high-fat diet (HFD). This hypophagia phenotype was associated with increased energy expenditure and decreased fat mass, lean mass, and total body weight. Selective deletion of Cav3.2 in VgatARH neurons resulted in similar feeding inhibition and lean phenotype without changing energy expenditure. These data provides an intrinsic mechanism to support the previous finding on ARH non-AgRP GABA neurons in regulating diet-induced obesity. Lastly, we found that naringenin extract, a predominant flavanone found in various fruits and herbs and known to act on Cav3.2, decreased the firing activity of VgatARH neurons and reduced food intake and body weight. These naringenin-induced inhibitions were fully blocked in Cav3.2KO-VgatARH mice. CONCLUSION Our results identified Cav3.2 expressed by VgatARH neurons as an essential intrinsic modulator for food intake and energy homeostasis, which is a potential therapeutic target in the treatment of obesity.
Collapse
|