1
|
Zhang Y, Jiang Y, Jia Y, Pan X, Zhao T, Wang K, Yan H, Ma Z. Separation of anti-TMV active components and modes of action of Omphalia lapidescens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105728. [PMID: 38225082 DOI: 10.1016/j.pestbp.2023.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Omphalia lapidescens is a saprophytic and parasitic fungus belonging to the Polypora genus of Tricholomataceae. It has repellent, insecticidal, anti-inflammatory and immunomodulatory effects. RESULT This study found that the extract of O. lapidescens had significant anti-TMV activity, and the main active component was homopolysaccharide LW-1 by Bioassay-guided fractionation. LW-1 is a glucan with β-(1,3) glucoside bond as the main chain and β-(1,6) glucoside bond as the branch chain, with molecular weight in the range of 172,916-338,827 Da. The protective and inactive efficacies of LW-1(100 mg/L) against TMV were 78.10% and 48.20%, but had no direct effect on the morphology of TMV particles. The results of mechanism of action showed that LW-1 induced the increase of the activity of defense enzymes such as POD, SOD and PAL in Nicotiana glutinosa. The overexpression of resistance genes such as NPR1, PR1 and PR5, and the increase of SA content. Further transcriptome sequencing showed that LW-1 activated MAPK signaling pathway, plant-pathogen interaction pathway and glucosinolide metabolic pathway in Arabidopsis thaliana. Besides, LW-1 induced crops resistance against plant pathogenic fungi. CONCLUSION Taken together, the anti-TMV mechanism of LW-1 was to activate MAPK signaling pathway, inducing overexpression of resistance genes, activating plant immune system, and improving the synthesis and accumulation of plant defencins such as glucosinolide. LW-1-induced plant disease resistance has the advantages of broad spectrum and long duration, which has the potential to be developed as a new antiviral agent or plant immune resistance inducer.
Collapse
Affiliation(s)
- Yueyang Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Yue Jiang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Yina Jia
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Xiaoyu Pan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Tianrun Zhao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Kaiyue Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - He Yan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China.
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Hong Y, Zheng Q, Cheng L, Liu P, Xu G, Zhang H, Cao P, Zhou H. Identification and characterization of TMV-induced volatile signals in Nicotiana benthamiana: evidence for JA/ET defense pathway priming in congeneric neighbors via airborne (E)-2-octenal. Funct Integr Genomics 2023; 23:272. [PMID: 37568053 PMCID: PMC10421810 DOI: 10.1007/s10142-023-01203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Plants release a mixture of volatile compounds when subjects to environmental stress, allowing them to transmit information to neighboring plants. Here, we find that Nicotiana benthamiana plants infected with tobacco mosaic virus (TMV) induces defense responses in neighboring congeners. Analytical screening of volatiles from N. benthamiana at 7 days post inoculation (dpi) using an optimized SPME-GC-MS method showed that TMV triggers the release of several volatiles, such as (E)-2-octenal, 6-methyl-5-hepten-2-one, and geranylacetone. Exposure to (E)-2-octenal enhances the resistance of N. benthamiana plants to TMV and triggers the immune system with upregulation of pathogenesis-related genes, such as NbPR1a, NbPR1b, NbPR2, and NbNPR1, which are related to TMV resistance. Furthermore, (E)-2-octenal upregulates jasmonic acid (JA) that levels up to 400-fold in recipient N. benthamiana plants and significantly affects the expression pattern of key genes in the JA/ET signaling pathway, such as NbMYC2, NbERF1, and NbPDF1.2, while the salicylic acid (SA) level is not significantly affected. Our results show for the first time that the volatile (E)-2-octenal primes the JA/ET pathway and then activates immune responses, ultimately leading to enhanced TMV resistance in adjacent N. benthamiana plants. These findings provide new insights into the role of airborne compounds in virus-induced interplant interactions.
Collapse
Affiliation(s)
- Yi Hong
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Qingxia Zheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Lingtong Cheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Guoyun Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
- Beijing Life Science Academy, Beijing, 102200, China.
| | - Huina Zhou
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
- Beijing Life Science Academy, Beijing, 102200, China.
| |
Collapse
|
3
|
Nakamura M, Tsuda N, Miyata T, Ikenaga M. Antimicrobial effect and mechanism of bovine lactoferrin against the potato common scab pathogen Streptomyces scabiei. PLoS One 2022; 17:e0264094. [PMID: 35213576 PMCID: PMC8880714 DOI: 10.1371/journal.pone.0264094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/02/2022] [Indexed: 12/17/2022] Open
Abstract
Lactoferrin (LF) is a multifunctional protein with a broad spectrum of antimicrobial activities. In this study, we investigated the antimicrobial activity of LF against the potato common scab pathogen Streptomyces scabiei, which causes severe damage to potato tubers. LF derived from bovine (bLF) had much higher activity against S. scabiei than human LF. The minimal inhibitory concentration of bLF was 3.9 μM. The effects of both apo-bLF (iron-free) and holo-bLF (iron-saturated) on S. scabiei were not different. Bovine lactoferricin (LFcinB), a short peptide with a length of 25 amino acid residues located in the N-terminal region of bLF, showed antimicrobial activity against S. scabiei, similar to that of bLF. These results indicated that the antimicrobial activity of bLF against S. scabiei cannot be attributed to its iron-chelating effect but to the bioactivity of its peptides. When S. scabiei was treated with the fusion protein of mCherry-LFcinB (red fluorescent protein) expressed in Escherichia coli, the pseudohyphal cells instantly glowed, indicating that the peptide electrostatically binds to the surface of S. scabiei. An assay of synthetic peptides, with modified number of arginine (Arg) and tryptophan (Trp) residues based on the antimicrobial center (RRWQWR) of LFcinB showed that Trp residues are implicated in the antimicrobial activity against S. scabiei; however, Arg residues are also necessary to carry Trp residues to the cell surface to fully exert its activity. Although the single amino acid effect of Trp had low activity, Trp derivatives showed much higher activity against S. scabiei, suggesting that the derivatives effectively bind to the cell surface (cell membrane) by themselves without a carrier. Thus, amino acid derivatives might be considered effective and alternative antimicrobial substances.
Collapse
Affiliation(s)
- Masayuki Nakamura
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- * E-mail:
| | - Naoaki Tsuda
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Takeshi Miyata
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Makoto Ikenaga
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
4
|
Chanda B, Shamimuzzaman M, Gilliard A, Ling KS. Effectiveness of disinfectants against the spread of tobamoviruses: Tomato brown rugose fruit virus and Cucumber green mottle mosaic virus. Virol J 2021; 18:7. [PMID: 33407624 PMCID: PMC7787650 DOI: 10.1186/s12985-020-01479-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Tobamoviruses, including tomato brown rugose fruit virus (ToBRFV) on tomato and pepper, and cucumber green mottle mosaic virus (CGMMV) on cucumber and watermelon, have caused many disease outbreaks around the world in recent years. With seed-borne, mechanical transmission and resistant breaking traits, tobamoviruses pose serious threat to vegetable production worldwide. With the absence of a commercial resistant cultivar, growers are encouraged to take preventative measures to manage those highly contagious viral diseases. However, there is no information available on which disinfectants are effective to deactivate the virus infectivity on contaminated hands, tools and equipment for these emerging tobamoviruses. The purpose of this study was to evaluate a collection of 16 chemical disinfectants for their effectiveness against mechanical transmission of two emerging tobamoviruses, ToBRFV and CGMMV. METHODS Bioassay was used to evaluate the efficacy of each disinfectant based on virus infectivity remaining in a prepared virus inoculum after three short exposure times (10 s, 30 s and 60 s) to the disinfectant and inoculated mechanically on three respective test plants (ToBRFV on tomato and CGMMV on watermelon). Percent infection of plants was measured through symptom observation on the test plants and the presence of the virus was confirmed through an enzyme-linked immunosorbent assay with appropriate antibodies. Statistical analysis was performed using one-way ANOVA based on data collected from three independent experiments. RESULTS Through comparative analysis of percent infection of test plants, a similar trend of efficacy among 16 disinfectants was observed between the two pathosystems. Four common disinfectants with broad spectrum activities against two different tobamoviruses were identified. Those effective disinfectants with 90-100% efficacy against both tobamoviruses were 0.5% Lactoferrin, 2% Virocid, and 10% Clorox, plus 2% Virkon against CGMMV and 3% Virkon against ToBRFV. In addition, SP2700 generated a significant effect against CGMMV, but poorly against ToBRFV. CONCLUSION Identification of common disinfectants against ToBRFV and CGMMV, two emerging tobamoviruses in two different pathosystems suggest their potential broader effects against other tobamoviruses or even other viruses.
Collapse
Affiliation(s)
- Bidisha Chanda
- United States Department of Agriculture - Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, 29414, USA
| | - Md Shamimuzzaman
- United States Department of Agriculture - Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, 29414, USA
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102-2765, USA
| | - Andrea Gilliard
- United States Department of Agriculture - Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, 29414, USA
| | - Kai-Shu Ling
- United States Department of Agriculture - Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, 29414, USA.
| |
Collapse
|
5
|
Huang G, Huang S. The structure–activity relationships of natural glucans. Phytother Res 2020; 35:2890-2901. [DOI: 10.1002/ptr.6995] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry Chongqing Normal University Chongqing China
| | - Shiyu Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry Chongqing Normal University Chongqing China
| |
Collapse
|
6
|
Antiviral Action of Native and Methylated Lactoferrin and β-Lactoglobulin against Potato Virus Y (PVY) Infected into Potato Plants Grown in an Open Field. Antibiotics (Basel) 2020; 9:antibiotics9070430. [PMID: 32708153 PMCID: PMC7400528 DOI: 10.3390/antibiotics9070430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 11/17/2022] Open
Abstract
Potato plants are liable to PVY infection without efficient control. Therefore, they were cultivated under greenhouse and open field conditions, artificially infected with PVY and then treated after 15 days of infection with native lactoferrin (LF) and native β-lactoglobulin (BL) and their esterified forms, MLF (methylated lactoferrin) and BLM (methylated β-lactoglobulin) to test the efficiency of this approach. Viral replication was inhibited by the applied substances, particularly the methylated forms, in a concentration-dependent manner, where the concentration of 500 μg·mL-1 was sufficient for plant protection against the PVY infection. An open field experiment showed that one single application of the antiviral substance was enough for maximum inhibitory action against PVY. The modified milk proteins induced higher inhibitory action on PVY virus replication in the plants, compared to their native forms, which was reflected by potato growth and yield. Using the dot blot hybridization and RT-PCR techniques to detect PVY in the experimental plants showed the supremacy of native and esterified LF in inhibiting the targeted virus. The generally observed scanning electronic microscopy (SEM) structural deformations and irregular appearance in PVY particles when treated with MLF and BLM revealed their direct action. BLM, MLF and LF are efficient antiviral agents against PVY. They can not only abolish the observed PVY-induced reduction in potato growth and tuber yield, but also further increase them to higher levels than negative control.
Collapse
|
7
|
Wang J, Hao F, Song K, Jin W, Fu B, Wei Y, Shi Y, Guo H, Liu W. Identification of a Novel NtLRR-RLK and Biological Pathways That Contribute to Tolerance of TMV in Nicotiana tabacum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:996-1006. [PMID: 32196398 DOI: 10.1094/mpmi-12-19-0343-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tobacco mosaic virus (TMV) infection can causes serious damage to tobacco crops. To explore the approach of preventing TMV infection of plants, two tobacco cultivars with different resistances to TMV were used to analyze transcription profiling before and after TMV infection. The involvement of biological pathways differed between the tolerant variety (Yuyan8) and the susceptible variety (NC89). In particular, the plant-virus interaction pathway was rapidly activated in Yuyan8, and specific resistance genes were enriched. Liquid chromatography tandem mass spectrometry analysis detected large quantities of antiviral substances in the tolerant Yuyan8. A novel Nicotiana tabacum leucine-rich repeat receptor kinase (NtLRR-RLK) gene was identified as being methylated and this was verified using bisulfite sequencing. Transient expression of TMV-green fluorescent protein in pRNAi-NtLRR-RLK transgenic plants confirmed that NtLRR-RLK was important for susceptibility to TMV. The specific protein interaction map generated from our study revealed that levels of BIP1, E3 ubiquitin ligase, and LRR-RLK were significantly elevated, and all were represented at node positions in the protein interaction map. The same expression tendency of these proteins was also found in pRNAi-NtLRR-RLK transgenic plants at 24 h after TMV inoculation. These data suggested that specific genes in the infection process can activate the immune signal cascade through different resistance genes, and the integration of signal pathways could produce resistance to the virus. These results contribute to the overall understanding of the molecular basis of plant resistance to TMV and in the long term could identify new strategies for prevention and control virus infection.
Collapse
Affiliation(s)
- Jing Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Fengsheng Hao
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Kunfeng Song
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Weihuan Jin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Bo Fu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Yuanfang Wei
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yongchun Shi
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Weiqun Liu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
8
|
Wang D, Wang B, Wang J, Wang S, Wang W, Niu Y. Exogenous Application of Harpin Protein Hpa1 onto Pinellia ternata Induces Systemic Resistance Against Tobacco Mosaic Virus. PHYTOPATHOLOGY 2020; 110:1189-1198. [PMID: 32141384 DOI: 10.1094/phyto-12-19-0463-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The harpin protein Hpa1 has various beneficial effects in plants, such as promoting plant growth and inducing pathogen resistance. Our previous study found that Hpa1 could significantly alleviate the mosaic symptoms of tobacco mosaic virus (TMV) in Pinellia ternata, indicating that Hpa1 can effectively stimulate resistance. Here, the potential mechanism of disease resistance and field applicability of Hpa1 against TMV in P. ternata were further investigated. The results showed that 15 µg ml-1 Hpa1 had stronger antiviral activity than the control, and its protective effect was better than its curative effect. Furthermore, Hpa1 could significantly induce an increase in defense-related enzyme activity, including polyphenol oxidase, peroxidase, catalase, and superoxide dismutase, as well as increase the expression of disease resistance-related genes (PR1, PR3, PR5, and PDF1.2). Concurrently, Hpa1 significantly increased the content of some disease resistance-related substances, including hydrogen peroxide, phenolics, and callose, whereas the content of malondialdehyde was reduced. In addition, field application analysis demonstrated that Hpa1 could effectively elicit a defense response against TMV in P. ternata. Our findings propose a mechanism by which Hpa1 can prevent TMV infection in Pinellia by inducing systemic resistance, thereby providing an environmentally friendly approach for the use of Hpa1 in large-scale applications to improve TMV resistance in Pinellia.
Collapse
Affiliation(s)
- Defu Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Baoxia Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Jiangran Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Shuting Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Weiyu Wang
- Rongcheng Plant Protection Station, Rongcheng 264300, Shandong, China
| | - Yanbing Niu
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| |
Collapse
|
9
|
Guo W, Yan H, Ren X, Tang R, Sun Y, Wang Y, Feng J. Berberine induces resistance against tobacco mosaic virus in tobacco. PEST MANAGEMENT SCIENCE 2020; 76:1804-1813. [PMID: 31814252 DOI: 10.1002/ps.5709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Plant systemic resistance induced by botanical compounds is a promising alternative method of disease management. The natural product berberine, usually used as an antimicrobial in medicine, has been proven to have antifungal activity in agriculture. To investigate the induced resistance imparted by berberine, the effect of berberine against tobacco mosaic virus (TMV) and the mechanism governing this effect were determined. RESULT Berberine exhibited considerable in vivo anti-TMV activity of up to 68.3% but had no in vitro direct effect on TMV. Moreover, berberine could induce immune responses against TMV in tobacco, including the hypersensitive reaction (HR), accumulation of H2 O2 , increases in defense enzymes and overexpression of pathogenesis-related (PR) proteins. In addition, upregulation of salicylic acid (SA) biosynthesis genes PAL, CM1, ICS, PBS3 and the enzyme benzoic acid 2-hydroxylase (BA2H) confirmed that SA was involved in the defensive signals. Berberine can induce crop resistance against TMV, Phytophthora nicotianae, Botrytis cinerea and Blumeria graminis in the greenhouse. CONCLUSION This paper highlights the use of berberine in manipulating tobacco to generate defense responses against TMV, which can be attributed to SA-mediated induced resistance. The paper provides a theoretical basis for the application of berberine as a resistance activator and for further research on induced resistance by botanical natural product. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhui Guo
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - He Yan
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Xingyu Ren
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Ruirui Tang
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Yubo Sun
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Yong Wang
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Juntao Feng
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
10
|
Li Z, Shi J, Hu D, Song B. A polysaccharide found in Dendrobium nobile Lindl stimulates calcium signaling pathway and enhances tobacco defense against TMV. Int J Biol Macromol 2019; 137:1286-1297. [PMID: 31252017 DOI: 10.1016/j.ijbiomac.2019.06.179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/16/2019] [Accepted: 06/24/2019] [Indexed: 11/26/2022]
Abstract
A neutral polysaccharide separated from Dendrobium nobile Lindl was designated as DNPE6(4). It was structurally characterized using a combination of spectral and chemical analysis. Its average molecule weight was 99.2 kDa. The monosaccharide composition was Araf, Glcp, Galp, and Manp in a molar ratio of 2.5:0.9:0.3:0.8. Their linkage types were →1)-L-Araf-(3→, →1)-D-Glcp-(4→, →1)-D-Galp-(3→, →1)-D-Galp-(6→, →1)-D-Manp-(3, 6→, and T-D-Manp. The polysaccharide was found to have anti-TMV and anti-CMV activities for the first time in vivo. Notably, DNPE6(4) exhibited excellent protective activity against TMV. Furthermore, several proteins related to calcium signaling pathway and pathogen related proteins were up-regulated, and we also found expression levels of EDS1, ICS1, and PR1 involved in SA pathway up-regulated after DNPE6(4) treatment. In addition, some defense enzymes increased in the same condition. All these findings revealed DNPE6(4) was an elicitor to stimulate calcium signaling pathway to enhance the tobacco defense against TMV. This study therefore revealed that DNPE6(4) was a promising antiviral agent for future study.
Collapse
Affiliation(s)
- Zhurui Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
11
|
Study on Antiviral Activity of Two Recombinant Antimicrobial Peptides Against Tobacco Mosaic Virus. Probiotics Antimicrob Proteins 2019; 11:1370-1378. [PMID: 30887308 DOI: 10.1007/s12602-019-09539-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Antimicrobial peptides (AMPs) are generally small peptides with less than 50 amino acid residues, which have been considered as the first line of defense system in plants and animals. These small cationic peptides belong to a family of antimicrobials that are multifunctional effectors of innate immunity. The direct antimicrobial activity of AMPs against different bacteria, viruses, fungi, and parasites has been confirmed in different studies. In this study, the antiviral activity of two recombinant AMPs named thanatin and lactoferricin+lactoferrampin was evaluated against Tobacco mosaic virus (TMV) using half-leaf and leaf disk methods under in vivo and in vitro condition, respectively. The obtained result indicated that both recombinant AMPs have shown an antiviral activity against TMV. Compared to the chimeric lactoferricin+lactoferrampin, recombinant thanatin showed a higher rate of antiviral activity against TMV. Three types of effects, including protective, curative, and inactivation, were evaluated during an antiviral activity test. In the present study, the antiviral activity of two recombinant AMPs is represented for the first time: thanatin and chimeric lactoferricin+lactoferrampin against TMV as a viral plant pathogen.
Collapse
|
12
|
Mendoza-Figueroa JS, Kvarnheden A, Méndez-Lozano J, Rodríguez-Negrete EA, Arreguín-Espinosa de Los Monteros R, Soriano-García M. A peptide derived from enzymatic digestion of globulins from amaranth shows strong affinity binding to the replication origin of Tomato yellow leaf curl virus reducing viral replication in Nicotiana benthamiana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 145:56-65. [PMID: 29482732 DOI: 10.1016/j.pestbp.2018.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 05/21/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV; genus Begomovirus; family Geminiviridae) infects mainly plants of the family Solanaceae, and the infection induces curling and chlorosis of leaves, dwarfing of the whole plant, and reduced fruit production. Alternatives for direct control of TYLCV and other geminiviruses have been reported, for example, the use of esterified whey proteins, peptide aptamer libraries or artificial zinc finger proteins. The two latter alternatives affect directly the replication of TYLCV as well as of other geminiviruses because the replication structures and sequences are highly conserved within this virus family. Because peptides and proteins offer a potential solution for virus replication control, in this study we show the isolation, biochemical characterization and antiviral activity of a peptide derived from globulins of amaranth seeds (Amaranthus hypochondriacus) that binds to the replication origin sequence (OriRep) of TYLCV and affects viral replication with a consequent reduction of disease symptoms in Nicotiana benthamiana. Aromatic peptides obtained from papain digests of extracted globulins and albumins of amaranth were tested by intrinsic fluorescent titration and localized surface resonance plasmon to analyze their binding affinity to OriRep of TYLCV. The peptide AmPep1 (molecular weight 2.076 KDa) showed the highest affinity value (Kd = 1.8 nM) for OriRep. This peptide shares a high amino acid similarity with a part of an amaranth 11S globulin, and the strong affinity of AmPep1 could be explained by the presence of tryptophan and lysine facilitating interaction with the secondary structure of OriRep. In order to evaluate the effect of the peptide on in vitro DNA synthesis, rolling circle amplification (RCA) was performed using as template DNA from plants infected with TYLCV or another begomovirus, pepper huasteco yellow vein virus (PHYVV), and adding AmPep1 peptide at different concentrations. The results showed a decrease in DNA synthesis of both viruses at increasing concentrations of AmPep1. To further confirm the antiviral activity of the peptide in vivo, AmPep1 was infiltrated into leaves of N. benthamiana plants previously infected with TYLCV. Plants treated with AmPep1 showed a significant decrease in virus titer compared with untreated N. benthamiana plants as well as reduced symptom progression due to the effect of AmPep1 curtailing TYLCV replication in the plant. The peptide also showed antiviral activity in plants infected with PHYVV. This is the first report, in which a peptide is directly used for DNA virus control in plants, supplied as exogenous application and without generation of transgenic lines.
Collapse
Affiliation(s)
- J S Mendoza-Figueroa
- Department of Biomacromolecular Chemistry, Instituto de Química, Universidad Nacional Autónoma de México. Mexico City, Mexico
| | - A Kvarnheden
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J Méndez-Lozano
- Department of Agrobiotechnology, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Sinaloa, Instituto Politécnico Nacional, Guasave, Sinaloa, Mexico
| | - E-A Rodríguez-Negrete
- CONACYT, Instituto Politécnico Nacional, Department of Agrobiotechnology, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Sinaloa, Instituto Politécnico Nacional, Guasave, Sinaloa, Mexico
| | | | - M Soriano-García
- Department of Biomacromolecular Chemistry, Instituto de Química, Universidad Nacional Autónoma de México. Mexico City, Mexico.
| |
Collapse
|
13
|
Palukaitis P, Yoon JY, Choi SK, Carr JP. Manipulation of induced resistance to viruses. Curr Opin Virol 2017; 26:141-148. [PMID: 28843933 DOI: 10.1016/j.coviro.2017.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/29/2022]
Abstract
Induced resistance against plant viruses has been studied for many years. However, with the exception of RNA silencing, induced resistance to viruses remains mechanistically less well understood than for other plant pathogens. In contrast, the induction processes involved in induced resistance, comprising basal resistance signaling, effector-triggered immunity, and phytohormone pathways, have been increasingly well characterized in recent years. This has allowed induced resistance to viruses to be placed in a broader conceptual framework linking it to other defense systems, which we discuss in this review. We also discuss the range of agents, including chemicals and beneficial microorganisms and application methods that can be used to induce resistance to viruses.
Collapse
Affiliation(s)
- Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women's University, Seoul 01797, Republic of Korea.
| | - Ju-Yeon Yoon
- Virology Unit, Department of Horticultural and Herbal Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju 55365, Republic of Korea
| | - Seung-Kook Choi
- Department of Vegetable Research, National Institute of Horticultural and Herbal Science, RDA, Wanju 55365, Republic of Korea
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
14
|
Wang X, Wang X, Hao Y, Teng D, Wang J. Research and development on lactoferrin and its derivatives in China from 2011–2015. Biochem Cell Biol 2017; 95:162-170. [DOI: 10.1139/bcb-2016-0073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lactoferrin (Lf), a multifunctional glycoprotein, is an important antimicrobial and immune regulatory protein present in neutrophils and most exocrine secretions of mammals. Lactoferricin (Lfcin) is located in the N-terminal region of this protein. In this review, the current state of research into Lf and Lfcin in China is described. Searching with HistCite software in Web Sci located 118 papers published by Chinese researchers from 2011–2015, making China one of the top 3 producers of Lf research and development in the world. The biological functions of Lf and Lfcin are discussed, including antibacterial, antiviral, antifungal, anticarcinogenic, and anti-inflammatory activities; targeted drug delivery, induction of neurocyte, osteoblast, and tenocyte growth, and possible mechanisms of action. The preparation and heterologous expression of Lf in animals, bacteria, and yeast are discussed in detail. Five Lf-related food additive factories and 9 Lf-related health food production companies are certified by the China Food and Drug Administration (CFDA). The latest progress in the generation of transgenic livestock in China, the safety of the use of transgenic animals, and future prospects for the uses of Lf and Lfcin are also covered.
Collapse
Affiliation(s)
- Xiao Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Ya Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
15
|
Han Y, Luo Y, Qin S, Xi L, Wan B, Du L. Induction of systemic resistance against tobacco mosaic virus by Ningnanmycin in tobacco. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 111:14-8. [PMID: 24861928 DOI: 10.1016/j.pestbp.2014.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
Ningnanmycin (NNM) is an antiviral agent firstly isolated from Strepcomces noursei var·xichangensisn. Studies have shown that NNM promotes PAL, POD and SOD activity and possesses antiviral activity against tobacco mosaic virus (TMV). In this study, our results demonstrated that NNM inhibited the polymerization process of TMV coat protein (TMV-CP) in vitro and promoted the systemic accumulation of pathogenesis-related proteins (PRs), which are the markers of systemic acquired resistance (SAR). An non-expressor, pathogenesis-related genes 1 (NPR1) that regulates SAR and induces systemic resistance (ISR), increased. In addition, the Jaz3 expression increase showed that NNM also induced ISR. Based on the results of this work and earlier reports, it is suggesting that NNM induces tobacco systemic resistance against TMV via activating multiple plant defense signaling pathways.
Collapse
Affiliation(s)
- Yongguang Han
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yue Luo
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Shirong Qin
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Lei Xi
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Bo Wan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Linfang Du
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
16
|
Lakshman DK, Natarajan S, Mandal S, Mitra A. Lactoferrin-derived resistance against plant pathogens in transgenic plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11730-5. [PMID: 23889215 DOI: 10.1021/jf400756t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Lactoferrin (LF) is a ubiquitous cationic iron-binding milk glycoprotein that contributes to nutrition and exerts a broad-spectrum primary defense against bacteria, fungi, protozoa, and viruses in mammals. These qualities make lactoferrin protein and its antimicrobial motifs highly desirable candidates to be incorporated in plants to impart broad-based resistance against plant pathogens or to economically produce them in bulk quantities for pharmaceutical and nutritional purposes. This study introduced bovine LF (BLF) gene into tobacco ( Nicotiana tabacum var. Xanthi), Arabidopsis ( A. thaliana ) and wheat ( Triticum aestivum ) via Agrobacterium -mediated plant transformation. Transgenic plants or detached leaves exhibited high levels of resistance against the damping-off causing fungal pathogen Rhizoctonia solani and the head blight causing fungal pathogen Fusarium graminearum . LF also imparted resistance to tomato plants against a bacterial pathogen, Ralstonia solanacearum . Similarly, other researchers demonstrated expression of LF and LF-mediated high-quality resistance to several other aggressive fungal and bacterial plant pathogens in transgenic plants and against viral pathogens by foliar applications of LF or its derivatives. Taken together, these studies demonstrated the effectiveness of LF for improving crop quality and its biopharming potentials for pharmaceautical and nutritional applications.
Collapse
Affiliation(s)
- Dilip K Lakshman
- Floral and Nursery Plants Research Unit and Sustainable Agricultural Systems Laboratory, ‡Soybean Genomics and Improvement Laboratory, Agricultural Research Service, U.S. Department of Agriculture , Beltsville, Maryland 20705, United States
| | | | | | | |
Collapse
|
17
|
Wang J, Wang HY, Xia XM, Li PP, Wang KY. Inhibitory effect of sulfated lentinan and lentinan against tobacco mosaic virus (TMV) in tobacco seedlings. Int J Biol Macromol 2013; 61:264-9. [PMID: 23850557 DOI: 10.1016/j.ijbiomac.2013.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022]
Abstract
The antiviral activities of sulfated lentinan (sLNT) and lentinan (LNT) against tobacco mosaic virus (TMV) in tobacco seedlings and the underlying mechanism were investigated. Compared with LNT, sLNT showed significantly higher inhibitory effects on viral infection and TMV multiplication in a dose-dependent way, which might be due to its binding with TMV coat protein. In addition, both sLNT and LNT induced the transient production of H2O2 and expression of some defense-related genes (stilbene synthase, glucanase, acidic chitinase class IV, phenylalanine ammonia-lyase and 5-epi-aristolochene synthase) both locally and systemically. These results suggested that sLNT and LNT could control TMV incidence and the action mechanism might be associated with the affinity towards TMV coat protein and activation of some defense genes.
Collapse
Affiliation(s)
- Jie Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | | | | | | | | |
Collapse
|