1
|
Aghajanshakeri S, Ataee R, Karami M, Aghajanshakeri S, Shokrzadeh M. Cytomodulatory characteristics of Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) against cypermethrin on skin fibroblast cells (HFF-1). Toxicology 2023; 499:153655. [PMID: 37871686 DOI: 10.1016/j.tox.2023.153655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The hematopoietic factor granulocyte macrophage-colony stimulating factor (GM-CSF) has been identified via its capacity to promote bone marrow progenitors' development and differentiation into granulocytes and macrophages. Extensive pre-clinical research has established its promise as a critical therapeutic target in an assortment of inflammatory and autoimmune disorders. Despite the broad literature on GM-CSF as hematopoietic of stem cells, the cyto/geno protective aspects remain unknown. This study aimed to assess the cyto/geno protective possessions of GM-CSF on cypermethrin-induced cellular toxicity on HFF-1 cells as an in vitro model. In pre-treatment culture, cells were exposed to various GM-CSF concentrations (5, 10, 20, and 40 ng/mL) with cypermethrin at IC50 (5.13 ng/mL). Cytotoxicity, apoptotic rates, and genotoxicity were measured using the MTT, Annexin V-FITC/PI staining via flow-cytometry, and the comet assay. Cypermethrin at 5.13 ng/mL revealed cytotoxicity, apoptosis, oxidative stress, and genotoxicity while highlighting GM-CSF's protective properties on HFF-1. GM-CSF markedly attenuated cypermethrin-induced apoptotic cell death (early and late apoptotic rates). GM-CSF considerably regulated oxidative stress and genotoxicity by reducing the ROS and LPO levels, maintaining the status of GSH and activity of SOD, and suppressing genotoxicity in the comet assay parameters. Therefore, GM-CSF could be promising as an antioxidant, anti-apoptotic, genoprotective and cytomodulating agent.
Collapse
Affiliation(s)
- Shaghayegh Aghajanshakeri
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Ramin Ataee
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Karami
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahin Aghajanshakeri
- Biological Oncology Department, Orchid Pharmed, CinnaGen Pharmaceutical Company, Tehran, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Liu F, Wang Y, Chen L, Bello BK, Zhang T, Yang H, Li X, Pan E, Feng H, Dong J. Difenoconazole disrupts the blood-brain barrier and results in neurotoxicity in carp by inhibiting the Nrf2 pathway mediated ROS accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114081. [PMID: 36113268 DOI: 10.1016/j.ecoenv.2022.114081] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Excessive use of hard-to-degrade pesticides threatens the ecological health of aquatic systems. This study aimed to investigate difenoconazole (DFZ) residues in the environment induced neurotoxicity in carp and the underlying mechanisms. A total of thirty-six carps were divided into three groups and exposed to 0, 0.5, and 2.0 mg/L DFZ for 96 h, respectively. The alterations in behavior and blood-brain barrier (BBB) were examined, and potential mechanisms were explored using immunological assays and biochemical methods. The results showed that DFZ exposure caused behavioral freezing, reduced feeding, and neuronal necrosis in carp. Mechanistically, DFZ triggered ROS accumulation and destroyed the balance between oxidation and antioxidation with increased lipid peroxidation product MDA contents and reduced antioxidant enzymes SOD and CAT activities in the carp brain by inhibiting the NF-E2-related factor 2 (Nrf2) pathway. The activation of oxidative stress further reduced tight junction proteins and MMP levels, thereby destroying BBB and leading to DFZ leakage into the brain. Increased BBB permeability additionally led to DFZ activation of nuclear factor kappa-B signaling-mediated inflammatory cytokine storm, exacerbating neuroinflammation. Meanwhile, DFZ exposure activated mitochondria-associated apoptosis in the carp's brain by up-regulating Bcl-2 associated X protein, cleaved-caspase3, and cytochrome C and decreasing B-cell lymphoma-2 levels. Interestingly, the carp's brain initiated a protective autophagic response via the PI3K/AKT/TOR pathway intending to counteract the neurotoxicity of DFZ. Overall, we concluded that accumulation of DFZ at high concentrations in the aquatic systems disrupted the BBB and resulted in neurotoxicity in carp through inhibition of Nrf2 pathway-mediated ROS accumulation. This study provides a reference for monitoring DFZ residues in the environment and a new target for the treatment of DFZ-induced neurotoxicity in carp.
Collapse
Affiliation(s)
- Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yan Wang
- Department of Medicine Laboratory, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Li Chen
- Department of Medicine Laboratory, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Babatunde Kazeem Bello
- State Key Laboratory of Rice Biology, Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China
| | - Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huimiao Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
3
|
Wang HX, Zhang R, Li Z, Wang LS, Yu Y, Wang Q, Ding Z, Zhang JP, Zhang MR, Xu LC. Cypermethrin induces Sertoli cell apoptosis through mitochondrial pathway associated with calcium. Toxicol Res (Camb) 2021; 10:742-750. [PMID: 34484665 DOI: 10.1093/toxres/tfab056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Cypermethrin, one kind of pyrethroid pesticides, has been shown to act as endocrine-disrupting chemicals (EDCs). The purpose of this study was to explore the roles of Sertoli cell apoptosis through mitochondrial pathway associated with calcium (Ca2+) in cypermethrin-induced male reproductive toxicology. The mouse Sertoli cells TM4 were cultured with 0 μM, 10 μM, 20 μM, 40 μM and 80 μM of cypermethrin. We used flow cytometry, Fluo-4 AM, western blot and JC-1 Assay Kit to examine apoptosis, intracellular Ca2+, expressions of mitochondrial apoptotic pathway-related proteins and mitochondrial membrane potential. We found cypermethrin increased apoptosis rate of TM4 cells significantly and with a significant increase in intracellular Ca2+ concentration. Cypermethrin significantly decreased the protein expressions of cytosolic B-cell lymphoma-2 (Bcl-2) and mitochondrial cytochrome c (Cyt-c). The protein expressions of cytosolic Bcl-2-associated x (Bax), Cyt-c, cleaved caspase-3, calmodulin (CaM), Ca2+/CaM-dependent protein kinases II (CaMKII) and phosphorylated CaMKII were increased significantly in cypermethrin-exposed TM4 cells. Cypermethrin decreased mitochondrial membrane potential significantly. Then, Bcl-2 family and Ca2+/CaM/CaMKII pathway participate in cypermethrin-induced homeostasis. Ca2+ overload activates mitochondrial pathway by increasing permeability of mitochondrial membrane and decreasing mitochondrial membrane potential. We suggest cypermethrin induces Sertoli cell apoptosis involving mitochondrial pathway associated with Ca2+ regulated by Bcl-2 family and Ca2+/CaM/CaMKII pathway. The study provides a new insight into mechanisms involved in cypermethrin-induced male reproductive toxicology.
Collapse
Affiliation(s)
- Heng-Xue Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221004, 209 Tong-Shan Road, Xuzhou, Jiangsu, China
| | - Rui Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221004, 209 Tong-Shan Road, Xuzhou, Jiangsu, China
| | - Zheng Li
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221004, 209 Tong-Shan Road, Xuzhou, Jiangsu, China
| | - Lu-Shan Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221004, 209 Tong-Shan Road, Xuzhou, Jiangsu, China
| | - Yue Yu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221004, 209 Tong-Shan Road, Xuzhou, Jiangsu, China
| | - Qi Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221004, 209 Tong-Shan Road, Xuzhou, Jiangsu, China
| | - Zhen Ding
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221004, 209 Tong-Shan Road, Xuzhou, Jiangsu, China
| | - Jin-Peng Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221004, 209 Tong-Shan Road, Xuzhou, Jiangsu, China
| | - Mei-Rong Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221004, 209 Tong-Shan Road, Xuzhou, Jiangsu, China
| | - Li-Chun Xu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221004, 209 Tong-Shan Road, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Zhou L, Chang J, Zhao W, Gao Y. Proanthocyanidins regulate the Nrf2/ARE signaling pathway and protect neurons from cypermethrin-induced oxidative stress and apoptosis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104898. [PMID: 34301360 DOI: 10.1016/j.pestbp.2021.104898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Cypermethrin, a type II pyrethroid pesticide, is one of the most widely used pesticides in agricultural and in household settings. The toxic effects of cypermethrin are a matter of concern, as humans are almost inevitably exposed to it in daily life. It is an urgent problem to seek natural substances from plants that can eliminate or relieve the effects of pesticide residues on human health. Proanthocyanidins are the most potent antioxidants and free radical scavengers in natural plants, and are widely available in fruits, vegetables, and seeds. We found that proanthocyanidins (1, 2.5, and 5 μg/mL) can decrease ROS generation, relieve mitochondrial membrane potential loss, repair nuclear morphology, reduce cell apoptosis, and protect neurons from cypermethrin-induced oxidative insult. The protective mechanism exerted by proanthocyanidins against cypermethrin-induced neurotoxicity is negatively regulate rather than activate the Nrf2/ARE signaling pathway to maintain intracellular homeostasis.
Collapse
Affiliation(s)
- Lihua Zhou
- School of Public Health, Bengbu Medical College, Bengbu, Anhui 233030, China.
| | - Jianrong Chang
- Scientific Research Center, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Wenhong Zhao
- School of Public Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Yangli Gao
- School of Public Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| |
Collapse
|
5
|
Elser BA, Kayali K, Dhakal R, O'Hare B, Wang K, Lehmler HJ, Stevens HE. Combined Maternal Exposure to Cypermethrin and Stress Affect Embryonic Brain and Placental Outcomes in Mice. Toxicol Sci 2021; 175:182-196. [PMID: 32191333 DOI: 10.1093/toxsci/kfaa040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prenatal exposure to cypermethrin is a risk factor for adverse neurodevelopmental outcomes in children. In addition, maternal psychological stress during pregnancy has significant effects on fetal neurodevelopment and may influence end-stage toxicity to offspring by altering maternal xenobiotic metabolism. As such, this study examined effects of maternal exposure to alpha-cypermethrin and stress, alone and in combination, on offspring development, with a focus on fetal neurotoxicity. CD1 mouse dams were administered 10 mg/kg alpha-cypermethrin or corn oil vehicle via oral gavage from embryonic day 11 (E11) to E14. In addition, dams from each treatment were subjected to a standard model of restraint stress from E12 to E14. Cypermethrin treatment impaired fetal growth, reduced fetal forebrain volume, and increased ventral forebrain proliferative zone volume, the latter effects driven by combined exposure with stress. Cypermethrin also impaired migration of GABAergic progenitors, with different transcriptional changes alone and in combination with stress. Stress and cypermethrin also interacted in effects on embryonic microglia morphology. In addition, levels of cypermethrin were elevated in the serum of stressed dams, which was accompanied by interacting effects of cypermethrin and stress on hepatic expression of cytochrome P450 enzymes. Levels of cypermethrin in amniotic fluid were below the limit of quantification, suggesting minimal transfer to fetal circulation. Despite this, cypermethrin increased placental malondialdehyde levels and increased placental expression of genes responsive to oxidative stress, effects significantly modified by stress exposure. These findings suggest a role for interaction between maternal exposures to cypermethrin and stress on offspring neurodevelopment, involving indirect mechanisms in the placenta and maternal liver.
Collapse
Affiliation(s)
- Benjamin A Elser
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College.,Department of Psychiatry, Carver College of Medicine
| | - Khaled Kayali
- Department of Psychiatry, Carver College of Medicine
| | - Ram Dhakal
- Department of Occupational and Environmental Health
| | - Bailey O'Hare
- Department of Psychiatry, Carver College of Medicine
| | - Kai Wang
- Department of Biostatistics, College of Public Health, The University of Iowa, Iowa City, Iowa 52242
| | - Hans-Joachim Lehmler
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College.,Department of Occupational and Environmental Health
| | - Hanna E Stevens
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College.,Department of Psychiatry, Carver College of Medicine
| |
Collapse
|
6
|
Zhao H, Wang Y, Guo M, Liu Y, Yu H, Xing M. Environmentally relevant concentration of cypermethrin or/and sulfamethoxazole induce neurotoxicity of grass carp: Involvement of blood-brain barrier, oxidative stress and apoptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143054. [PMID: 33127128 DOI: 10.1016/j.scitotenv.2020.143054] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
In water environment, the interaction between environmental pollutants is very complex, among which pesticides and antibiotics are dominant. However, most studies only focus on individual toxic effects, rather combined. In this study, the sub-chronic exposure effect of cypermethrin (CMN, 0.65 μg/L), sulfamethoxazole (SMZ, 0.30 μg/L) and their mixture on grass crap (Ctenopharyngodon idellus) was investigated. The brain tight junction, oxidative stress and apoptosis-related indices were determined after 42 days of exposure. In terms of brain function, acetyl cholinesterase (AChE) activity was significantly inhibited by CMN, SMZ and their mixtures during exposure periods. Obvious histological damage from cellular and subcellular levels were also observed, which were further confirmed by a decrease in tight junction protein levels. Malondialdehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OHdG) contents were significantly increased by individual compounds and mixtures, in which the content of glutathione (GSH) displayed the opposite trend. In mechanism, nuclear factor (erythrocyte derived 2) like 2(Nrf2) pathway was activated, which may trigger cellular protection to cope with CMN and SMZ exposure. However, apoptosis was also detected from the level of mRNA and histochemistry. In general, these two exogenous induced similar biological responses. The neurotoxicity of CMN was strengthened by SMZ with regard to these indices in most cases and vice versa. This study will reveal the potential co-ecological risks of pesticide and antibiotic in the aquatic organism, and provide basic data for their safety and risk assessment.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongxian Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
7
|
Hassouna I. Transplacental neurotoxicity of cypermethrin induced astrogliosis, microgliosis and depletion of let-7 miRNAs expression in the developing rat cerebral cortex. Toxicol Rep 2020; 7:1608-1615. [PMID: 33312879 PMCID: PMC7721691 DOI: 10.1016/j.toxrep.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Transplacental neurotoxicity of the pyrethroid insecticide, cypermethrin DNA alterations and immunohistochemical staining of astrocytes and microglia Cypermethrin induces astrogliosis and microgliosis in cerebral cortex MicroRNAs let7a, b, and c deplete in cerebral cortex of rat pups at postanal days
The use of type II pyrethroids, cypermethrin is becoming a growing concern among environmental research centers. While most studies have attempted to cover the areas of DNA damage and microglia activation following exposure to cypermethin in the adult or postnatal life, less is known about the exact degree of neurotoxicity that results from exposure to transplacental sublethal doses of cypermethrin. To study the transplacental neurotoxicity of cypermethrin, pregnant rats were orally administered 10 % of LD50 (25 mg/kg body weight) cypermethrin, one dose daily for one week during the gestational days 15–21. The pups were investigated at postnatal day7, 14 and 21 after birth. In brain, DNA alterations were detected, astrocytes and microglia quantification were performed and some let7 family member miRNAs are estimated. The results show a gain of three major bands in the range of 350bp to 2100bp with high intensities in cortex exposed to cypermethrin compared with similar pattern indicating unaffected genomic regions in thalamus and hypothalamus at 21days. Moreover, increases in the percentage of GFAP positive astrocytes and IBA1 positive microglia indicate astrogliosis and microgliosis respectively due to cypermethrin treatment in cerebral cortex. For the first time, drastically reduced expression of let7a, b and c members are also associated with gliosis and DNA alterations, which are detected in cerebral cortex, following transplacental neurotoxicity of cypermethrin. Taking together, these results suggest that cypermethrin neurotoxicity may be mediated partly through let7 miRNAs.
Collapse
Affiliation(s)
- Imam Hassouna
- Physiology Unit, Zoology Department, Faculty of Science, Menoufia University, Shebin Elkom, Egypt
| |
Collapse
|
8
|
Abstract
The present study was carried out to explore the effect of sinensetin in human T-cell lymphoma Jurkat cells and to reveal the underlying molecular mechanisms. We found that sinensetin significantly impeded Jurkat cell proliferation in a dose-dependent and time-dependent manner. Additionally, sinensetin treatment triggered apoptosis and autophagy in Jurkat cells. The apoptosis induction was related to a loss of mitochondrial membrane potential and to increased caspase-3/-8/-9 and poly(ADP-ribose) polymerase (PARP) cleavage. Sinensetin also induced autophagy, as evidenced by the formation of acidic vacuoles, the upregulation of LC3-II and beclin-1, and the downregulation of p62. In addition, the inhibition of autophagy by 3-methyladenine significantly enhanced the apoptosis rate and improved the sensitivity of the Jurkat cells to sinensetin. Moreover, sinensetin induced cell death, apoptosis, and autophagy through the activation of the reactive oxygen species/ c-Jun N-terminal kinase signaling pathway and the inhibition of the Akt/mTOR signaling pathways. In summary, our results revealed that sinensetin induced apoptosis and autophagy in human T-cell lymphoma Jurkat cells by activating reactive oxygen species/ c-Jun N-terminal kinase and blocking the Akt/mTOR signaling pathways. Thus, sinensetin might be a potential candidate in the development of antitumor drugs targeting T-cell leukemia.
Collapse
|
9
|
Ma X, Liu W. Calcium signaling in brain microvascular endothelial cells and its roles in the function of the blood-brain barrier. Neuroreport 2020; 30:1271-1277. [PMID: 31688421 DOI: 10.1097/wnr.0000000000001357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The blood-brain barrier (BBB) plays critical roles in maintaining the stability of the brain's internal milieu, providing nutrients for the brain, and preventing toxic materials from the blood from entering the brain. The cellular structure of the BBB is mainly composed of brain microvascular endothelial cells (BMVECs), which are surrounded by astrocytic endfeet that are connected by tight junction proteins, pericytes and astrocytes. Recently, several studies have shown that aberrant increase in intracellular calcium levels in BMVECs lead to cellular metabolic disturbances and subsequent impairment of BBB integrity. Although multiple stresses can lead to intracellular calcium accumulation, inherent protective mechanisms in affected cells are subsequently activated to maintain calcium homeostasis. However, once the increase in intracellular calcium goes beyond a certain threshold, disturbances in cellular structures, protein expression, and the BBB permeability are inevitable. Here, we review recent research on the different factors regulating intracellular calcium concentrations and the mechanisms related to how calcium signaling cascades protect the BMVECs from outside injury. We also consider the potential of calcium signaling regulators as therapeutic targets for modulating intracellular calcium homeostasis and ameliorating BBB disruption in patients with calcium-related pathologies.
Collapse
Affiliation(s)
- Xingjie Ma
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | | |
Collapse
|
10
|
Zhou L, Zhou M, Tan H, Xiao M. Cypermethrin-induced cortical neurons apoptosis via the Nrf2/ARE signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104547. [PMID: 32359539 DOI: 10.1016/j.pestbp.2020.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 06/11/2023]
Abstract
Pesticide residue is a common problem worldwide. Cypermethrin is a type II pyrethroid pesticide that has been widely used in recent years. It has become a widespread residual pesticide in the environment and agricultural products. The neurotoxicity of cypermethrin remains a matter of concern. However, few studies have evaluated its toxicity on cerebral cortical neurons. As the center of the nervous system, the cerebral cortex is involved in a series of biological processes, such as learning, memory, emotions, and movement. The Nrf2/ARE signaling pathway has been considered to play a protective role in several central nervous system (CNS) diseases. We investigated whether this pathway plays a protective role in cypermethrin-induced apoptosis of the cortical neurons. We established a cypermethrin-induced apoptosis model in the cortical neurons using different cypermethrin doses and different incubation periods. The changes in Nrf2 protein and mRNA expression and its downstream genes HO-1 and NQO1 were detected by quantitative real-time PCR and Western blotting to study the role of the Nrf2/ARE pathway in cypermethrin-induced apoptosis of the cortical neurons. The results showed that the Nrf2/ARE signaling pathway has a protective effect in cypermethrin-induced apoptosis of the cortical neurons. However, this protective effect of the Nrf2/ARE pathway is very limited and is dependent on the exposure dose and exposure period of cypermethrin.
Collapse
Affiliation(s)
- Lihua Zhou
- School of Public Health, Bengbu Medical College, Bengbu, Anhui 233030, China.
| | - Mengqing Zhou
- School of Public Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Handan Tan
- School of Public Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Mengxi Xiao
- School of Public Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| |
Collapse
|
11
|
Assessment of Cypermethrin Residues in Tobacco by a Bioelectric Recognition Assay (BERA) Neuroblastoma Cell-Based Biosensor. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study presents a bioelectric cell-based biosensor for the monitoring of the pyrethroid pesticide cypermethrin, a voltage-gated sodium channel blocker, in tobacco samples. For this purpose, neuroblastoma cells were used as biorecognition elements. The potential interference by the tobacco major alkaloid nicotine on the detection of cypermethrin was also studied. In addition, fluorescence microscopy revealed a specific pattern of neuroblastoma cell calcium efflux (Ca2+) after treatment with nicotine or cypermethrin. Finally, actual field-derived tobacco extracts were used for assessing matrix effects on the biosensor’s performance. The biosensor could detect cypermethrin in concentrations up to 1.5 μg mL−1 without being influenced by the presence of nicotine and possibly other tobacco alkaloids. Though not selective for cypermethrin, the neuroblastoma-based biosensor system appears to be a promising alternative to laborious analysis methodologies for rapid, high throughput and cost-efficient screening of this pyrethroid in tobacco samples in the near future.
Collapse
|
12
|
Dou Y, Jiang X, Xie H, He J, Xiao S. The Jun N-terminal kinases signaling pathway plays a "seesaw" role in ovarian carcinoma: a molecular aspect. J Ovarian Res 2019; 12:99. [PMID: 31639019 PMCID: PMC6802331 DOI: 10.1186/s13048-019-0573-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/21/2019] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer is the most common gynecological malignancy that causes cancer-related deaths in women today; this being the case, developing an understanding of ovarian cancer has become one of the major driving forces behind cancer research overall. Moreover, such research over the last 20 years has shown that the Jun N-terminal kinase (JNK) signaling pathway plays an important role in regulating cell death, survival, growth and proliferation in the mitogen-activated protein kinases (MAPK) signaling pathway, an important pathway in the formation of cancer. Furthermore, the JNK signaling pathway is often regulated by an abnormal activation in human tumors and is frequently reported in the literature for its effect on the progression of ovarian cancer. Although the FDA has approved some JNK inhibitors for melanoma, the agency has not approved JNK inhibitors for ovarian cancer. However, there are some experimental data on inhibitors and activators of the JNK signaling pathway in ovarian cancer, but related clinical trials need to be further improved. Although the Jun N-terminal kinase (JNK) signaling pathway is implicated in the formation of cancer in general, research has also indicated that it has a role in suppressing cancer as well. Here, we summarize this seemingly contradictory role of the JNK signaling pathway in ovarian cancer, that ‘seesaws’ between promoting and suppressing cancer, as well as summarizing the application of several JNK pathway inhibitors in cancer in general, and ovarian cancer in particular.
Collapse
Affiliation(s)
- Yingyu Dou
- Department of Gynecology and Obstetrics, the third Xiangya Hospital, the Central South University, Changsha, 410013, Hunan, China
| | - Xiaoyan Jiang
- Department of Gynecology and Obstetrics, the third Xiangya Hospital, the Central South University, Changsha, 410013, Hunan, China
| | - Hui Xie
- Department of Gynecology and Obstetrics, the third Xiangya Hospital, the Central South University, Changsha, 410013, Hunan, China
| | - Junyu He
- Cancer Research Institute, the Central South University, Changsha, 410011, Hunan, China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, the third Xiangya Hospital, the Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
13
|
Park S, Lim W, You S, Song G. Ochratoxin A exerts neurotoxicity in human astrocytes through mitochondria-dependent apoptosis and intracellular calcium overload. Toxicol Lett 2019; 313:42-49. [DOI: 10.1016/j.toxlet.2019.05.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 11/15/2022]
|
14
|
Navarrete-Meneses MDP, Pérez-Vera P. Pyrethroid pesticide exposure and hematological cancer: epidemiological, biological and molecular evidence. REVIEWS ON ENVIRONMENTAL HEALTH 2019; 34:197-210. [PMID: 30903760 DOI: 10.1515/reveh-2018-0070] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Pyrethroid insecticides are commonly used worldwide. The chronic effects of these compounds are of concern given that epidemiological studies have suggested an association with hematological cancer, particularly in children. However, the biological evidence at molecular and cellular levels is limited. A review on the molecular and cellular effects of pyrethroids is helpful to guide the study of the biological plausibility of the association of pyrethroids with hematological cancer. We reviewed studies suggesting that pyrethroids are genotoxic, induce genetic rearrangements, alter gene expression and modify DNA. All of these biological modifications could potentially contribute to the carcinogenic process in hematopoietic cells.
Collapse
Affiliation(s)
- María Del Pilar Navarrete-Meneses
- Cancer Genetics Laboratory, Human Genetics Department, National Pediatrics Institute, Mexico City, Mexico
- Graduate Program in Biological Sciences, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Patricia Pérez-Vera
- Cancer Genetics Laboratory, Human Genetics Department, National Pediatrics Institute, Mexico City, Mexico
| |
Collapse
|
15
|
Baldissera MD, Souza CF, Descovi SN, Zanella R, Prestes OD, da Silva AS, Baldisserotto B. Organophosphate pesticide trichlorfon induced neurotoxic effects in freshwater silver catfish Rhamdia quelen via disruption of blood-brain barrier: Implications on oxidative status, cell viability and brain neurotransmitters. Comp Biochem Physiol C Toxicol Pharmacol 2019; 218:8-13. [PMID: 30550875 DOI: 10.1016/j.cbpc.2018.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 01/13/2023]
Abstract
The aim of this study was to evaluate whether rupture on blood-brain barrier (BBB) can be a pathway for trichlorfon-induced neurotoxic effects, and to investigate its implications on oxidative status, cell viability and brain neurotransmitters in silver catfish (Rhamdia quelen). The BBB permeability was increased in fish exposed for 24 h to 22 mg/L of trichlorfon compared to the control group, as well as in those exposed to 11 and 22 mg/L of trichlorfon for 48 h. Compared to the control group, brain reactive oxygen species and lipid peroxide levels were higher when exposed to 22 mg/L of trichlorfon and 11 and 22 mg/L of trichlorfon after 24 h and 48 h, respectively, while the antioxidant capacity against peroxyl radical levels was lower. Exposure to 22 mg/L of trichlorfon for 24 h reduced brain cell viability compared to the control group, together with 11 and 22 mg/L of trichlorfon for 48 h. Also, brain AChE, Na+ and K+-ATPase activities were reduced in those fish exposed to trichlorfon compared to the control group. Thus, the rupture of BBB can be considered an important pathway involved in trichlorfon-induced neurotoxic effects, which contributes to brain oxidative damage and important changes on brain neurotransmitters.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sharine N Descovi
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Renato Zanella
- Department of Chemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Osmar D Prestes
- Department of Chemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aleksandro S da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, SC, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
16
|
Chen Y, Sha R, Xu L, Xia Y, Liu Y, Li X, Xie HQ, Tang N, Zhao B. 2,3,7,8-Tetrachlorodibenzo-p-dioxin promotes migration ability of primary cultured rat astrocytes via aryl hydrocarbon receptor. J Environ Sci (China) 2019; 76:368-376. [PMID: 30528028 DOI: 10.1016/j.jes.2018.05.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 06/09/2023]
Abstract
Emerging evidence showed that 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) could induce expression of certain reactivation-associated genes in astrocytes, however, the consequent cellular effects and molecular mechanisms are still unclear. During the process of astrocyte reactivation, migration is a critical cellular event. In the present study, we employed wound-healing assay and Transwell® motility assay to explore the effects of TCDD on cell migration in primary cultured rat cortical astrocytes. We found that upon TCDD treatments at relative low concentrations (10-10 and/or 10-9 mol/L), the ability of primary astrocytes to migrate horizontally and vertically was promoted. In line with this cellular effect, the mRNA expression of two pro-migratory genes, including cell division cycle 42 (CDC42) and matrix metalloproteinase 2 (MMP2) was induced by TCDD treatment. Dioxin exerts its toxic effects mainly through aryl hydrocarbon receptor (AhR) pathway. So the role of AhR pathway in the pro-migratory effects of TCDD was examined using an AhR antagonist, CH223191. We found that application of CH223191 significantly reversed the pro-migratory effects of TCDD. Interestingly, the basal ability of horizontal migration as well as basal levels of CDC42 and MMP2 expression were dramatically reduced suggesting a possible physiological role of AhR in maintaining the endogenous migration ability of the primary astrocytes. These findings support the notion that dioxin promotes astrocyte reactivation at molecular and cellular levels.
Collapse
Affiliation(s)
- Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yingjie Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Xuejun Li
- Department of Occupational and Environmental Health, s, Tianjin Medical University, Tianjin 300070, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Naijun Tang
- Department of Occupational and Environmental Health, s, Tianjin Medical University, Tianjin 300070, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
17
|
Yang Y, Liu W, Wang J, Zhang Y, Xu W, Tao L. The different effects of natural pyrethrins and beta-cypermethrin on human hepatocyte QSG7701 cells by ROS-mediated oxidative damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24230-24240. [PMID: 29948706 DOI: 10.1007/s11356-018-2503-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
With the widespread use of natural pyrethrins and pyrethroids to defend pest insects, people had the sustained interest in the potential risk to environment and human health. However, the research about natural pyrethrins and beta-cypermethrin induction of cytotoxicity is still seldom. This study is about the cytotoxic effects of these on human non-target cells in vitro. The cytotoxic effect of natural pyrethrins and beta-cypermethrin on QSG7701 cells were researched by using various bioassays in vitro. The results suggested that with the natural pyrethrin concentration increased, the viability of QSG7701 cells were inhibited increasingly, and the IC50 value as calculated was approximately 42.54 and 18.68 μg/mL after the cells were treated 24 and 48 h. The proliferative potential of QSG7701 cells treated with 40 μg/mL natural pyrethrins 6 and 12 h was decreased by 67.44 and 94.74%, dramatic enhancement ROS, collapse of mitochondrial membrane potential, DNA exhibit severity of impairment, and chromatin DNA condensation. However, beta-cypermethrin has lower toxicity than natural pyrethrins. The IC50 values of beta-cypermethrin were all > 80 μg/mL, and the colony formation expression was decreased by 15.26 and 19.09%, which implied that natural pyrethrins are more significantly cytotoxic and potentially genotoxic to human hepatocyte cells.
Collapse
Affiliation(s)
- Yun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenjing Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Wang
- Medicine Hospital Imaging Center, Wei fang traditional Chinese hospital, Shandong, 261000, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
18
|
Interaction of DCF1 with ATP1B1 induces impairment in astrocyte structural plasticity via the P38 signaling pathway. Exp Neurol 2018; 302:214-229. [DOI: 10.1016/j.expneurol.2018.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/16/2017] [Accepted: 01/08/2018] [Indexed: 12/18/2022]
|
19
|
Li F, Ma H, Liu J. Pyrethroid Insecticide Cypermethrin Modulates Gonadotropin Synthesis via Calcium Homeostasis and ERK1/2 Signaling in LβT2 Mouse Pituitary Cells. Toxicol Sci 2017; 162:43-52. [DOI: 10.1093/toxsci/kfx248] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Huihui Ma
- MOE Key Lab of Environmental Remediation and Ecosystem Health
| | - Jing Liu
- MOE Key Lab of Environmental Remediation and Ecosystem Health
- Research Center for Air Pollution and Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Laugeray A, Herzine A, Perche O, Richard O, Montecot-Dubourg C, Menuet A, Mazaud-Guittot S, Lesné L, Jegou B, Mortaud S. In utero and lactational exposure to low-doses of the pyrethroid insecticide cypermethrin leads to neurodevelopmental defects in male mice-An ethological and transcriptomic study. PLoS One 2017; 12:e0184475. [PMID: 29020013 PMCID: PMC5636066 DOI: 10.1371/journal.pone.0184475] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/19/2017] [Indexed: 01/03/2023] Open
Abstract
Accumulating evidence suggests that developmental exposure to environmental chemicals may modify the course of brain development, ultimately leading to neuropsychiatric / neurodegenerative disorders later in life. In the present study, we assessed the impact of one of the most frequently used pesticides in both residential and agricultural applications − the synthetic pyrethroid cypermethrin (CYP) − on developmental neurotoxicity (DNT). Female mice were perinatally exposed to low doses of CYP (5 and 20 mg/kg body weight) from gestation to postnatal day 15. Behavioral analyses were performed during the offspring’s early life and during adulthood. Postnatal analyses revealed that perinatal exposure to CYP disturbed motor development without modifying sensory and communicative skills. We found that later in life, CYP-exposed offspring expressed maladaptive behaviors in response to highly challenging tasks and abnormal sociability. Transcriptomic analyses performed in the offspring’s brain at the end of the exposure, highlighted mitochondrial dysfunction as a relevant pathomechanism underlying CYP-induced DNT. Interestingly, several genes involved in proteostasis maintenance were also shown to be dysregulated suggesting that alterations in biogenesis, folding, trafficking and degradation of proteins may significantly contribute to CYP-related DNT. From a regulatory perspective, this study highlights that behavioral and transcriptomic analyses are complementary tools providing useful direction for better DNT characterization, and as such, should be used together more systematically.
Collapse
Affiliation(s)
- Anthony Laugeray
- Immunologie et Neurogénétique Expérimentales et Moléculaires – UMR7355 CNRS – Orléans, France
- * E-mail: (AL); (SM)
| | - Ameziane Herzine
- Immunologie et Neurogénétique Expérimentales et Moléculaires – UMR7355 CNRS – Orléans, France
| | - Olivier Perche
- Immunologie et Neurogénétique Expérimentales et Moléculaires – UMR7355 CNRS – Orléans, France
- Département de génétique, Center Hospitalier Régional, Orléans, France
| | - Olivier Richard
- Immunologie et Neurogénétique Expérimentales et Moléculaires – UMR7355 CNRS – Orléans, France
| | - Céline Montecot-Dubourg
- Immunologie et Neurogénétique Expérimentales et Moléculaires – UMR7355 CNRS – Orléans, France
| | - Arnaud Menuet
- Immunologie et Neurogénétique Expérimentales et Moléculaires – UMR7355 CNRS – Orléans, France
| | | | | | - Bernard Jegou
- IRSET INSERM U 1085, Université de Rennes I, Rennes, France
| | - Stéphane Mortaud
- Immunologie et Neurogénétique Expérimentales et Moléculaires – UMR7355 CNRS – Orléans, France
- * E-mail: (AL); (SM)
| |
Collapse
|
21
|
Christen V, Rusconi M, Crettaz P, Fent K. Developmental neurotoxicity of different pesticides in PC-12 cells in vitro. Toxicol Appl Pharmacol 2017; 325:25-36. [PMID: 28385489 DOI: 10.1016/j.taap.2017.03.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 11/19/2022]
Abstract
The detection of developmental neurotoxicity (DNT) of chemicals has high relevance for protection of human health. However, DNT of many pesticides is only little known. Furthermore, validated in vitro systems for assessment of DNT are not well established. Here we employed the rat phaeochromocytoma cell line PC-12 to evaluate DNT of 18 frequently used pesticides of different classes, including neonicotinoids, pyrethroids, organophosphates, organochlorines, as well as quaternary ammonium compounds, the organic compound used in pesticides, piperonyl butoxide, as well as the insect repellent diethyltoluamide (DEET). We determined the outgrowth of neurites in PC-12 cells co-treated with nerve growth factor and different concentrations of biocides for 5days. Furthermore, we determined transcriptional alterations of selected genes that may be associated with DNT, such as camk2α and camk2β, gap-43, neurofilament-h, tubulin-α and tubulin-β. Strong and dose- dependent inhibition of neurite outgrowth was induced by azamethiphos and chlorpyrifos, and dieldrin and heptachlor, which was correlated with up-regulation of gap-43. No or only weak effects on neurite outgrowth and transcriptional alterations occurred for neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam, the pyrethroids λ-cyhalothrin, cyfluthrin, deltamethrin, and permethrin, the biocidal disinfectants C12-C14-alkyl(ethylbenzyl)dimethylammonium (BAC), benzalkonium chloride and barquat (dimethyl benzyl ammonium chloride), and piperonyl butoxide and DEET. Our study confirms potential developmental neurotoxicity of some pesticides and provides first evidence that azamethiphos has the potential to act as a developmental neurotoxic compound. We also demonstrate that inhibition of neurite outgrowth and transcriptional alterations of gap-43 expression correlate, which suggests the employment of gap-43 expression as a biomarker for detection and initial evaluation of potential DNT of chemicals.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132, Muttenz, Switzerland
| | - Manuel Rusconi
- Federal Office of Public Health, Division Chemical Products, 3003 Bern, Switzerland
| | - Pierre Crettaz
- Federal Office of Public Health, Division Chemical Products, 3003 Bern, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132, Muttenz, Switzerland; Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental Systems Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich, Switzerland.
| |
Collapse
|
22
|
Abreu-Villaça Y, Levin ED. Developmental neurotoxicity of succeeding generations of insecticides. ENVIRONMENT INTERNATIONAL 2017; 99:55-77. [PMID: 27908457 PMCID: PMC5285268 DOI: 10.1016/j.envint.2016.11.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 05/19/2023]
Abstract
Insecticides are by design toxic. They must be toxic to effectively kill target species of insects. Unfortunately, they also have off-target toxic effects that can harm other species, including humans. Developmental neurotoxicity is one of the most prominent off-target toxic risks of insecticides. Over the past seven decades several classes of insecticides have been developed, each with their own mechanisms of effect and toxic side effects. This review covers the developmental neurotoxicity of the succeeding generations of insecticides including organochlorines, organophosphates, pyrethroids, carbamates and neonicotinoids. The goal of new insecticide development is to more effectively kill target species with fewer toxic side effects on non-target species. From the experience with the developmental neurotoxicity caused by the generations of insecticides developed in the past advice is offered how to proceed with future insecticide development to decrease neurotoxic risk.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Departamento de Ciências Fisiologicas, Universidade do Estado do Rio de Janeiro (UERJ), RJ, Brazil
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
23
|
Sun ZL, Dong JL, Wu J. Juglanin induces apoptosis and autophagy in human breast cancer progression via ROS/JNK promotion. Biomed Pharmacother 2017; 85:303-312. [DOI: 10.1016/j.biopha.2016.11.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 01/23/2023] Open
|
24
|
Tripathi S, Kushwaha R, Mishra J, Gupta MK, Kumar H, Sanyal S, Singh D, Sanyal S, Sahasrabuddhe AA, Kamthan M, Mudiam MKR, Bandyopadhyay S. Docosahexaenoic acid up-regulates both PI3K/AKT-dependent FABP7-PPARγ interaction and MKP3 that enhance GFAP in developing rat brain astrocytes. J Neurochem 2016; 140:96-113. [DOI: 10.1111/jnc.13879] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/24/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Sachin Tripathi
- Developmental Toxicology Laboratory; Systems Toxicology & Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (IITR); Lucknow India
- Amity Institute of Biotechnology; Amity University (Lucknow campus); Lucknow India
| | - Rajesh Kushwaha
- Developmental Toxicology Laboratory; Systems Toxicology & Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (IITR); Lucknow India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IITR campus; Lucknow India
| | - Juhi Mishra
- Developmental Toxicology Laboratory; Systems Toxicology & Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (IITR); Lucknow India
- Babu Banarasi Das University; Lucknow India
| | - Manoj Kumar Gupta
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IITR campus; Lucknow India
- Analytical Chemistry Laboratory and Regulatory Toxicology group; CSIR-IITR; Lucknow India
| | - Harish Kumar
- Division of Biochemistry; CSIR-Central Drug Research Institute (CDRI); Lucknow India
| | - Somali Sanyal
- Amity Institute of Biotechnology; Amity University (Lucknow campus); Lucknow India
| | | | - Sabyasachi Sanyal
- Division of Biochemistry; CSIR-Central Drug Research Institute (CDRI); Lucknow India
| | | | - Mohan Kamthan
- Environmental Biotechnology Laboratory; Environmental Toxicology Group; CSIR-IITR; Lucknow India
| | | | - Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory; Systems Toxicology & Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (IITR); Lucknow India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IITR campus; Lucknow India
| |
Collapse
|
25
|
Azab M, Khabour OF, Alzoubi KH, Hawamdeh H, Quttina M, Nassar L. Assessment of genotoxicity of pyrethrin in cultured human lymphocytes. Drug Chem Toxicol 2016; 40:251-255. [PMID: 27461411 DOI: 10.1080/01480545.2016.1209679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pyrethrin is an insecticide that is obtained from the Chrysanthemum flower (Pyrethrum). In this study, we examined the genotoxic effects of pyrethrin on cultured human lymphocytes using sister chromatid exchanges (SCEs) and 8-hydroxy deoxyguanosine (8-OHdG) assays. Cultures were treated with different concentrations of pyrethrin (25, 50, and 100 μg/mL), which was dissolved in in dimethyl sulfoxide (DMSO). The results showed that treatment of cultured lymphocytes with pyrethrin at 50 μg/mL and 100 μg/mL induced significant elevation in SCEs (p < 0.05). In addition, the 100 μg/mL concentration significantly affected both mitotic and proliferative indices (p < 0.05). Finally, pyrethrin induced significant elevation in the oxidative stress marker 8-OHdG in a dose-dependent manner (p < 0.001). In conclusion, the results suggest that pyrethrin is genotoxic as measured by two independent assays on genetic toxicity.
Collapse
Affiliation(s)
- Mohammad Azab
- a Department of Basic Medical Sciences , Faculty of Medicine, The Hashemite University , Zarqa , Jordan
| | - Omar F Khabour
- b Department of Medical Laboratory Sciences , Faculty of Applied Medical Sciences, Jordan University of Science and Technology , Irbid , Jordan
| | - Karem H Alzoubi
- c Department of Clinical Pharmacy , Faculty of Pharmacy, Jordan University of Science and Technology , Irbid , Jordan , and
| | - Hasan Hawamdeh
- a Department of Basic Medical Sciences , Faculty of Medicine, The Hashemite University , Zarqa , Jordan
| | - Maram Quttina
- b Department of Medical Laboratory Sciences , Faculty of Applied Medical Sciences, Jordan University of Science and Technology , Irbid , Jordan
| | - Liliana Nassar
- d Department of Applied Biological Sciences , Faculty of Science and Arts, Jordan University of Science and Technology , Irbid , Jordan
| |
Collapse
|
26
|
Ashok A, Rai NK, Raza W, Pandey R, Bandyopadhyay S. Chronic cerebral hypoperfusion-induced impairment of Aβ clearance requires HB-EGF-dependent sequential activation of HIF1α and MMP9. Neurobiol Dis 2016; 95:179-93. [PMID: 27431094 DOI: 10.1016/j.nbd.2016.07.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 01/25/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) manifests Alzheimer's Disease (AD) neuropathology, marked by increased amyloid beta (Aβ). Besides, hypoxia stimulates Heparin-binding EGF-like growth factor (HB-EGF) mRNA expression in the hippocampus. However, involvement of HB-EGF in CCH-induced Aβ pathology remains unidentified. Here, using Bilateral Common Carotid Artery Occlusion mouse model, we explored the mechanism of HB-EGF regulated Aβ induction in CCH. We found that HB-EGF inhibition suppressed, while exogenous-HB-EGF triggered hippocampal Aβ, proving HB-EGF-dependent Aβ increase. We also detected that HB-EGF affected the expression of primary Aβ transporters, receptor for advanced glycation end-products (RAGE) and lipoprotein receptor-related protein-1 (LRP-1), indicating impaired Aβ clearance across the blood-brain barrier (BBB). An HB-EGF-dependent loss in BBB integrity supported impaired Aβ clearance. The effect of HB-EGF on Amyloid Precursor Protein pathway was relatively insignificant, suggesting a lesser effect on Aβ generation. Delving into BBB disruption mechanism demonstrated HB-EGF-mediated stimulation of Matrix metalloprotease-9 (MMP9), which affected BBB via HB-EGF-ectodomain shedding and epidermal growth factor receptor activation. Examining the intersection of HB-EGF-regulated pathway and hypoxia revealed HB-EGF-dependent increase in transcription factor, Hypoxia-inducible factor-1alpha (HIF1α). Further, via binding to hypoxia-responsive elements in MMP9 gene, HIF1α stimulated MMP9 expression, and therefore appeared as a prominent intermediary in HB-EGF-induced BBB damage. Overall, our study reveals the essential role of HB-EGF in triggering CCH-mediated Aβ accumulation. The proposed mechanism involves an HB-EGF-dependent HIF1α increase, generating MMP9 that stimulates soluble-HB-EGF/EGFR-induced BBB disintegration. Consequently, CCH-mediated hippocampal RAGE and LRP-1 deregulation together with BBB damage impair Aβ transport and clearance where HB-EGF plays a pivotal role.
Collapse
Affiliation(s)
- Anushruti Ashok
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Nagendra Kumar Rai
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Waseem Raza
- Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rukmani Pandey
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sanghamitra Bandyopadhyay
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
27
|
Huang F, Liu Q, Xie S, Xu J, Huang B, Wu Y, Xia D. Cypermethrin Induces Macrophages Death through Cell Cycle Arrest and Oxidative Stress-Mediated JNK/ERK Signaling Regulated Apoptosis. Int J Mol Sci 2016; 17:ijms17060885. [PMID: 27322250 PMCID: PMC4926419 DOI: 10.3390/ijms17060885] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/17/2016] [Accepted: 05/30/2016] [Indexed: 12/25/2022] Open
Abstract
Cypermethrin is one of the most highly effective synthetic pyrethroid insecticides. The toxicity of cypermethrin to the reproductive and nervous systems has been well studied. However, little is known about the toxic effect of cypermethrin on immune cells such as macrophages. Here, we investigated the cytotoxicity of cypermethrin on macrophages and the underlying molecular mechanisms. We found that cypermethrin reduced cell viability and induced apoptosis in RAW 264.7 cells. Cypermethrin also increased reactive oxygen species (ROS) production and DNA damage in a dose-dependent manner. Moreover, cypermethrin-induced G1 cell cycle arrest was associated with an enhanced expression of p21, wild-type p53, and down-regulation of cyclin D1, cyclin E and CDK4. In addition, cypermethrin treatment activated MAPK signal pathways by inducing c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases 1/2 ERK1/2 phosphorylation, and increased the cleaved poly ADP-ribose polymerase (PARP). Further, pretreatment with antioxidant N-acetylcysteine (NAC) effectively abrogated cypermethrin-induced cell cytotoxicity, G1 cell cycle arrest, DNA damage, PARP activity, and JNK and ERK1/2 activation. The specific JNK inhibitor (SP600125) and ERK1/2 inhibitor (PD98059) effectively reversed the phosphorylation level of JNK and ERK1/2, and attenuated the apoptosis. Taken together, these data suggested that cypermethrin caused immune cell death via inducing cell cycle arrest and apoptosis regulated by ROS-mediated JNK/ERK pathway.
Collapse
Affiliation(s)
- Fang Huang
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| | - Qiaoyun Liu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| | - Shujun Xie
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| | - Jian Xu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| | - Bo Huang
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| | - Yihua Wu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| | - Dajing Xia
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| |
Collapse
|
28
|
Kaya-Tilki E, Dikmen M, Ozturk Y. Effects of DNMT and HDAC Inhibitors (RG108 and Trichostatin A) on NGF-induced Neurite Outgrowth and Cellular Migration. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.351.360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Jain S, Sharma B. Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia. Physiol Behav 2015; 152:182-93. [PMID: 26382939 DOI: 10.1016/j.physbeh.2015.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/11/2015] [Accepted: 09/08/2015] [Indexed: 12/17/2022]
Abstract
Vascular risk factors are associated with a higher incidence of dementia. Diabetes mellitus is considered as a main risk factor for Alzheimer's disease and vascular dementia. Both forms of dementia are posing greater risk to the world population and are increasing at a faster rate. In the past we have reported the induction of vascular dementia by experimental diabetes. This study investigates the role of vildagliptin, a dipeptidyl peptidase-4 inhibitor in the pharmacological interdiction of pancreatectomy diabetes induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. Pancreatectomy diabetes rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with increase in brain inflammation, oxidative stress and calcium. Administration of vildagliptin has significantly attenuated pancreatectomy induced impairment of learning, memory, endothelial function, blood brain barrier permeability and biochemical parameters. It may be concluded that vildagliptin, a dipeptidyl peptidase-4 inhibitor may be considered as potential pharmacological agents for the management of pancreatectomy induced endothelial dysfunction and subsequent vascular dementia. The selective modulators of dipeptidyl peptidase-4 may further be explored for their possible benefits in vascular dementia.
Collapse
Affiliation(s)
- Swati Jain
- CNS and CVS Lab., Department of Pharmacology, School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, Pin-250103, Uttar Pradesh, India; Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, A-Block, Ground Floor, Sector-125, Noida - 201303, Uttar Pradesh, India.
| | - Bhupesh Sharma
- School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, Pin-250103, Uttar Pradesh, India; CNS Pharmacology, Conscience Research, Pocket F-233, B, Dilshad Garden, Delhi 110095, India.
| |
Collapse
|
30
|
Maurya SK, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol 2015; 53:968-982. [PMID: 25575682 DOI: 10.1007/s12035-014-9061-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Pesticide exposure is recognized as a risk factor for Alzheimer's disease (AD). We investigated early signs of AD-like pathology upon exposure to a pyrethroid pesticide, cypermethrin, reported to impair neurodevelopment. We treated weanling rats with cypermethrin (10 and 25 mg/kg) and detected dose-dependent increase in the key proteins of AD, amyloid beta (Aβ), and phospho-tau, in frontal cortex and hippocampus as early as postnatal day 45. Upregulation of Aβ pathway involved an increase in amyloid precursor protein (APP) and its pro-amyloidogenic processing through beta-secretase (BACE) and gamma-secretase. Tau pathway entailed elevation in tau and glycogen-synthase kinase-3-beta (GSK3β)-dependent, phospho-tau. GSK3β emerged as a molecular link between the two pathways, evident from reduction in phospho-tau as well as BACE upon treating GSK3β inhibitor, lithium chloride. Exploring the mechanism revealed an attenuated heparin-binding epidermal growth factor (HB-EGF) signaling and downstream astrogliosis-mediated neuroinflammation to be responsible for inducing Aβ and phospho-tau. Cypermethrin caused a proximal reduction in HB-EGF, which promoted astrocytic nuclear factor kappa B signaling and astroglial activation close to Aβ and phospho-tau. Glial activation stimulated generation of interleukin-1 (IL-1), which upregulated GSK3β, and APP and tau as well, resulting in co-localization of Aβ and phospho-tau with IL-1 receptor. Intracerebral insertion of exogenous HB-EGF restored its own signaling and suppressed neuroinflammation and thereby Aβ and phospho-tau in cypermethrin-exposed rats, proving a central role of reduced HB-EGF signaling in cypermethrin-mediated neurodegeneration. Furthermore, cypermethrin stimulated cognitive impairments, which could be prevented by exogenous HB-EGF. Our data demonstrate that cypermethrin induces premature upregulation of GSK3β-dependent Aβ and tau pathways, where HB-EGF signaling and neuroinflammation serve as essential regulators.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Developmental Toxicology, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226001, India
| | - Juhi Mishra
- Developmental Toxicology, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226001, India
| | - Sabiya Abbas
- Food and Chemical Toxicology, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226001, India
| | - Sanghamitra Bandyopadhyay
- Developmental Toxicology, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226001, India.
| |
Collapse
|