1
|
Ahmed YM, El-Shoura EAM, Kozman MR, Abdel-Wahab BA, Abdel-Sattar AR. Combined bisoprolol and trimetazidine ameliorate arsenic trioxide -induced acute myocardial injury in rats: targeting PI3K/GSK-3β/Nrf2/HO-1 and NF-κB/iNOS signaling pathways, inflammatory mediators and apoptosis. Immunopharmacol Immunotoxicol 2024:1-17. [PMID: 39604018 DOI: 10.1080/08923973.2024.2435323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Arsenic-trioxide (ATO) is an effective therapy for acute promyelocytic leukemia. Unfortunately, its utility is hindered by the risk of myocardial injury. Both bisoprolol (BIS) and trimetazidine (TMZ) have various pharmacological features, including anti-oxidant, anti-inflammatory, and anti-apoptotic properties. AIM The cardioprotective effects of BIS and TMZ were studied, and their mechanistic role in ameliorating ATO-induced myocardial injury. MATERIALS AND METHODS Forty male Wistar rats were randomly allotted into five groups as follows: normal control group (received normal saline, orally), ATO group (7.5 mg/kg, orally), BIS (8 mg/kg, orally), TMZ (60 mg/kg, orally), and finally combination group (BIS+TMZ+ATO). Following 21 days, samples of serum and cardiac tissues were obtained to perform biochemical, molecular, and histopathological investigations. RESULTS The present study showed that ATO caused myocardial injury evidenced by changes in serum biomarkers (Aspatate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, creatine kinase-MB, and cardiac troponin-1), electrolyte imbalance, and lipid profiles alongside histopathologic changes. In addition, ATO administration significantly elevated malondialdehyde, nicotinamide adenine dinucleotide phosphate hydrogen oxidase, myloperoxidase, total nitrite, inducible nitric oxide synthase, tumor necrosis factor-alpha, interleukin-1β, interleukin-6, 8-Hydroxy-2'-deoxyguanosine, nuclear factor NF-kappa-B p65 subunit, glycogen synthase kinase-3 beta, and caspase-3 expression contemporaneously with down-regulation of reduced glutathione, glutathione peroxidase, superoxide dismutase, catalase, heme oxygenase 1, nuclear factor erythroid 2-related factor 2, phosphatidylinositol-3 kinase, p-PI3K, and Bcl-2 expression. Interestingly, pretreatment with BIS and TMZ significantly reversed the detrimental effects of ATO-induced myocardial injury at both cellular and molecular levels. Otherwise, combining the two drugs displayed more enhancement than each drug alone. CONCLUSION The present research depicted that BIS and TMZ have the potential to protect the heart and provide therapeutic benefits by preventing acute heart injury induced by ATO. This is achieved by reversing the redox-sensitive pathway, reducing inflammation, and inhibiting apoptosis.
Collapse
Affiliation(s)
- Yasmin M Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Nile Valley (NVU) University, Fayoum, Egypt
| | - Ehab A M El-Shoura
- Clinical Pharmacy Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Magy R Kozman
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza, Egypt
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Asmaa Ramadan Abdel-Sattar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Nile Valley (NVU) University, Fayoum, Egypt
| |
Collapse
|
2
|
Salimi-Sabour E, Tahri RA, Asgari A, Ghorbani M. The novel hepatoprotective effects of silibinin-loaded nanostructured lipid carriers against diazinon-induced liver injuries in male mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105643. [PMID: 38072518 DOI: 10.1016/j.pestbp.2023.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023]
Abstract
In the current study, silibinin-loaded nanostructured lipid carriers (Sili-NLCs) was synthesized, and the hepatoprotective effectiveness of Sili-NLCs against diazinon (DZN)-induced liver damage in male mice was evaluated. The emulsification-solvent evaporation technique was applied to prepare Sili-NLCs, and characterized by using particle size, zeta potential, entrapment efficacy (EE %), in vitro drug release behavior, and stability studies. In vivo, studies were done on male mice. Hepatotoxicity in male mice were induced by DZN (10 mg/kg/day, i.p.). Four groups treated with silibinin and Sili-NLCs with the same doses (100 and 200 mg/kg, p.o.). On 31th days, serum and liver tissue samples were collected. Alanine (ALT) and aspartate (AST) aminotransferase levels, oxidative stress biomarkers, inflammatory cytokines, and histopathological alterations were assessed. The Sili-NLCs particle size, zeta potential, polydispersity index (PDI), and EE % were obtained at 220.8 ± 0.86 nm, -18.7 ± 0.28 mV, 0.118 ± 0.03, and 71.83 ± 0.15%, respectively. The in vivo studies revealed that DZN significantly increased the serum levels of AST, ALT, hepatic levels of lipid peroxidation (LPO), and tumor necrosis factor-α (TNF-α), while decreased the antioxidant defense system in the mice's liver. However, Sili-NLCs was more effective than silibinin to return the aforementioned ratio toward the normal situation, and these results were well correlated with histopathological findings. Improvement of silibinin protective efficacy and oral bioavailability by using NLCs caused to Sili-NLCs can be superior to free silibinin in ameliorating DZN-induced hepatotoxicity in male mice.
Collapse
Affiliation(s)
- Ebrahim Salimi-Sabour
- Department of Pharmacognosy and Traditional Pharmacy, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramazan-Ali Tahri
- Nanobiotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amirhossein Asgari
- Department of Pharmacognosy and Traditional Pharmacy, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Ghorbani
- Department of pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Esmailpour F, Karimani A, Heidarpour M, Moghaddam Jafari A. Protective effects of Biebersteinia multifida on sub-chronic toxicity of DZN in male Wistar rats: biochemical, hematological, and oxidative stress indices. Drug Chem Toxicol 2023; 46:1203-1211. [PMID: 36322408 DOI: 10.1080/01480545.2022.2141774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
The protective effect of Biebersteinia Multifida on diazinon-induced toxicity in male Wistar rats was investigated over 8 weeks. Impacts of diazinon (10 mg/kg daily), Biebersteinia Multifida (500 mg/kg daily), and coadministration of them on oxidative stress parameters besides hematological and biochemical indices were assessed in various groups. The gas chromatography-mass spectrometry analysis was performed to identify the antioxidant components of plant extract by comparing the mass spectra and retention indices with those given in the literature. Pseudocholinesterase level demonstrated a significant attenuation in the Biebersteinia Multifida+diazinon-treated group in comparison to the diazinon group at the end of the 8th week. Statistical significant differences in hematological and biochemical indices were detectable when the diazinon group was compared to Biebersteinia Multifida+diazinon-treated rats. While diazinon destroyed hepatic and renal functions, Biebersteinia Multifida protected the liver and kidney from diazinon toxic effects by normalizing related function indices at the end of the 8th week. By diminishing malondialdehyde and enhancing the ferric-reducing power, Biebersteinia Multifida minimized the hazardous effect of diazinon-induced oxidative stress. Following these results, the beneficial effects of Biebersteinia Multifida in reducing the toxicity of diazinon should be taken into consideration.
Collapse
Affiliation(s)
- Fatemeh Esmailpour
- Department of Pharmacodynamics and Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Asieh Karimani
- Department of Pharmacodynamics and Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Heidarpour
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Moghaddam Jafari
- Department of Pharmacodynamics and Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Nili-Ahmadabadi A, Torabi K, Mohammadi M, Heshmati A. Thermally oxidized sunflower oil diet alters leptin/ghrelin balance and lipid profile in rats: Possible role of reactive aldehydes in dyslipidemia. J Food Biochem 2022; 46:e14514. [PMID: 36377844 DOI: 10.1111/jfbc.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Sunflower oil is a common edible oil in the world, which is highly prone to oxidative degradation during the frying process. The present study aimed to investigate the effects of products obtained from the thermal oxidation process of sunflower oil on metabolic indices, and the secretion status of leptin and ghrelin in rats. In vivo studies were designed after determining the rate of formation of active aldehydes and peroxide value in sunflower oil following 300°C in a period of 30-240 min. To this end, 36 rats in 6 separate groups were fed with 2 ml of normal saline, fresh sunflower oil, and heated oils at 30, 60, 120, and 240 min for 45 days. Finally, lipid profile changes and leptin/ghrelin secretion were examined, along with histological changes in the liver tissue. The results indicated a significant increase in serum LDL, VLDL and triglycerides, and a decrease in HDL, in the groups treated with heated oils. These changes were associated with a higher accumulation of triglycerides, active aldehydes, and histological changes in the hepatic tissue. Although the serum ghrelin level in the groups receiving heated oil did not change significantly compared to the fresh oil, the serum leptin level increased significantly in the groups receiving heated oil. According to our findings, increasing the time of sunflower oil heating enhanced the formation of active aldehydes, so that daily consumption of such oxidized oils might be associated with the occurrence of dyslipidemia, fatty liver and the development of leptin resistance. PRACTICAL APPLICATIONS: Sunflower oil is highly prone to oxidative degradation during the frying process. Increasing time of sunflower oil heating enhanced the formation of active aldehydes. Daily consumption of oxidized oils might be associated with the occurrence of dyslipidemia, fatty liver and the development of leptin resistance.
Collapse
Affiliation(s)
- Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kiyana Torabi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Heshmati
- Department of Nutrition and Food Safety, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Nematollahi A, Rezaei F, Afsharian Z, Mollakhalili-Meybodi N. Diazinon reduction in food products: a comprehensive review of conventional and emerging processing methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40342-40357. [PMID: 35322357 DOI: 10.1007/s11356-022-19294-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Diazinon is known as one of the most commonly used organophosphorus pesticides which influence different pests through inactivating acetyl choline esterase enzymes. Despite diazinon applications, its toxicity to human health could result in a worldwide concern about its occurrence in foodstuffs. Malfunction of brain is considered as the main disorders induced by long time exposure to diazinon. Due to the degradation of diazinon in high temperatures and its susceptibility to oxidation as well as acidic and basic conditions, it could be degraded through several physical (9-94%) and chemical (19.3-100%) food processing procedures (both household and industrial methods). However, each of these methods has its advantages and disadvantages. Normally, the combination of these methods is more efficient in diazinon reduction. To this end, it is important to apply an effective method for diazinon reduction in the food products without affecting food quality or treating human health. It could be noticed that bioremediation by microorganisms such as probiotics could be a promising new method for diazinon's reduction in several food products.
Collapse
Affiliation(s)
- Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran.
| | - Farahnaz Rezaei
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Afsharian
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Mollakhalili-Meybodi
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
6
|
Hamidi-zad Z, Moslehi A, Rastegarpanah M. Attenuating effects of allantoin on oxidative stress in a mouse model of nonalcoholic steatohepatitis: role of SIRT1/Nrf2 pathway. Res Pharm Sci 2021; 16:651-659. [PMID: 34760013 PMCID: PMC8562413 DOI: 10.4103/1735-5362.327511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/21/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Nonalcoholic steatohepatitis (NASH) is considered a common and serious liver disease, which develops into cirrhosis, fibrosis, and even hepatocellular carcinoma. Oxidative stress is identified as an important factor in the induction and promotion of NASH. Allantoin is a natural and safe compound and has notable effects on lipid metabolism, inflammation, and oxidative stress. Therefore, this study was aimed to assess the role of allantoin on the oxidative stress and SIRT1/Nrf2 pathway in a mouse model of NASH. EXPERIMENTAL APPROACH C57/BL6 male mice received saline and allantoin (saline as the control and allantoin as the positive control groups). NASH was induced by a methionine-choline deficient diet (MCD). In the NASH-allantoin (NASH-Alla) group, allantoin was injected for 4 weeks in the mice feeding on an MCD diet. Afterward, histopathological, serum, oxidative stress, and western blot evaluations were performed. FINDINGS/RESULTS We found NASH provided hepatic lipid accumulation and inflammation. Superoxide dismutase (SOD) and glutathione (GSH) levels decreased, lipid peroxidation increased, and the expression of SIRT1 and Nrf2 downregulated. However, allantoin-treatment decreased serum cholesterol, ALT, and AST. Liver steatosis and inflammation were improved. Protein expression of SIRT1 and Nrf2 were upregulated and SOD, CAT, and GSH levels increased and lipid peroxidation decreased. CONCLUSION AND IMPLICATIONS It seems that the antioxidant effects of allantoin might have resulted from the activation of SIRT1/Nrf2 pathway and increase of cellular antioxidant power.
Collapse
Affiliation(s)
- Zeinab Hamidi-zad
- Physiology Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Azam Moslehi
- Cellular & Molecular Research Center, Qom University of Medical Sciences, Qom, I.R. Iran
| | | |
Collapse
|
7
|
Esfahani M, Rahbar AH, Soleimani Asl S, Mehri F. Resveratrol: a panacea compound for diazinon-induced renal toxicity. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.2008452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maryam Esfahani
- Department of Clinical Biochemistry, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Hossein Rahbar
- Department of Clinical Biochemistry, Payame Noor University of Isfahan, Isfahan, Iran
| | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Tehran University of Medical Sciences (Hemmat Pardis), Tehran, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Pentoxifylline Attenuates Arsenic Trioxide-Induced Cardiac Oxidative Damage in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6406318. [PMID: 33505582 PMCID: PMC7810555 DOI: 10.1155/2021/6406318] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022]
Abstract
This study was undertaken to evaluate the therapeutic potential effect of pentoxifylline (PTX) against arsenic trioxide (ATO)-induced cardiac oxidative damage in mice. Thirty-six male albino mice were divided into six groups and treated intraperitoneally with normal saline (group 1), ATO (5 mg/kg; group 2), PTX (100 mg/kg; group 3), and different doses of PTX (25, 50, and 100 mg/kg; groups 4, 5, and 6, respectively) with ATO. After four weeks, the blood sample was collected for biochemical experiments. In addition, cardiac tissue was removed for assessment of oxidative stress markers and histopathological changes (such as hemorrhage, necrosis, infiltration of inflammatory cells, and myocardial degeneration). The findings showed that ATO caused a significant raise in serum biochemical markers such as lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and troponin-I (cTnI), glucose, total cholesterol (TC), and triglyceride (TG) levels. In addition to histopathological changes in cardiac tissue, ATO led to the significant increase in cardiac lipid peroxidation (LPO) and nitric oxide (NO); remarkable decrease in the activity of cardiac antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx); and the depletion of the total antioxidant capacity (TAC) and total thiol groups (TTGs). PTX was able to reduce the increased levels of serum cardiac markers (LDH, CPK, cTnI, TC, and TG), cardiac LPO, and improve antioxidant markers (TAC, TTGs, CAT, SOD, and GPx) alongside histopathologic changes. However, no significant changes were observed in elevated serum glucose and cardiac NO levels. In conclusion, the current study showed the potential therapeutic effect of PTX in the prevention of ATO-induced cardiotoxicity via reversing the oxidative stress.
Collapse
|
9
|
Farkhondeh T, Aschner M, Sadeghi M, Mehrpour O, Naseri K, Amirabadizadeh A, Roshanravan B, Aramjoo H, Samarghandian S. The effect of diazinon on blood glucose homeostasis: a systematic and meta-analysis study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4007-4018. [PMID: 33175357 DOI: 10.1007/s11356-020-11364-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Though evidence exists on the association between diazinon (DZN), an organophosphate pesticide, with hyperglycemia, contrasting reports also exist. Herein, we performed a systematic and meta-analysis study to address this issue. A systematic search was conducted in PubMed, Ovid Medline, Google Scholar, Scopus, and Web of Science up to April 5, 2020, searching for animal studies (rodents and fish) that assessed the impact of DZN on blood glucose concentration. The risk of bias was assessed by the SYRCLE's RoB scale. Once each article's quality was assessed, a random-effects meta-regression was used to pool the data into a meta-analysis. Heterogeneity between the studies was evaluated with the I square and Q test. Random-effect meta-analysis of 19 studies (I2 = 90.5%, p < 0.001) indicated low heterogeneity between the studies. DZN significantly increased blood glucose levels in the exposed versus control groups (95% CI: 2.46-4.94; Z = 5.86; p < 0.001). Subgroup analysis indicated that the effect of high-dose (3.40 (95% CI: 2.03-4.76)) DZN on changes in blood glucose was more pronounced than in the low dose (4.83 (95% CI: 1.56-8.11)). It was also ascertained that the blood glucose level was significantly higher in females (3.55 (95% CI: 2.21-4.89)) versus males (4.87 (95% CI: 0.20-9.55)) exposed to DZN. No publication bias was observed. Sensitivity analysis showed the robustness of the (standardized mean differences: 3.26-4.03). Our findings establish an association between DZN exposure and hyperglycemia in rodents and fish, which is both dose- and gender-dependent.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Mahmood Sadeghi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Omid Mehrpour
- Arizona Poison & Drug Information Center, the University of Arizona, college of pharmacy and university of Arizona, Tucson, Arizona, USA
- Scientific unlimited horizon, Tucson, Arizona, USA
| | - Kobra Naseri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Amirabadizadeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamed Aramjoo
- Student Research Committee, BSc Student in Medical LaboratoryScience, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
10
|
Aramjoo H, Farkhondeh T, Aschner M, Naseri K, Mehrpour O, Sadighara P, Roshanravan B, Samarghandian S. The association between diazinon exposure and dyslipidemia occurrence: a systematic and meta-analysis study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3994-4006. [PMID: 33159230 DOI: 10.1007/s11356-020-11363-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
The effects of diazinon (DZN), an organophosphate pesticide, on lipid profiles have been extensively reported. However, controversy on this issue persists. Here, we performed a systematic and meta-analysis study to investigate the association between DZN exposure and dyslipidemia in rodents and fish species. This systematic review was prepared according to the PRISMA guidelines. Main databases, including Google Scholar, Scopus, PubMed, Ovid MEDLINE, and Web of Science, were systematically searched through March 4, 2020. The risk of bias was evaluated with the SYRCLE's RoB tool. Once all articles were assessed for scientific quality, a random-effects model was applied to perform a pooled analysis. I2 and Q test were used to assess the heterogeneity between articles, and Forest plots, indicating point and pooled estimates, were drawn. Twenty-eight articles were included; between them, 13 publications were selected for meta-analysis. Random-effects meta-analysis showed low heterogeneity between the articles. A pooled analysis indicated that DZN significantly increased total cholesterol levels (95% CI: 0.86-3.79; Z = 3.10; p = 0.002), triglyceride (95% CI: 0.38-3.22; Z = 2.48; p = 0.09), low-density lipoprotein cholesterol (95% CI: 0.25-2.85; Z = 2.34; p = 0.7) in the DZN vs. control groups. In addition, DZN significantly decreased high-density lipoprotein cholesterol (95% CI: - 2.92, - 0.42; Z = 2.62; p = 0.07) in the DZN vs. control groups. No publication bias was observed. Our findings suggest that DZN induces dyslipidemia in rodents and fish species in a dose-dependent manner.
Collapse
Affiliation(s)
- Hamed Aramjoo
- Student Research Committee, BSc Student in Medical Laboratory Science, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Micheal Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209 1300 Morris Park Avenue, Bronx, NY, USA
| | - Kobra Naseri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Arizona Poison & Drug Information Center, the University of Arizona, College of Pharmacy and University of Arizona, Tucson, AZ, USA
- Scientific Unlimited Horizon, Tucson, AZ, USA
| | - Parisa Sadighara
- Department of Environmental Health Engineering, Food Safety Division, School of Public Health and Center for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
11
|
Molina-Pintor IB, Rojas-García AE, Bernal-Hernández YY, Medina-Díaz IM, González-Arias CA, Barrón-Vivanco BS. Relationship between butyrylcholinesterase activity and lipid parameters in workers occupationally exposed to pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39365-39374. [PMID: 32648216 DOI: 10.1007/s11356-020-08197-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
Exposure to organophosphate pesticides (OP) has been associated with the inhibition of cholinesterase enzymatic activity, such as butyrylcholinesterase (BuChE). Changes in BuChE activity have been associated with obesity, diabetes, hyperthyroidism, and metabolic syndrome. However, few studies have evaluated the effects of pesticides on both BuChE and lipid parameters. The aim of this study was to evaluate lipid parameters in urban sprayers and their association with BuChE activity. An analytical cross-sectional study was conducted in workers exposed to pesticides. The pesticide exposures were evaluated by the measurement of urinary dialkylphosphates. BuChE activity was determined spectrophotometrically in serum, and biochemical parameters were determined at a certified laboratory. Information regarding general characteristics, lifestyle, and other aspects was obtained from a structured questionnaire. The results showed variations in glucose, cholesterol, albumin, atherogenic index, creatinine, LDL, VLDL, triglycerides, and total lipids according to the level of exposure to pesticides in individuals with overweight and obesity. Furthermore, positive correlations between BuChE activity and lipid parameters were observed; these effects were associated with the body mass index. More studies are needed in human population to better elucidate the role of BuChE in lipid metabolism.
Collapse
Affiliation(s)
- Iris Betzaida Molina-Pintor
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Los Fresnos, 63190, Tepic, Nayarit, Mexico
- Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, Mexico
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Los Fresnos, 63190, Tepic, Nayarit, Mexico
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Los Fresnos, 63190, Tepic, Nayarit, Mexico
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Los Fresnos, 63190, Tepic, Nayarit, Mexico
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Los Fresnos, 63190, Tepic, Nayarit, Mexico
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Los Fresnos, 63190, Tepic, Nayarit, Mexico.
| |
Collapse
|
12
|
Xing S, Li Q, Xiong B, Chen Y, Feng F, Liu W, Sun H. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer's disease, and fat metabolism. Med Res Rev 2020; 41:858-901. [PMID: 33103262 DOI: 10.1002/med.21745] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Structural information of butyrylcholinesterase (BChE) and its variants associated with several diseases are discussed here. Pure human BChE has been proved safe and effective in treating organophosphorus (OPs) poisoning and has completed Phase 1 and 2 pharmacokinetic (PK) and safety studies. The introduction of specific mutations into native BChE to endow it a self-reactivating property has gained much progress in producing effective OPs hydrolases. The hydrolysis ability of native BChE on cocaine has been confirmed but was blocked to clinical application due to poor PK properties. Several BChE mutants with elevated cocaine hydrolysis activity were published, some of which have shown safety and efficiency in treating cocaine addiction of human. The increased level of BChE in progressed Alzheimer's disease patients made it a promising target to elevate acetylcholine level and attenuate cognitive status. A variety of selective BChE inhibitors with high inhibitory activity published in recent years are reviewed here. BChE could influence the weight and insulin secretion and resistance of BChE knockout (KO) mice through hydrolyzing ghrelin. The BChE-ghrelin pathway could also regulate aggressive behaviors of BChE-KO mice.
Collapse
Affiliation(s)
- Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China.,Institute of Food and Pharmaceuticals Research, Jiangsu Food and Pharmaceuticals Science College, Nanjing, China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
13
|
Abdel-Daim MM, Abushouk AI, Bahbah EI, Bungău SG, Alyousif MS, Aleya L, Alkahtani S. Fucoidan protects against subacute diazinon-induced oxidative damage in cardiac, hepatic, and renal tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11554-11564. [PMID: 31965500 DOI: 10.1007/s11356-020-07711-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/09/2020] [Indexed: 05/07/2023]
Abstract
Fucoidans (FUC) are organic sulfated polysaccharides from natural seaweeds with multiple biological actions. The current study was performed to assess the chemoprotective, antioxidant, and anti-inflammatory effects of FUC from Laminaria japonicum against diazinon (DZN)-induced injuries to rat cardiac, hepatic, and renal tissues. Forty male Wistar rats were assigned into five groups, receiving saline, oral FUC 200 mg/kg/day, subcutaneous DZN 20 mg/kg/day, DZN plus FUC 100 mg/kg/day, or DZN plus FUC 200 mg/kg/day (each treatment was given daily for 4 weeks). Data analysis showed that DZN-intoxicated rats exhibited significantly higher (p < 0.05) serum levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, urea, creatine, creatine kinase, creatine kinase-MB, lactate dehydrogenase, cholesterol, interleukin-6, and tumor necrosis factor-α, as well as lower levels of acetylcholinesterase, compared to control rats. In addition, DZN intoxication was associated with significantly higher (p < 0.05) cardiac, hepatic, and renal tissue concentrations of malondialdehyde and nitric oxide, as well as lower glutathione concentrations, and activities of glutathione peroxidase, superoxide dismutase, and catalase enzymes in comparison to control rats. Treatment with FUC (at 100 or 200 mg/kg/day) ameliorated all the aforementioned alterations in a dose-dependent manner. In conclusion, FUC from Laminaria japonicum ameliorated DZN-induced oxidative stress, pro-inflammatory effects, and injuries to the cardiac, hepatic, and renal tissues. These effects may be related to the antioxidant and anti-inflammatory effects of FUC.
Collapse
Affiliation(s)
- Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | | | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Simona G Bungău
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Mohamed S Alyousif
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, Bourgogne Franche-Comté University, UMR CNRS 6249, 25030, Besançon Cedex, France
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
14
|
Hosseini S, Nili-Ahmadabadi A, Nachvak SM, Dastan D, Moradi S, Abdollahzad H, Mostafai R. Antihyperlipidemic and Antioxidative Properties of Pistacia atlantica subsp. kurdica in Streptozotocin-Induced Diabetic Mice. Diabetes Metab Syndr Obes 2020; 13:1231-1236. [PMID: 32368115 PMCID: PMC7182454 DOI: 10.2147/dmso.s250417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Pistacia atlantica subsp. kurdica is an important food source and a well-known medicinal plant in the Zagros Mountains of Iran. The present study aimed to investigate the effect of P. atlantica extract and essential oil in streptozotocin-induced diabetic mice. MATERIALS AND METHODS Different doses of hydroalcoholic extract and essential oil of P. atlantica subsp. kurdica (50, 100, and 200 mg/kg) were given to streptozotocin-induced diabetic mice in separate groups for three weeks. At the end of treatment, blood samples were collected; then, oxidative stress markers, TNF-α, and lipid profile were determined in its serum samples. RESULTS Our findings showed that the administration of P. atlantica extract for three consecutive weeks significantly improved the lipid profile, oxidative stress, and inflammation process by reducing lipid peroxidation and increasing total antioxidant capacity. CONCLUSION This study showed that P. atlantica subsp. kurdica has antioxidant and blood lipid-lowering effects that can be used as a supplement to improve diabetes complications.
Collapse
Affiliation(s)
- Seyran Hosseini
- Student Research Committee, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mostafa Nachvak
- Nutritional Sciences Department, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Correspondence: Seyed Mostafa Nachvak Nutritional Sciences Department, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, IranTel +98 83 37102003Fax +98 83 38263048 Email
| | - Dara Dastan
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
- Dara Dastan Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, IranTel +98 8138381590Fax +98 8138380031 Email
| | - Shima Moradi
- Nutritional Sciences Department, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Abdollahzad
- Nutritional Sciences Department, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roghayeh Mostafai
- Nutritional Sciences Department, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|