1
|
Huang Z, Huang Q, Wei H, Chen J, Wang J, Song G. Fluopyram analogues containing an indole moiety: synthesis, biological activity and molecular docking study. Mol Divers 2025:10.1007/s11030-025-11106-9. [PMID: 39832082 DOI: 10.1007/s11030-025-11106-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
Succinate dehydrogenase (SDH) has been identified as one of the ideal targets for the development of novel nematicides. However, the resistance of nematodes to fluopyram, one of the commercialized SDH inhibitors, is becoming a growing concern. Since expanding the structural diversity around an active scaffold is a useful strategy for drug development, herein a series of fluopyram analogues with a broad, biologically relevant indole moiety were synthesized and evaluated for nematicidal activity against C. elegans. Fifty-six novel target compounds were synthesized and characterized by 1H NMR, 13C NMR, and HRMS. The bioscreen results revealed that a few compounds such as C16 and D21 with LC50/72 h values of 8.65 mg/L and 6.83 mg/L, respectively, showed compatible activity to that of the commercial nematicide tioxazafen (LC50/72 h = 5.98 mg/L). Molecular docking indicated that these compounds could effectively bind to the active site of SDH by forming hydrogen bonds with Trp215 and Tyr96, and causing a cation-π interaction with Arg74. The work suggests that indole-containing derivatives may represent a promising template for the development of new nematicides.
Collapse
Affiliation(s)
- Zhitian Huang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Qianyu Huang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Hong Wei
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jinzhe Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jiayi Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Gonghua Song
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Zhang Q, Liu D, Ou Y, Gan X. 1,2,4-Oxadiazole-5-Carboxylic Acid Derivatives as Safe Seed Treatment Nematicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:169-179. [PMID: 39715537 DOI: 10.1021/acs.jafc.4c07806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Plant-parasitic nematodes pose a significant threat to crop production, impacting agricultural yields. In the search for new nematicides, a series of 1,2,4-oxadiazole-5-carboxylic acid derivatives containing amide or ester groups were designed and synthesized using an activity-based approach. Bioassay results showed that some compounds exhibited good nematicidal activity against Meloidogyne incognita, Aphelenchoides besseyi, and Bursaphelenchus xylophilus. Especially, compound f1 showed excellent nematicidal activity against A. besseyi with an LC50 value of 19.0 μg/mL at 48 h, outperforming tioxazafen (LC50 = 149 μg/mL) and fosthiazate (LC50 > 300 μg/mL). In semi-in vivo and pot experiments, compound f1 demonstrated superior nematicidal activity compared to fosthiazate against A. besseyi while also being safe for rice seeds. The mechanism of action revealed that compound f1 could inhibit the population and behavior of A. besseyi, damage the nematode cuticle, resulting in fluid leakage, affect the production of reactive oxygen species, lipofuscin, and lipids in nematodes, and inhibit acetylcholinesterase in A. besseyi. These findings suggest that compound f1 has the potential to be a safe and effective seed treatment nematicide.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Dan Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yuqin Ou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Ou Y, Guo X, Zhang Q, Zhang W, Gan X. Design, synthesis, and nematicidal activity of novel 1,2,4-oxadiazole derivatives containing amide fragments. Mol Divers 2024:10.1007/s11030-024-10992-9. [PMID: 39327355 DOI: 10.1007/s11030-024-10992-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Plant-parasitic nematodes are seriously affecting agricultural production worldwide and there are few highly effective and low-risk nematicides to control nematode diseases. In order to discover new nematicides, a series of 1,2,4-oxadiazole derivatives containing amide fragments have been designed and synthesized with the principle of active substructure splicing. The nematicidal activity of the target compounds was evaluated in vitro and it indicated that compound C3 exhibited the most nematicidal activity against Bursaphelenchus xylophilus, Aphelenchoides besseyi, and Ditylenchus destructor with the LC50 values of 37.2, 36.6, and 43.4 μg/mL, respectively, which were superior to positive agent tioxazafen. The preliminary mechanism results revealed that compound C3 not only inhibited the reproduction of B. xylophilus populations, but also affected the production of ROS and the accumulation of lipofuscin and lipids. Furthermore, compound C3 showed good inhibition of succinate dehydrogenase (SDH) with the IC50 value of 45.5 µmol/L. Molecular docking indicated that compound C3 had excellent binding to amino acids around the SDH active pocket. This work indicated that 1,2,4-oxadiazole derivative containing amide fragment is a promising template for the discovery of new nematicides and compound C3 can be used as a potential nematicide candidate.
Collapse
Affiliation(s)
- Yuqin Ou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xue Guo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Yang ZY, Dai YC, Mo YQ, Wang JL, Ma L, Zhao PJ, Huang Y, Wang RB, Li W, Al-Rejaie SS, Liu JJ, Cao Y, Mo MH. Exploring the nematicidal mechanisms and control efficiencies of oxalic acid producing Aspergillus tubingensis WF01 against root-knot nematodes. Front Microbiol 2024; 15:1424758. [PMID: 39040900 PMCID: PMC11260745 DOI: 10.3389/fmicb.2024.1424758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Background and aims Root-knot nematodes (RKN; Meloidogyne spp.) are among the highly prevalent and significantly detrimental pathogens that cause severe economic and yield losses in crops. Currently, control of RKN primarily relies on the application of chemical nematicides but it has environmental and public health concerns, which open new doors for alternative methods in the form of biological control. Methods In this study, we investigated the nematicidal and attractive activities of an endophytic strain WF01 against Meloidogyne incognita in concentration-dependent experiments. The active nematicidal metabolite was extracted in the WF01 crude extract through the Sephadex column, and its structure was identified by nuclear magnetic resonance and mass spectrometry data. Results The strain WF01 was identified as Aspergillus tubingensis based on morphological and molecular characteristics. The nematicidal and attractive metabolite of A. tubingensis WF01 was identified as oxalic acid (OA), which showed solid nematicidal activity against M. incognita, having LC50 of 27.48 μg ml-1. The Nsy-1 of AWC and Odr-7 of AWA were the primary neuron genes for Caenorhabditis elegans to detect OA. Under greenhouse, WF01 broth and 200 μg ml-1 OA could effectively suppress the disease caused by M. incognita on tomatoes respectively with control efficiency (CE) of 62.5% and 70.83%, and promote plant growth. In the field, WF01-WP and 8% OA-WP formulations showed moderate CEs of 51.25%-61.47% against RKN in tomato and tobacco. The combined application of WF01 and OA resulted in excellent CEs of 66.83% and 69.34% toward RKN in tomato and tobacco, respectively. Furthermore, the application of WF01 broth or OA significantly suppressed the infection of J2s in tomatoes by upregulating the expression levels of the genes (PAL, C4H, HCT, and F5H) related to lignin synthesis, and strengthened root lignification. Conclusion Altogether, our results demonstrated that A. tubingensis WF01 exhibited multiple weapons to control RKN mediated by producing OA to lure and kill RKN in a concentration-dependent manner and strengthen root lignification. This fungus could serve as an environmental bio-nematicide for managing the diseases caused by RKN.
Collapse
Affiliation(s)
- Zhong-Yan Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yuan-Chen Dai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yuan-Qi Mo
- Institute of Crop Variety Resources, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Jia-Lun Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Li Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ying Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Rui-Bin Wang
- Shandong Dianlu Biotechnology Co., Ltd., Feixian, China
| | - Wei Li
- Yunnan Boshiao Biotechnology Co., Ltd., Kunming, China
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jian-Jin Liu
- Pu’er Corporation of Yunnan Tobacco Corporation, Pu’er, China
| | - Yi Cao
- Guizhou Academy of Tobacco Agricultural Sciences, Guiyang, China
| | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
5
|
Fan Z, Gao K, Wang L, Qin Y, Liu S, Xing R, Yu H, Li K, Li P. Sulfonamide modified chitosan oligosaccharide with high nematicidal activity against Meloidogyne incognita. Int J Biol Macromol 2024; 269:132131. [PMID: 38719017 DOI: 10.1016/j.ijbiomac.2024.132131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/02/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Chitosan oligosaccharide (COS) modification is a feasible way to develop novel green nematicides. This study involved the synthesis of various COS sulfonamide derivatives via hydroxylated protection and deprotection, which were then characterized using NMR, FTIR, MS, elemental analysis, XRD, and TG/DTG. In vitro experiments found that COS-alkyl sulfonamide derivatives (S6 and S11-S13) exhibited high mortality (>98 % at 1 mg/mL) against Meloidogyne incognita second-instar larvaes (J2s) among the derivatives. S6 can cause vacuole-like structures in the middle and tail regions of the nematode body and effectively inhibit egg hatching. In vivo tests have found that S6 has well control effects and low plant toxicity. Additionally, the structure-activity studies revealed that S6 with a high degree of substitution, a low molecular weight, and a sulfonyl bond on the amino group of the COS backbone exhibited increased nematicidal activity. The sulfonamide group is a potential active group for developing COS-based nematicides.
Collapse
Affiliation(s)
- Zhaoqian Fan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Linsong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
6
|
Afridi MS, Schulman P, Lacerda VNC, Guimaraes RA, Vasconcelos de Medeiros FH. Long-term benefit contribution of chemical and biological nematicide in coffee nematode management in soil microbial diversity and crop yield perspectives. Microbiol Res 2024; 282:127638. [PMID: 38422858 DOI: 10.1016/j.micres.2024.127638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
The plant-parasitic root-knot nematode Meloidogyne exigua causes significant damage and is an important threat in Coffea arabica plantations. The utilization of plant-beneficial microbes as biological control agents against sedentary endoparasitic nematodes has been a longstanding strategy. However, their application in field conditions to control root-knot nematodes and their interaction with the rhizospheric microbiota of coffee plants remain largely unexplored. This study aimed to investigate the effects of biological control agent-based bioproducts and a chemical nematicide, used in various combinations, on the control of root-knot nematodes and the profiling of the coffee plant rhizomicrobiome in a field trial. The commercially available biological products, including Trichoderma asperellum URM 5911 (Quality), Bacillus subtilis UFPEDA 764 (Rizos), Bacillus methylotrophicus UFPEDA 20 (Onix), and nematicide Cadusafos (Rugby), were applied to adult coffee plants. The population of second-stage juveniles (J2) and eggs, as well as plant yield, were evaluated over three consecutive years. However, no significant differences were observed between the control group and the groups treated with bioproducts and the nematicide. Furthermore, the diversity and community composition of bacteria, fungi, and eukaryotes in the rhizosphere soil of bioproduct-treated plants were evaluated. The dominant phyla identified in the 16 S, ITS2, and 18 S communities included Proteobacteria, Acidobacteria, Actinobacteria, Ascomycota, Mortierellomycota, and Cercozoa in both consecutive years. There were no significant differences detected in the Shannon diversity of 16 S, ITS2, and 18 S communities between the years of data. The application of a combination of T. asperellum, B. subtilis, and B. methylotrophicus, as well as the use of Cadusafos alone and in combination with T. asperellum, B. subtilis, and B. methylotrophicus, resulted in a significant reduction (26.08%, 39.13%, and 21.73%, respectively) in the relative abundance of Fusarium spp. Moreover, the relative abundance of Trichoderma spp. significantly increased by 500%, 200%, and 100% at the genus level, respectively, compared to the control treatment. By constructing a co-occurrence network, we discovered a complex network structure among the species in all the bioproduct-treated groups. However, our findings indicate that the introduction of exogenous beneficial microbes into field conditions was unable to modulate the existing microbiota significantly. These findings suggest that the applied bioproducts had no significant impact on the reshaping of the overall microbial diversity in the rhizosphere microbiome but rather recruited selected microrganisms and assured net return to the grower. The results underscore the intricate nature of the rhizosphere microbiome and suggest the necessity for alternate biocontrol strategies and a re-evaluation of agricultural practices to improve nematode control by aligning with the complex ecological interactions in the rhizosphere.
Collapse
Affiliation(s)
- Muhammad Siddique Afridi
- Department of Phytopathology, Federal University of Lavras, PO Box 3037, Lavras, MG 37200-900, Brazil
| | - Pablo Schulman
- Embrapa Rice and Beans, Rodovia GO-462, PO Box 179, Santo Antônio de Goiás, GO 75375-000, Brazil
| | | | - Rafaela Araújo Guimaraes
- Department of Phytopathology, Federal University of Lavras, PO Box 3037, Lavras, MG 37200-900, Brazil
| | | |
Collapse
|
7
|
Wang Y, Zhang Y, Wang S, Cai Q, Song H, Chen J. Discovery and Mechanism of a Nematicide Candidate ( W3): A Novel Amide Compound Containing a Cyclopropyl Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5585-5594. [PMID: 38442026 DOI: 10.1021/acs.jafc.3c06696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
To find novel nematicides, we screened the nematicidal activity of compounds in our laboratory compound library. Interestingly, the compound N-((1R,2R)-2-(2-fluoro-4-(trifluoromethyl)phenyl)cyclopropyl)-2-(trifluoromethyl)benzamide (W3) showed a broad spectrum and excellent nematicidal activity. The LC50 values of compound W3 against second-stage juveniles of Bursaphelenchus xylophilus (B. xylophilus), Aphelenchoides besseyi, and Ditylenchus destructor are 1.30, 1.63, and 0.72 mg/L, respectively. Nematicidal activities of compound W3 against second-stage juveniles of Meloidogyne incognita were 87.66% at 100 mg/L. Meanwhile, compound W3 can not only observably inhibit the feeding, reproduction, and egg hatching of B. xylophilus but can also effectively promote the oxidative stress adverse reactions of nematodes and cause intestinal damage. Compound W3 can promote the production of MDA and inhibit the activities of defense enzymes SOD and GST in B. xylophilus. Compound W3 can affect the transcription of genes involved in regulating the tricarboxylic acid cycle in nematodes, resulting in weakened nematode respiration and reduced nematode activity and even death. In addition, compound W3 had good inhibitory activity against five pathogenic fungi. Among them, the EC50 of compound W3 against Fusarium graminearum was 8.4 mg/L. In the future, we will devote ourselves to the toxicological and structural optimization research of the candidate nematicide W3.
Collapse
Affiliation(s)
- Yu Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Sheng Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Qingfeng Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongyi Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jixiang Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
8
|
Zhao LT, Wang BN, Zhang YQ, Zhang C, Liu M, Chen AL, Yuan J, Chen J, Zhou S. Design, Synthesis, Nematicidal, and Fungicidal Activities of Novel Azo and Azoxy Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2473-2481. [PMID: 38284538 DOI: 10.1021/acs.jafc.3c04847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Bursaphelenchus xylophilus (B. xylophilus) and Meloidogyne are parasitic nematodes that have caused severe ecological and economic damage in pinewood and crops, respectively. Jietacins (jietacin A and B) were found to have excellent biological activity against B. xylophilus. Based on our tremendous demand for chemicals against B. xylophilus, a novel scaffold based on the azo and azoxy groups was designed, and a series of compounds were synthesized. In the bioassay, Ia, IIa, IIc, IId, and IVa exhibited higher activity against B. xylophilus in vitro than avermectin (LC50 = 2.43 μg·mL-1) with LC50 values of 1.37, 1.12, 0.889, 1.56, and 1.10 μg·mL-1, respectively. Meanwhile, Ib, Ic, IIc, and IVa showed good inhibition effects against Meloidogyne in vivo at the concentrations of 80 and 40 μg·mL-1 with inhibition rates of 89.0% and 81.6%, 95.6% and 75.7%, 96.3% and 41.2%, and 86.8% and 78.7%, respectively. In fungicidal activity in vitro, IIb and IVa exhibited excellent effect against Botryosphaeria dothidea with the inhibition of 82.59% and 85.32% at the concentration of 10 μg·mL-1, while the inhibition of Ia was 83.16% against Rhizoctonia solani at the concentration of 12.5 μg·mL-1. Referring to the biological activity against B. xylophilus, a 3D-QASR model was built in which the electron-donating group and small group at the 4-phenylhydrazine were favorable for the activity. In general, the novel azoxy compounds, especially IIc possess great potential for application in the prevention of B. xylophilus.
Collapse
Affiliation(s)
- Lyu-Ting Zhao
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Bo-Ning Wang
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Yu-Qi Zhang
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Chuang Zhang
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Ming Liu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - An-Liang Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jing Yuan
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jie Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Sha Zhou
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
9
|
Liu C, Zhang L, Cao X, Chen Y, Li Z, Maienfisch P, Xu X. Discovery of Trifluorobutene Amide Derivatives as Potential Nematicides: Design, Synthesis, Nematicidal Activity Evaluation, SAR, and Mode of Action Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1429-1443. [PMID: 38189665 DOI: 10.1021/acs.jafc.3c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Plant-parasitic nematodes are one of the major threats to crop protection. However, only limited nematicides are currently available and are confronted with a growing resistance problem, which necessitates the development of novel nematicides. In this study, a series of trifluorobutene amide derivatives was synthesized through the strategy of amide bond reversal, and their nematicidal activity against Meloidogyne incognita was evaluated. The bioassay showed that compounds C2, C10, and C18 and some analogues thereof exhibited good nematicidal activity. Among them, the derivatives of compound C2 containing a benzene ring [C26 (R = 2-CH3) and C33 (R = 2-Cl)] exhibited excellent bioactivity against M. incognita in vitro. The LC50/72h values reached 14.13 and 14.71 mg·L-1, respectively. Moreover, analogues of compounds C10 and C18 containing a thiophene ring [C43 (R = 5-CH3), C44 (R = 4-CH3), and C50 (R = 5-Cl)] exhibited significant bioactivity against M. incognita in vivo with inhibition rates of 68.8, 65.5, and 69.8% at 2.5 mg·L-1 in a matrix, respectively. Meanwhile, C44 and C50 also showed excellent control effects against M. incognita in both cups and microplots. The structure-activity relationship (SAR) of synthesized compounds was discussed in detail. Comparative molecular field analysis (CoMFA) was also conducted to develop the SAR profile. The preliminary mode of action investigation showed that compound C33 exhibited strong inhibition on egg hatching, motility, feeding behavior, and growth of Caenorhabditis elegans. At the same time, the impact of active compounds on biochemical indicators related to oxidative stress showed that compound C33 influenced the production of ROS (reactive oxygen species), and the accumulation of lipofuscin and lipids on C. elegans.
Collapse
Affiliation(s)
- Cheng Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Letian Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaofeng Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yadi Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
- CreInSol MCB, Aegertenstrasse 21, CH-4118 Rodersdorf, Switzerland
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
10
|
Wang Y, Song H, Wang S, Cai Q, Chen J. Design, Synthesis, Nematicidal Activity, and Mechanism of Novel Amide Derivatives Containing an 1,2,4-Oxadiazole Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:128-139. [PMID: 38154095 DOI: 10.1021/acs.jafc.3c04945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
To discover new nematicides, a series of novel amide derivatives containing 1,2,4-oxadiazole were designed and synthesized. Several compounds showed excellent nematicidal activity. The LC50 values of compounds A7, A18, and A20-A22 against pine wood nematode (Bursaphelenchus xylophilus), rice stem nematode (Aphelenchoides besseyi), and sweet potato stem nematode (Ditylenchus destructor) were 1.39-3.09 mg/L, which were significantly better than the control nematicide tioxazafen (106, 49.0, and 75.0 mg/L, respectively). Compound A7 had an outstanding inhibitory effect on nematode feeding, reproductive ability, and egg hatching. Compound A7 effectively promoted the oxidative stress of nematodes and caused intestinal damage to nematodes. Compound A7 significantly inhibited the activity of succinate dehydrogenase (SDH) in nematodes, leading to blockage of electron transfer in the respiratory chain and thereby hindering the synthesis of adenosine triphosphate (ATP), which consequently affects the entire oxidative phosphorylation process to finally cause nematode death. Therefore, compound A7 can be used as a potential SDH inhibitor in nematicide applications.
Collapse
Affiliation(s)
- Yu Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongyi Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Sheng Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Qingfeng Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jixiang Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Zhang X, Hu Z, Wang S, Yin F, Wei Y, Xie J, Sun R. Discovery of 2-Naphthol from the Leaves of Actephila merrilliana as a Natural Nematicide Candidate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13209-13219. [PMID: 37643159 DOI: 10.1021/acs.jafc.3c02580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
To identify natural nematicides that can replace chemical nematicides, 2-naphthol with high activity against Meloidogyne incognita was isolated from Actephila merrilliana. The nematicidal activity of 2-naphthol against M. incognita was 100% at 100 μg/mL with an EC50 value of 38.00 μg/mL. Moreover, 2-naphthol had a significant negative effect on egg incubation. 2-Naphthol effectively inhibited the invasion of M. incognita into crops in both a pot experiment and field trial. In addition, the structure-activity relationship indicated that the naphthalene ring and its β-site hydroxyl group were the key pharmacophores for the nematicidal activity of 2-naphthol. Nematodes were stimulated by 2-naphthol to produce excessive reactive oxygen species, which may be the underlying mechanism of 2-naphthol nematicidal activity. A systemic evaluation of 2-naphthol in tomato plants demonstrated that 2-naphthol remained mainly fixed in the roots after being absorbed by the crop and was not transported to the stems or leaves. Thus, 2-naphthol can be developed as a natural nematicide candidate.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou 570228, People's Republic of China
| | - Zhan Hu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou 570228, People's Republic of China
| | - Shuai Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou 570228, People's Republic of China
| | - Fengman Yin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou 570228, People's Republic of China
| | - Yuyang Wei
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou 570228, People's Republic of China
| | - Jia Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou 570228, People's Republic of China
| | - Ranfeng Sun
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou 570228, People's Republic of China
| |
Collapse
|
12
|
Gökalp F. A Study on Natural Control against Nematodes and Whiteflies with Marigold, Known as an Antagonist Plant. J Chem Ecol 2023; 49:230-234. [PMID: 37097510 DOI: 10.1007/s10886-023-01421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/11/2023] [Accepted: 03/25/2023] [Indexed: 04/26/2023]
Abstract
The importance of finding natural solutions for the protection of our health in the fight against pests in agriculture is increasing day by day. In this study, the interaction of the active ingredients in marigolds as the great importance as a garden flower, with nematode and whitefly receptors as ligands in the fight against them, have been investigated by chemical calculation method. The inhibition effect of ligands (alpha-Terthienyl, Quercetagetin in marigold) on nematode and whitefly receptors in this plant was determined by comparing the binding energy values with reference drug active ingredients (imidacloprid, Perhexiline).This calculation method, the accuracy determined by different studies, is very important in terms of determining the most active substance in a short time, preventing time and substance loss, and will guide the experimental studies and applications to be made in this field.
Collapse
Affiliation(s)
- Faik Gökalp
- Kırıkkale University,Education Faculty, Department Of Mathematics and Science Education, Science Education, /Kırıkkale, 71450, Yahşihan, Turkey.
| |
Collapse
|
13
|
Wang JY, Li QY, Ren L, Guo C, Qu JP, Gao Z, Wang HF, Zhang Q, Zhou B. Transcriptomic and physiological analysis of the effect of octanoic acid on Meloidogyne incognita. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105432. [PMID: 37247998 DOI: 10.1016/j.pestbp.2023.105432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
Root knot nematodes are the most devastating root pathogens, causing severe damage and serious economic losses to agriculture worldwide. Octanoic acid has been reported as one of the nematicides, and its mode of action is not fully understood. The main objective of this study was to elucidate the effect of octanoic acid on Meloidogyne incognita by transcriptomic analysis combined with physiological and biochemical assays. In the toxicity assays with octanoic acid, the threshold concentration with nematicidal activity and the maximum concentration to which nematodes could respond were 0.03 μL/mL and 0.08 μL/mL respectively. Microscopic observation combined with protein and carbohydrates assays confirmed that the structure of the second-stage juveniles (J2s) was severely disrupted after 72 h of immersion in octanoic acid. Transcriptome analysis has shown that octanoic acid can interfere with the nematode energy metabolism, lifespan and signaling. Although the effects are multifaceted, the findings strongly point to the cuticle, lysosomes, and extracellular regions and spaces as the primary targets for octanoic acid. In addition, nematodes can withstand the negative effects of low concentration of octanoic acid to some extent by up-regulating the defense enzyme system and heterologous metabolic pathways. These findings will help us to explore the nematicidal mechanism of octanoic acid and provide important target genes for the development of new nematicides in the future.
Collapse
Affiliation(s)
- Jian-Yu Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Qingdao Zipnow Agricultural Technology Co., Ltd, Qing'dao 266000, China
| | - Qiu-Yue Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Li Ren
- College of Resources and Environmental Sciences, China Agricultural University, Bei'jing 100193, China
| | - Cheng Guo
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jian-Ping Qu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Zheng Gao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Hui-Fang Wang
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Hai' kou 571100, China.
| | - Qian Zhang
- Shandong Institute of Pomology, Tai'an 271018, China.
| | - Bo Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer, Tai'an 271018, China.
| |
Collapse
|
14
|
Ali Q, Yu C, Wang Y, Sheng T, Zhao X, Wu X, Jing L, Gu Q, Wu H, Gao X. High killing rate of nematode and promotion of rice growth by synthetic volatiles from Bacillus strains due to enhanced oxidative stress response. PHYSIOLOGIA PLANTARUM 2023; 175:e13868. [PMID: 36724171 DOI: 10.1111/ppl.13868] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The plant parasitic nematode Aphelenchoides besseyi is a major pest that poses serious threats to different vegetables and crop plants. In the present study, volatiles isolated from Bacillus spp. were utilized as green biocontrol agents to overcome nematodes. In in vitro experiment, Bacillus spp. GBSC56, SYST2, and FZB42 showed the strongest nematicidal activity with killing rates of 80.78%, 75.69%, and 60.45%, respectively, as compared with control. The selected synthetic volatile organic compounds (VOCs), namely albuterol, benzaldehyde (BDH), 1,2-benzisothiazol-3(2H)-one (1,2-HIT), dimethyl disulfide (DMDS), 2-undecanone (2-UD), and 1,3-propanediole (1,3-PD), exhibited strong nematicidal activity, with A. besseyi killing rate of 85.58%, 82.65%, 81.75%, 80.36%, 84.45%, and 82.36%, respectively, at 400 μg/mL. Microscopic analysis proved that the rapid mortality was due to the production of reactive oxygen species (ROS). Molecular docking attributed this ROS production to the nematicidal effect of synthetic VOCs on NADH DEHYDROGENASE SUBUNIT 2, which is known to play a critical role in the suppression of ROS in nematode models. In a greenhouse experiment, the Bacillus strains GBSC56, SYST2, and FZB42 and their synthetic VOCs significantly improved the physiological parameters in terms of growth promotion traits. In addition, selected genes related to growth promotion and defense genes showed a significant upregulation of their expression in rice seedlings treated with those synthetic VOCs. Overall, these findings revealed that the selected Bacillus strains and their synthetic VOCs possess high potential against A. besseyi. Moreover, this study also sheds new light on the mechanisms by which specific Bacillus nematicidal VOCs influence important genes involved in rice plant growth promotion and could effectively be used to suppress plant parasitic nematodes.
Collapse
Affiliation(s)
- Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chenjie Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yujie Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Tao Sheng
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaozhen Zhao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaohui Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Liang Jing
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Wang Y, Song H, Wang S, Cai Q, Zhang Y, Zou Y, Liu X, Chen J. Discovery of quinazoline compound as a novel nematicidal scaffold. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105310. [PMID: 36549817 DOI: 10.1016/j.pestbp.2022.105310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
With the aim of discovering novel nematicidal scaffolds, the nematicidal activities of a series of quinazoline compounds were tested, with some compounds showing excellent results. Among them, the LC50 values of compound K11 against Bursaphelenchus xylophilus, Aphelenchoides besseyi, and Ditylenchus destructor were 7.33, 6.09, and 10.95 mg/L, respectively. In addition, the nematicidal activity of compound K11 against Meloidogyne incognita was 98.77% at 100 mg/L. Compound K11 not only increased the production of reactive oxygen species and the accumulation of lipofuscin and lipids in nematodes, but it also attenuated nematode pathogenicity by reducing the nematodes' antioxidant capacity. Transcriptomic analysis showed that compound K11 had significant effects on fatty acid degradation, metabolic pathways, and the differentially expressed genes related to redox processes in nematodes. Furthermore, the expression levels of the corresponding differentially expressed genes were verified using real-time quantitative polymerase chain reaction. Quinazoline can be used as a new nematicidal scaffold, and it is expected that more work will be done on the discovery of novel nematicides based on the lead compound K11 in the future.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hongyi Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Sheng Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Qingfeng Cai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yue Zou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xing Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
16
|
Nguyen VT, Park AR, Duraisamy K, Vo DD, Kim JC. Elucidation of the nematicidal mode of action of grammicin on Caenorhabditis elegans. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105244. [PMID: 36464355 DOI: 10.1016/j.pestbp.2022.105244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Grammicin (Gra) is derived from the endophytic fungus Xylaria grammica EL000614 and shows nematicidal activity against the devastating root-knot nematode Meloidogyne incognita in-vitro, in planta, and in-field experiments. However, the mechanism of the nematicidal action of Gra remains unclear. In this study, Gra exposure to the model genetic organism Caenorhabditis elegans affected its L1, L2/3, L4, and young adult stages. In addition, Gra treatment increased the intracellular reactive oxygen species (ROS) levels of C. elegans and M. incognita. Molecular docking interaction analysis indicated that Gra could bind and interact with GCS-1, GST-4, and DAF-16a in order of low binding energy, followed by SOD-3, SKN-1, and DAF-16b. This implies that the anthelmintic action of Gra is related to the oxidative stress response. To validate this mechanism, we examined the expression of the genes involved in the oxidative stress responses following treatment with Gra using transgenic C. elegans strains such as the TJ356 strain zIs356 [daf-16p::daf-16a/b::GFP + rol-6 (su1006)], LD1 ldIs7 [skn-1p::skn-1b/c::GFP + rol-6 (su1006)], LD1171 ldIs3 [gcs-1p::GFP + rol-6 (su1006)], CL2166 dvIs19 [(pAF15) gst-4p::GFP::NLS], and CF1553 strain muIs84 [(pAD76) sod-3p::GFP + rol-6 (su1006)]. Gra treatment caused nuclear translocation of DAF-16/FoxO and enhanced gst-4::GFP expression, but it had no change in sod-3::GFP expression. These results indicate that Gra induces oxidative stress response via phase II detoxification without reduced cellular redox machinery. Gra treatment also inhibited the nuclear localization of SKN-1::GFP in the intestine, which may lead to a condition in which oxidative stress tolerance is insufficient to protect C. elegans by the inactivation of SKN-1, thus inducing nematode lethality. Furthermore, Gra caused the mortality of two mutant strains of C. elegans, CB113 and DA1316, which are resistant to aldicarb and ivermectin, respectively. This indicates that the mode of action of Gra is different from the traditional nematicides currently in use, suggesting that it could help develop novel approaches to control plant-parasitic nematodes.
Collapse
Affiliation(s)
- Van Thi Nguyen
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kalaiselvi Duraisamy
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Duc Duy Vo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
17
|
Zhang S, Yang Q, Defoirdt T. Halogenated Indoles Decrease the Virulence of Vibrio campbellii in a Gnotobiotic Brine Shrimp Model. Microbiol Spectr 2022; 10:e0268922. [PMID: 36154441 PMCID: PMC9602911 DOI: 10.1128/spectrum.02689-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/08/2022] [Indexed: 01/04/2023] Open
Abstract
Indole signaling is viewed as a potential target for antivirulence therapy against antibiotic-resistant pathogens because of its link with the production of virulence factors. This study examined the antimicrobial and antivirulence properties of 44 indoles toward Vibrio campbellii. Based on the results, 17 halogenated indole analogues were selected, as they significantly improved the survival of brine shrimp larvae challenged with V. campbellii. Specifically, 6-bromoindole, 7-bromoindole, 4-fluoroindole, 5-iodoindole, and 7-iodoindole showed a high protective effect, improving the survival of brine shrimp to over 80% even at a low concentration of 10 μM. To explore the impact of selected indole analogues on bacterial virulence phenotypes, swimming motility, biofilm formation, protease activity, and hemolytic activity of V. campbellii were determined. The results showed that all of the 17 selected indole analogues decreased swimming motility at both 10 μM and 100 μM. Most of the indole analogues decreased biofilm formation at a concentration of 100 μM. In contrast, only a slightly decreased protease activity and no effect on hemolytic activity were observed at both concentrations. To our knowledge, this is the first study of the structure-activity relation of halogenated indole analogues with respect to virulence inhibition of a pathogenic bacterium in an in vivo host model system, and the results demonstrate the potential of these compounds in applications aiming at the protection of shrimp from vibriosis, a major disease in aquaculture. IMPORTANCE Bacterial diseases are a major problem in the aquaculture industry. In order to counter this problem, farmers have been using antibiotics, and this has led to the evolution and spread of antibiotic resistance. In order for the aquaculture industry to further grow in a sustainable way, novel and sustainable methods to control diseases are needed. We previously reported that indole signaling is a valid target for the development of novel therapies to control disease caused by Vibrio campbellii and related bacteria, which are among the major bacterial pathogens in aquaculture. In the present study, we identified indole analogues that are more potent in protecting brine shrimp (a model organism for shrimp) from V. campbellii. To our knowledge, this is the first study of the structure-activity relation of halogenated indole analogues with respect to virulence inhibition of a pathogenic bacterium in an in vivo host model system.
Collapse
Affiliation(s)
- Shanshan Zhang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| | - Qian Yang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| |
Collapse
|
18
|
Ye S, Yan R, Li X, Lin Y, Yang Z, Ma Y, Ding Z. Biocontrol potential of Pseudomonas rhodesiae GC-7 against the root-knot nematode Meloidogyne graminicola through both antagonistic effects and induced plant resistance. Front Microbiol 2022; 13:1025727. [PMID: 36386722 PMCID: PMC9651087 DOI: 10.3389/fmicb.2022.1025727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Plant-parasitic nematodes (PPNs) cause serious damage to agricultural production worldwide. Currently, because of a lack of effective and environmental-friendly chemical nematicides, the use of microbial nematicides has been proposed as an eco-friendly management strategy to control PPNs. A nematicidal bacterium GC-7 was originally isolated from the rice rhizosphere, and was identified as Pseudomonas rhodesiae. Treatment with the fermentation supernatant of GC-7 in vitro showed a highly lethal effect on second-stage juveniles of Meloidogyne graminicola, with the mortality rate increasing to 95.82% at 24 h and egg hatching significantly inhibited, with a hatch inhibition rate of 60.65% at 96 h. The bacterium significantly reduced the level of damage caused by M. graminicola infestations to rice (Oryza sativa) in greenhouse and field experiments. Under greenhouse conditions, the GC-7 culture efficiently reduced the gall index and nematode population in rice roots and soils, as well as inhibited nematode development compared to the control. Under field conditions, application of the GC-7 consistently showed a high biocontrol efficacy against M. graminicola (with a control efficiency of 58.85%) and promoted plant growth. In addition, the inoculation of GC-7 in M. graminicola-infested rice plant fields significantly suppressed final nematode populations in soil under natural conditions. Furthermore, activities of plant defense-related enzymes, peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase were remarkably increased in plant roots treated with GC-7 compared with roots that were challenge to M. graminicola. Moreover, quantitative real-time PCR analysis showed that GC-7 significantly enhanced the expression of defense genes (PR1a, WRKY45, JaMYB, AOS2, ERF1, and ACS1) related to salicylic acid, jasmonic acid, and ethylene signaling pathways in rice roots after inoculation with GC-7 at different levels. The results indicated that GC-7 could be an effective biological component in the integrated management of M. graminicola infecting rice.
Collapse
Affiliation(s)
- Shan Ye
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, Hunan, China
| | - Rui Yan
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Xinwen Li
- Agriculture and Rural Department of Hunan Province, Plant Protection and Inspection Station, Changsha, Hunan, China
| | - Yufeng Lin
- Agriculture and Rural Department of Hunan Province, Plant Protection and Inspection Station, Changsha, Hunan, China
| | - Zhuhong Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, Hunan, China
| | - Yihang Ma
- Department of Chemical Metrology and Reference Materials, Hunan Institute of Metrology and Test, Changsha, Hunan, China
| | - Zhong Ding
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, Hunan, China
- *Correspondence: Zhong Ding,
| |
Collapse
|
19
|
Chen J, Luo X, Chen Y, Wang Y, Peng J, Xing Z. Recent Research Progress: Discovery of Anti-Plant Virus Agents Based on Natural Scaffold. Front Chem 2022; 10:926202. [PMID: 35711962 PMCID: PMC9196591 DOI: 10.3389/fchem.2022.926202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Plant virus diseases, also known as “plant cancers”, cause serious harm to the agriculture of the world and huge economic losses every year. Antiviral agents are one of the most effective ways to control plant virus diseases. Ningnanmycin is currently the most successful anti-plant virus agent, but its field control effect is not ideal due to its instability. In recent years, great progress has been made in the research and development of antiviral agents, the mainstream research direction is to obtain antiviral agents or lead compounds based on structural modification of natural products. However, no antiviral agent has been able to completely inhibit plant viruses. Therefore, the development of highly effective antiviral agents still faces enormous challenges. Therefore, we reviewed the recent research progress of anti-plant virus agents based on natural products in the past decade, and discussed their structure-activity relationship (SAR) and mechanism of action. It is hoped that this review can provide new inspiration for the discovery and mechanism of action of novel antiviral agents.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- *Correspondence: Jixiang Chen,
| | - Xin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yifang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ju Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhifu Xing
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
20
|
Crystal structure of 2,2-dichloro-1-(4-chloro-1 H-indol-1-yl)ethan-1-one, C 10H 6Cl 3NO. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C10H6Cl3NO, monoclinic, P21/n (no. 14), a = 9.7097(10) Å, b = 10.6037(11) Å, c = 10.1735(10) Å, β = 96.580(4)°, V = 1040.55(18) Å3, Z = 4, R
gt
(F) = 0.0214, wR
ref
(F
2) = 0.0574, T = 101 K.
Collapse
|
21
|
Wang L, Qin Y, Fan Z, Gao K, Zhan J, Xing R, Liu S, Li P. Novel Lead Compound Discovery from Aspergillus fumigatus 1T-2 against Meloidogyne incognita Based on a Chemical Ecology Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4644-4657. [PMID: 35404052 DOI: 10.1021/acs.jafc.1c08147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To replace biohazardous nematicides, there is an ever-increasing need to identify natural product-based agents to contain root-knot nematodes (RKNs) in agriculture. In this chemical ecology study, an antagonistic fungus Aspergillus fumigatus 1T-2, which could cause the formation of withering of the gut and vacuole-like structures in the nematode body, was isolated based on the gradually increased antagonistic interactions between the soil fungi and RKNs. Based on these typical morphological characteristics, a potent nematode-antagonistic compound 2-furoic acid, which had a simple structure, was successfully identified from 1T-2 fermentation broth by liquid chromatography-mass spectrometry (LC-MS). 2-Furoic acid showed effective mortality activity in vitro, of which the LC50 value to Megalaima incognita at 24 h was 37.75 μg/mL. 2-Furoic acid had similar mortality activity to the positive control fosthiazate at 30 μg/mL. Continuous 2-furoic acid exposure had obvious negative influences on both nematode vitality and egg hatchability. Notably, significant variations were observed in nematodes and eggs with 2-furoic acid treatment, which might be induced by novel nematocidal mechanisms. Furthermore, the 1T-2 fermentation broth and 2-furoic acid had significant control efficacy on M. incognita under the greenhouse test-tube assay. Overall, these findings provide valuable insights into the use of 2-furoic acid with biocontrol potential as a preferable lead structure for the development of innovative nematicides.
Collapse
Affiliation(s)
- Linsong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Zhaoqian Fan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Jiang Zhan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
22
|
Raorane CJ, Raj V, Lee JH, Lee J. Antifungal activities of fluoroindoles against the postharvest pathogen Botrytis cinerea: In vitro and in silico approaches. Int J Food Microbiol 2022; 362:109492. [PMID: 34861563 DOI: 10.1016/j.ijfoodmicro.2021.109492] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/07/2021] [Accepted: 11/20/2021] [Indexed: 11/29/2022]
Abstract
Botrytis cinerea is a common necrotrophic fungal pathogen, leading cause of gray mold diseases in plants and fruit. Several benzimidazoles are used for controlling B. cinerea-associated infection in fruit and vegetables, but benzimidazoles resistance restricts its further uses. Therefore, it is a need for alternative drugs that control B. cinerea. Indoles are multi-faceted compounds and their structural similarities with antifungal benzimidazoles make them a choice for further investigation. Thus, the main objective of the study was to investigate the antifungal potencies of indoles against B. cinerea and to decipher the molecular mechanism involved. We conducted in vitro antifungal assays, fruit assays, and computational studies of interactions between indoles and fungal microtubule polymerase. Of the 16 halogenated indoles examined, 4-fluoroindole, 5-fluoroindole, and 7-fluoroindole (MIC range 2-5 mg/L) were found to be more potent than the fungicides fluconazole and natamycin. Fluoroindoles inhibited or eradicated B. cinerea infections in tangerines and strawberries. Molecular dynamic simulation and density functional theory showed that these fluoroindoles stably interacted with microtubule polymerase. Quantitative structure-activity relationship analyses of halogenated indoles revealed that the presence of a fluoro group in the indole moiety is essential for anti-Botrytis activity. The plausibility of the underlying antifungal mechanism was confirmed by in vitro tubulin polymerization. Collective outcomes of this study indicates that fluoroindoles could be used as alternative fungicidal agents against B. cinerea.
Collapse
Affiliation(s)
| | - Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
23
|
Nguyen VT, Yu NH, Lee Y, Hwang IM, Bui HX, Kim JC. Nematicidal Activity of Cyclopiazonic Acid Derived From Penicillium commune Against Root-Knot Nematodes and Optimization of the Culture Fermentation Process. Front Microbiol 2021; 12:726504. [PMID: 34899622 PMCID: PMC8651706 DOI: 10.3389/fmicb.2021.726504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022] Open
Abstract
Among 200 fungal strains isolated from the soil, only one culture filtrate of Aspergillus flavus JCK-4087 showed strong nematicidal activity against Meloidogyne incognita. The nematicidal metabolite isolated from the culture filtrate of JCK-4087 was identified as cyclopiazonic acid (CPA). Because JCK-4087 also produced aflatoxins, six strains of Penicillium commune, which have been reported to be CPA producers, were obtained from the bank and then tested for their CPA productivity. CPA was isolated from the culture filtrate of P. commune KACC 45973. CPA killed the second-stage juveniles of M. incognita, M. hapla, and M. arearia with EC50-3 days 4.50, 18.82, and 60.51 μg mL-1, respectively. CPA also significantly inhibited egg hatch of M. incognita and M. hapla after a total of 28 days of treatment with the concentrations > 25 μg mL-1. The enhancement of CPA production by P. commune KACC 45973 was explored using an optimized medium based on Plackett-Burman design (PBD) and central composite design (CCD). The highest CPA production (381.48 μg mL-1) was obtained from the optimized medium, exhibiting an increase of 7.88 times when compared with that from potato dextrose broth culture. Application of the wettable power-type formulation of the ethyl acetate extract of the culture filtrate of KACC 45973 reduced gall formation and nematode populations in tomato roots and soils under greenhouse conditions. These results suggest that CPA produced by P. commune KACC 45973 can be used as either a biochemical nematicide or a lead molecule for developing chemical nematicides to control root-knot nematodes.
Collapse
Affiliation(s)
- Van Thi Nguyen
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, South Korea
| | - Nan Hee Yu
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, South Korea
| | - Yookyung Lee
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, South Korea
| | - In Min Hwang
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, South Korea
| | - Hung Xuan Bui
- Department of Entomology and Nematology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
24
|
Ritter M, Bresgen N, Kerschbaum HH. From Pinocytosis to Methuosis-Fluid Consumption as a Risk Factor for Cell Death. Front Cell Dev Biol 2021; 9:651982. [PMID: 34249909 PMCID: PMC8261248 DOI: 10.3389/fcell.2021.651982] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
The volumes of a cell [cell volume (CV)] and its organelles are adjusted by osmoregulatory processes. During pinocytosis, extracellular fluid volume equivalent to its CV is incorporated within an hour and membrane area equivalent to the cell's surface within 30 min. Since neither fluid uptake nor membrane consumption leads to swelling or shrinkage, cells must be equipped with potent volume regulatory mechanisms. Normally, cells respond to outwardly or inwardly directed osmotic gradients by a volume decrease and increase, respectively, i.e., they shrink or swell but then try to recover their CV. However, when a cell death (CD) pathway is triggered, CV persistently decreases in isotonic conditions in apoptosis and it increases in necrosis. One type of CD associated with cell swelling is due to a dysfunctional pinocytosis. Methuosis, a non-apoptotic CD phenotype, occurs when cells accumulate too much fluid by macropinocytosis. In contrast to functional pinocytosis, in methuosis, macropinosomes neither recycle nor fuse with lysosomes but with each other to form giant vacuoles, which finally cause rupture of the plasma membrane (PM). Understanding methuosis longs for the understanding of the ionic mechanisms of cell volume regulation (CVR) and vesicular volume regulation (VVR). In nascent macropinosomes, ion channels and transporters are derived from the PM. Along trafficking from the PM to the perinuclear area, the equipment of channels and transporters of the vesicle membrane changes by retrieval, addition, and recycling from and back to the PM, causing profound changes in vesicular ion concentrations, acidification, and-most importantly-shrinkage of the macropinosome, which is indispensable for its proper targeting and cargo processing. In this review, we discuss ion and water transport mechanisms with respect to CVR and VVR and with special emphasis on pinocytosis and methuosis. We describe various aspects of the complex mutual interplay between extracellular and intracellular ions and ion gradients, the PM and vesicular membrane, phosphoinositides, monomeric G proteins and their targets, as well as the submembranous cytoskeleton. Our aim is to highlight important cellular mechanisms, components, and processes that may lead to methuotic CD upon their derangement.
Collapse
Affiliation(s)
- Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Institute for Physiology and Pathophysiology, Paracelsus Medical University, Nuremberg, Germany
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Salzburg, Austria
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Nikolaus Bresgen
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
25
|
Kumar P, Lee JH, Lee J. Diverse roles of microbial indole compounds in eukaryotic systems. Biol Rev Camb Philos Soc 2021; 96:2522-2545. [PMID: 34137156 PMCID: PMC9290978 DOI: 10.1111/brv.12765] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
Indole and its derivatives are widespread across different life forms, functioning as signalling molecules in prokaryotes and with more diverse roles in eukaryotes. A majority of indoles found in the environment are attributed to bacterial enzymes converting tryptophan into indole and its derivatives. The involvement of indoles among lower organisms as an interspecies and intraspecies signal is well known, with many reports showing that inter‐kingdom interactions involving microbial indole compounds are equally important as they influence defence systems and even the behaviour of higher organisms. This review summarizes recent advances in our understanding of the functional properties of indole and indole derivatives in diverse eukaryotes. Furthermore, we discuss current perspectives on the role of microbial indoles in human diseases such as diabetes, obesity, atherosclerosis, and cancers. Deciphering the function of indoles as biomarkers of metabolic state will facilitate the formulation of diet‐based treatments and open unique therapeutic opportunities.
Collapse
Affiliation(s)
- Prasun Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
26
|
Ayaz M, Ali Q, Farzand A, Khan AR, Ling H, Gao X. Nematicidal Volatiles from Bacillus atrophaeus GBSC56 Promote Growth and Stimulate Induced Systemic Resistance in Tomato against Meloidogyne incognita. Int J Mol Sci 2021; 22:5049. [PMID: 34068779 PMCID: PMC8126219 DOI: 10.3390/ijms22095049] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Bacillus volatiles to control plant nematodes is a topic of great interest among researchers due to its safe and environmentally friendly nature. Bacillus strain GBSC56 isolated from the Tibet region of China showed high nematicidal activity against M. incognita, with 90% mortality as compared with control in a partition plate experiment. Pure volatiles produced by GBSC56 were identified through gas chromatography and mass spectrometry (GC-MS). Among 10 volatile organic compounds (VOCs), 3 volatiles, i.e., dimethyl disulfide (DMDS), methyl isovalerate (MIV), and 2-undecanone (2-UD) showed strong nematicidal activity with a mortality rate of 87%, 83%, and 80%, respectively, against M. incognita. The VOCs induced severe oxidative stress in nematodes, which caused rapid death. Moreover, in the presence of volatiles, the activity of antioxidant enzymes, i.e., SOD, CAT, POD, and APX, was observed to be enhanced in M. incognita-infested roots, which might reduce the adverse effect of oxidative stress-induced after infection. Moreover, genes responsible for plant growth promotion SlCKX1, SlIAA1, and Exp18 showed an upsurge in expression, while AC01 was downregulated in infested plants. Furthermore, the defense-related genes (PR1, PR5, and SlLOX1) in infested tomato plants were upregulated after treatment with MIV and 2-UD. These findings suggest that GBSC56 possesses excellent biocontrol potential against M. incognita. Furthermore, the study provides new insight into the mechanism by which GBSC56 nematicidal volatiles regulate antioxidant enzymes, the key genes involved in plant growth promotion, and the defense mechanism M. incognita-infested tomato plants use to efficiently manage root-knot disease.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Q.A.); (A.R.K.)
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Q.A.); (A.R.K.)
| | - Ayaz Farzand
- Department of Plant Pathology, University of Agriculture, Faisalabad P.O. Box 38040, Pakistan;
| | - Abdur Rashid Khan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Q.A.); (A.R.K.)
| | - Hongli Ling
- Shandong Vland Biotechnology Co., Ltd., Binzhou 251700, China;
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Q.A.); (A.R.K.)
| |
Collapse
|
27
|
Sethupathy S, Sathiyamoorthi E, Kim YG, Lee JH, Lee J. Antibiofilm and Antivirulence Properties of Indoles Against Serratia marcescens. Front Microbiol 2020; 11:584812. [PMID: 33193228 PMCID: PMC7662412 DOI: 10.3389/fmicb.2020.584812] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Indole and its derivatives have been shown to interfere with the quorum sensing (QS) systems of a wide range of bacterial pathogens. While indole has been previously shown to inhibit QS in Serratia marcescens, the effects of various indole derivatives on QS, biofilm formation, and virulence of S. marcescens remain unexplored. Hence, in the present study, we investigated the effects of 51 indole derivatives on S. marcescens biofilm formation, QS, and virulence factor production. The results obtained revealed that several indole derivatives (3-indoleacetonitrile, 5-fluoroindole, 6-fluoroindole, 7-fluoroindole, 7-methylindole, 7-nitroindole, 5-iodoindole, 5-fluoro-2-methylindole, 2-methylindole-3-carboxaldehyde, and 5-methylindole) dose-dependently interfered with quorum sensing (QS) and suppressed prodigiosin production, biofilm formation, swimming motility, and swarming motility. Further assays showed 6-fluoroindole and 7-methylindole suppressed fimbria-mediated yeast agglutination, extracellular polymeric substance production, and secretions of virulence factors (e.g., proteases and lipases). QS assays on Chromobacterium violaceum CV026 confirmed that indole derivatives interfered with QS. The current results demonstrate the antibiofilm and antivirulence properties of indole derivatives and their potentials in applications targeting S. marcescens virulence.
Collapse
Affiliation(s)
| | | | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
28
|
Raorane CJ, Lee JH, Lee J. Rapid Killing and Biofilm Inhibition of Multidrug-Resistant Acinetobacter baumannii Strains and Other Microbes by Iodoindoles. Biomolecules 2020; 10:biom10081186. [PMID: 32824104 PMCID: PMC7465641 DOI: 10.3390/biom10081186] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Multi-drug resistant Acinetobacter baumannii is well-known for its rapid acclimatization in hospital environments. The ability of the bacterium to endure desiccation and starvation on dry surfaces for up to a month results in outbreaks of health care-associated infections. Previously, indole and its derivatives were shown to inhibit other persistent bacteria. We found that among 16 halogenated indoles, 5-iodoindole swiftly inhibited A. baumannii growth, constrained biofilm formation and motility, and killed the bacterium as effectively as commercial antibiotics such as ciprofloxacin, colistin, and gentamicin. 5-Iodoindole treatment was found to induce reactive oxygen species, resulting in loss of plasma membrane integrity and cell shrinkage. In addition, 5-iodoindole rapidly killed three Escherichia coli strains, Staphylococcus aureus, and the fungus Candida albicans, but did not inhibit the growth of Pseudomonas aeruginosa. This study indicates the mechanism responsible for the activities of 5-iodoindole warrants additional study to further characterize its bactericidal effects on antibiotic-resistant A. baumannii and other microbes.
Collapse
Affiliation(s)
| | | | - Jintae Lee
- Correspondence: ; Tel.: +82-53-810-2533; Fax: +82-53-810-4631
| |
Collapse
|