1
|
Han G, Kong R, Liu C, Huang K, Xu Q, Wu J, Fei J, Zhang H, Su G, Letcher RJ, Shi J, Rohr JR. Field and Laboratory Evidence That Chlorpyrifos Exposure Reduced the Population Density of a Freshwater Snail by Increasing Juvenile Mortality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17543-17554. [PMID: 39231302 DOI: 10.1021/acs.est.4c04202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Pesticides have been frequently detected in global freshwater ecosystems, but attempts to document changes in population dynamics of organisms upon exposure to pesticides, establish a causal relationship between exposure and population effects, and identify the key toxic events within individuals under natural field conditions remain rare. Here, we used a field survey, a reciprocal cross-transplant experiment, and a laboratory toxicity experiment to build a compelling case that exposure to the insecticide chlorpyrifos was responsible for differences in snail (Bellamya aeruginosa) densities in eastern (ELL) and western basins of Liangzi Lake in China. Our field survey and reciprocal cross-transplant experiment revealed significant differences in snail densities, juvenile percentage, survival, and relative telomere length (RTL) in the two basins. The insecticide chlorpyrifos detected in snail tissues was negatively correlated with snail densities, the percentage of juvenile snails, and RTL and had an extremely high risk quotient in ELL. In the laboratory experiment, tissue concentrations of chlorpyrifos detected in ELL were associated with reduced RTL and increased juvenile mortality in B. aeruginosa. These results support the hypothesis that chlorpyrifos exposure in ELL reduced the density of snails by reducing juvenile survival and, consequently, recruitment to the adult population.
Collapse
Affiliation(s)
- Guixin Han
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren Kong
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Chunsheng Liu
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Kai Huang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Qiaolin Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiamin Fei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Guanyong Su
- School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Robert J Letcher
- Department of Chemistry and Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jianbo Shi
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jason R Rohr
- Department of Biological Science, Environmental Change Initiative, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Ibrahim AM, Mobarak SA. Laevicaulis stuhlmanni slugs as accumulation bio-indicators of lead metal pollution: immunotoxic, physiological, and histopathological alterations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50905-50915. [PMID: 39106017 DOI: 10.1007/s11356-024-34438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Trace metal pollution of soils is a widespread consequence of anthropogenic activity. Land slugs can be used as bio-indicators of the metals' pollution in the soil, so the present study aimed to determine the metal in the soil and Laevicaulis stuhlmanni land slug tissues by studying its effects on different physiological parameters. Slugs and soil samples were collected from fields in Abu-Rawash, Giza, Egypt. Slugs were identified, and the metals were determined in slug tissues and soil samples. On the other hand, slugs were reared in the laboratory and the new generation was fed on lettuce dipped in 0.027 µg/ml lead (Pb) for 10 days. The results revealed that the soil and slug tissues contained copper, manganese, lead, and zinc; the lead metal bioaccumulation factor was the highest. Also, the results showed that the hemocytes' count, testosterone, and estradiol hormones were significantly decreased. At the same time, the phagocytic index was increased considerably, and some morphological alterations in the granulocytes and hyalinocytes were observed after treatment with 0.027 µg/ml lead compared to untreated slugs. On the other hand, all the oxidative stress parameters were significantly increased in the treated slugs compared with the control. Concerning the histopathological studies, lead caused a rupture, vacuolation, or degeneration in the digestive cells of treated slugs. Finally, it can be concluded that the land slugs were sensitive to lead which was reflected by endocrine disruption, immunotoxicity, and increased oxidative stress parameters with histopathological damages. Hence, Laevicaulis stuhlmanni can be used as a metal accumulation bio-indicator to reflect the metal pollution in the soil.
Collapse
Affiliation(s)
- Amina M Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, P.O:11635, Imbaba, Giza, Egypt.
| | - Soha A Mobarak
- Plant Protection Research Institute, Agriculture Research Center, Cairo, Egypt
| |
Collapse
|
3
|
Bianco KA, Martini CN, Tejedor MJ, Paredes MG, Kristoff G. Multi-biomarker approach to evaluate the toxicity of chlorpyrifos (active ingredient and a commercial formulation) on different stages of Biomphalaria straminea. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109923. [PMID: 38615808 DOI: 10.1016/j.cbpc.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Biomphalaria straminea is a freshwater gastropod native to South America and used in toxicological assessments. Our aim was to estimate 48 h-LC50 and sub-chronic effects after the exposure to low concentrations of chlorpyrifos as commercial formulation (CF) and active ingredient (AI) on B. straminea adult, embryos and juveniles. Concentrations between 1 and 5000 μg L-1 were chosen for acute exposures and 0.1 and 1 μg L-1 for the sub-chronic one. After 14 days biochemical parameters, viability and sub-populations of hemocytes, reproductive parameters, embryotoxicity and offspring' survival were studied. Egg masses laid between day 12 and 14 were separated to continue the exposure and the embryos were examined daily. Offspring' survival and morphological changes were registered for 14 days after hatching. 48 h-LC50, NOEC and LOEC were similar between CF and AI, however the CF caused more sub-lethal effects. CF but not the AI decreased carboxylesterases, catalase and the proportion of hyalinocytes with respect to the total hemocytes, and increased superoxide dismutase and the % of granulocytes with pseudopods. Also CF caused embryotoxicity probably due to the increase of embryos' membrane permeability. Acetylcholinesterase, superoxide dismutase, hemocytes sub-populations, the time and rate of hatching and juveniles' survival were the most sensitive biomarkers. We emphasize the importance of the assessment of a battery of biomarkers as a useful tool for toxicity studies including reproduction parameters and immunological responses. Also, we highlight the relevance of incorporating the evaluation of formulations in order to not underestimate the effects of pesticides on the environment.
Collapse
Affiliation(s)
- Karina Alesia Bianco
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Evaluación Ecotoxicológica del Agua Invertebrados Nativos y otros Modelos (EEAINM), Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Claudia Noemí Martini
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Evaluación Ecotoxicológica del Agua Invertebrados Nativos y otros Modelos (EEAINM), Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - María José Tejedor
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Evaluación Ecotoxicológica del Agua Invertebrados Nativos y otros Modelos (EEAINM), Buenos Aires, Argentina
| | - María Gimena Paredes
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Evaluación Ecotoxicológica del Agua Invertebrados Nativos y otros Modelos (EEAINM), Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Gisela Kristoff
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Evaluación Ecotoxicológica del Agua Invertebrados Nativos y otros Modelos (EEAINM), Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Hussein AAA, Abd El-Latif MB, Saad El-Din MI, El-Shenawy NS, Hammam O, Ibrahim AM. The Molluscicidal Activity of Green Synthesized Copper Oxide-Based Annona squamosa Seed Extract Nanoparticles on the Feeding Behavior, Biochemical, Molecular, and Immunohistochemical Alterations of Biomphalaria alexandrina Snails. Biol Trace Elem Res 2024; 202:2327-2337. [PMID: 37648936 PMCID: PMC10954926 DOI: 10.1007/s12011-023-03823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Because of their low ecological impact, plant molluscicides have garnered much attention. The work aimed to find out if Annona squamosa (AS) seed extract has a molluscicidal impact on Biomphalaria alexandrina snails and enhances this extract by adding CuO nanoparticles (NPs). Using a scanning electron microscope (SEM), transmission electron microscope (TEM), and PANalytical X'Pert PRO X-ray diffractometer (XRD), the presence of the green A. squamosa-based CuO NPs (AS-CuO NPs) was confirmed. After 24 h of exposure, the half-lethal concentration (LC50) of AS-CuO NPs was more toxic to mature B. alexandrina than the aqueous extract of AS seeds (LC50: 119.25 mg/L vs. 169.03 mg/L). The results show that snails exposed to sublethal doses of AS-CuO NPs at LC10 or LC25 (95.4 or 106.7 mg/L, respectively) had much higher glucose levels and alkaline phosphatase activity than those not exposed. Nevertheless, there was no discernible change in the protein content in general or glycogen phosphorylase production. Histological and immunohistochemical analysis showed that snails exposed to A. squamosa-derived CuO NPs LC10 had shrinking digestive tubules and degeneration as well as vacuolation of many digestive, secretory, ova, and sperm cells, with PCNA expressing positively in the hermaphrodite gland and digestive tubule cells. The toxic profile of green CuO NPs produced by A. squamosa may damage the biological activity of B. alexandrina snails; thus, this compound could be used as a molluscicidal base. Furthermore, B. alexandrina proved to be a useful biomarker of nanomaterial contamination.
Collapse
Affiliation(s)
- Ahmed A A Hussein
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Mona B Abd El-Latif
- Environmental Research Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Marwa I Saad El-Din
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Nahla S El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Olfat Hammam
- Pathology Department, Theodore Bilharz Research Institute, Giza, Egypt
| | - Amina M Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
5
|
Dokmak HAA, Hammam OA, Ibrahim AM. Impact of Schistosoma sp., Infection on Biological, Feeding, Physiological, Histological, and Genotoxicological Aspects of Biomphalaria alexandrina and Bulinus truncatus Snails. Acta Parasitol 2024; 69:648-663. [PMID: 38302641 PMCID: PMC11001737 DOI: 10.1007/s11686-023-00760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/27/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Trematode infections of the genus Schistosoma can induce physiological and behavioral changes in intermediate snail hosts. This is because the parasite consumes essential resources necessary for the host's survival, prompting hosts to adapt their behavior to maintain some level of fitness before parasite-induced mortality occurs. METHODS In this study, the reproductive and biochemical parameters of Biomphalaria alexandrina and Bulinus truncatus were examined during the cercareal shedding stage of infection with Schistosoma mansoni and Schistosoma haematobium, respectively, compared with controls. RESULTS The study revealed an infection rate of 34.7% for S. mansoni and 30.4% for S. haematobium. In B. alexandrina infected with S. mansoni, a survival rate of 65.2% was recorded, along with a mean prepatent period of 30.3 ± 1.41 days, a mean shedding duration of 14.2 ± 0.16 days, and a mean lifespan of 44.1 ± 0.24 days. Meanwhile, in B. truncatus infected with S. haematobium, a survival rate of 56.4% was observed, with a mean prepatent period of 44.3 ± 1.41 days, a mean shedding duration of 22.6 ± 2.7 days, and a mean lifespan of 66.9 ± 1.6 days. Feeding increased in both infected species of snails, while the net reproductive rate (Ro) of the infected snails decreased. Total antioxidant (TAO) and lipid peroxidation activity increased in the two infected snail species during shedding, while Glutathione-S-transferase levels decreased. Lipid peroxidase activity and nitrogen oxide levels significantly decreased in infected B. alexandrina and increased in infected Bulinus. Steroid hormone levels were elevated in infected Biomphalaria, whereas they were reduced in infected Bulinus. Comet assay parameters showed an increase in the two infected genera after infection compared to control snails, indicating genotoxic damage and histopathological damage was observed. CONCLUSIONS These findings demonstrate that infection with larva species diverse biochemical, hormonal, genotoxic, and histopathological changes in the tissues responsible for fecundity and reproduction in B. alexandrina and B. truncates comparing with controls.
Collapse
Affiliation(s)
- Hebat-Allah A Dokmak
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Corniche El-Nile St., Imbaba, Giza, 12411, Egypt.
| | - Olfat A Hammam
- Pathology Department, Theodor Bilharz Research Institute, Corniche El-Nile St., Imbaba, Giza, 12411, Egypt
| | - Amina M Ibrahim
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Corniche El-Nile St., Imbaba, Giza, 12411, Egypt
| |
Collapse
|
6
|
Elkady EF, Ayoub HA, Ibrahim AM. Molluscicidal activity of calcium borate nanoparticles with kodom ball-flower structure on hematological, histological and biochemical parameters of Eobania vermiculata snails. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105716. [PMID: 38225073 DOI: 10.1016/j.pestbp.2023.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024]
Abstract
Land snails are the most harmful pests in agricultural fields. Eobania vermiculata is a widespread snail species that causes massive damage to all agricultural crops. Thus, the molluscicidal activity of calcium borate nanoparticles (CB-NPs) against Eobania vermiculata was evaluated and compared with metaldehyde (Gastrotox® E 5% G). The amorphous phase of CB-NPs was obtained after thermal treatment at a low temperature (500 °C) which conformed by X-ray diffraction (XRD) analysis. CB-NPs are composed of aggregated nano-sheets with an average thickness of 54 nm which enhanced their molluscicidal activity. These nano-sheets displayed meso-porous network architecture with pore diameters of 13.65 nm, and a 9.46 m2/g specific surface area. CB-NPs and metaldehyde (Gastrotox® E 5% G) exhibited molluscicidal effects on Eobania vermiculata snails with median lethal concentrations LC50 of 175.3 and 60.5 mg/l, respectively, after 72 h of exposure. The results also showed significant reductions of Eobania vermiculata snails hemocytes' mean total number, the levels of Testosterone (T) and Estrogen (E), alkaline phosphatase, acid phosphatase, albumin, and protein concentrations, succinate dehydrogenase, glucose, triglycerides and phospholipids levels, while significant increases in the phagocytic index and mortality index, both transaminases (ALT and AST) and glycogen phosphorylase concentration were observed after the exposure to LC50 of CB-NPs or metaldehyde (Gastrotox® E 5% G) compared to the control group. Therefore, CB-NPs could be used as an alternative molluscicide for controlling Eobania vermiculata, but further studies are needed to assess their effects on non-target organisms.
Collapse
Affiliation(s)
| | - Haytham A Ayoub
- Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Amina M Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| |
Collapse
|
7
|
Ibrahim AM, Hamed MT, EL-Khadragy MF, Morad MY. Molluscicidal activity of sodium hypochlorite against Biomphlaria alexandrina snails: Immunological and hepato-endocrine alterations with in silico docking study. Parasite Epidemiol Control 2023; 23:e00331. [PMID: 38148891 PMCID: PMC10750182 DOI: 10.1016/j.parepi.2023.e00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/18/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Schistosomiasis is a tropical disease that widely neglected. Schistosoma mansoni reproduce asexually within the freshwater snail, Biomphlaria alexandrina. Sodium hypochlorite (NaOCl) is a widely used disinfectant, so its effect against gainst B. alexandrina snails was evaluated. The present results showed that NaOCl has a molluscicidal activity against adult B. alexandrina snails at LC50 1.25 ppm. Hemocytes displayed varied morphological forms after being exposed to the LC10 and LC25 concentrations of NaOCl in B. alexandrina snails, and the phagocytic index of B. alexandrina snail's hemocytes significantly increased. The phagocytic potency of exposed hemocytes to charcoal showed ruptured plasma membrane, engulfed particles, vacuolation in the cytoplasm and degeneration of nuclei. When B. alexandrina snails were treated with sublethal concentrations of NaOCl, transaminases (AST & ALT), alkaline and acid phosphatase activities were significantly increased. In contrast, the total protein, albumin concentrations, Testosterone (T) and 17β Estradiol (E) showed a significant decrease (p ≤ 0.05) as compared to the control groups. The molecular docking interaction showed high efficiency for the ligand, NaOCl against the receptor binding sites of the acid phosphatase, alanine aminotransferase, estrogen and testosterone. The present results showed that NaOCl could be used as an effective molluscicide against B. alexandrina snails but more attention should be paid to investigate the side effects on the non-target organisms living in the freshwater environment.
Collapse
Affiliation(s)
- Amina M. Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Mohamed T. Hamed
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Manal F. EL-Khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mostafa Y. Morad
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| |
Collapse
|
8
|
Ibrahim AM, Bekhit M, Sokary R, Hammam O, Atta S. Toxicological, hepato-renal, endocrine disruption, oxidative stress and immunohistopathological responses of chitosan capped gold nanocomposite on Biomphalaria alexandrina snails. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105559. [PMID: 37666595 DOI: 10.1016/j.pestbp.2023.105559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023]
Abstract
The present investigation aimed to synthesize chitosan‑gold nanocomposites (Ch-AuNPs) with gamma radiation, then to evaluate its toxic effect on the freshwater snails Biomphalaia alexandrina. Results showed that Ch-AuNPs is spherical shaped with average size 12 nm. It had a toxic effect against B. alexandrina snails with LC50 20.43 mg/l. Exposure of B. alexandrina snails to LC10 7.51 or LC25 13.63 mg/l of Ch-AuNPs, reduced the survival, reproductive and fecundity rates; total protein and albumin; both testosterone (T) and 17β Estradiol (E) levels; SOD and CAT activities of exposed snails while increased the activities of transaminases (AST & ALT), uric acid, creatinine, TAC and MDA levels compared to the control group. Results were supported by histopathological and immunohistopathological alterations of the digestive and hermaphrodite glands. In conclusion B. alexandrina could be used as a model to screen the negative impact of nanomaterials. Also, Ch-AuNPs could be used as a molluscicidal agent.
Collapse
Affiliation(s)
- Amina M Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Mohamad Bekhit
- Radiation Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Rehab Sokary
- Radiation Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Olfat Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Shimaa Atta
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
9
|
Kumar V, Sharma N, Sharma P, Pasrija R, Kaur K, Umesh M, Thazeem B. Toxicity analysis of endocrine disrupting pesticides on non-target organisms: A critical analysis on toxicity mechanisms. Toxicol Appl Pharmacol 2023; 474:116623. [PMID: 37414290 DOI: 10.1016/j.taap.2023.116623] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Endocrine disrupting compounds are the chemicals which mimics the natural endocrine hormones and bind to the receptors made for the hormones. Upon binding they activate the cascade of reaction which leads to permanent activating of the signalling cycle and ultimately leads to uncontrolled growth. Pesticides are one of the endocrine disrupting chemicals which cause cancer, congenital birth defects, and reproductive defects in non-target organisms. Non-target organisms are keen on exposing to these pesticides. Although several studies have reported about the pesticide toxicity. But a critical analysis of pesticide toxicity and its role as endocrine disruptor is lacking. Therefore, the presented review literature is an endeavour to understand the role of the pesticides as endocrine disruptors. In addition, it discusses about the endocrine disruption, neurological disruption, genotoxicity, and ROS induced pesticide toxicity. Moreover, biochemical mechanisms of pesticide toxicity on non-target organisms have been presented. An insight on the chlorpyrifos toxicity on non-target organisms along with species names have been presented.
Collapse
Affiliation(s)
- Vinay Kumar
- Bioconversion and Tissue Engineering Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam-602105, India.
| | - Neha Sharma
- Metagenomics and Bioprocess Design Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Komalpreet Kaur
- Punjab Agricultural University, Institute of Agriculture, Gurdaspur 143521, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, Karnataka, India
| | - Basheer Thazeem
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Palakkad 678592, Kerala, India
| |
Collapse
|
10
|
Ibrahim AM, Al-Fanharawi AA, Dokmak HAA. Ovicidal, immunotoxic and endocrine disrupting effects of saponin on Bulinus truncatus snails with special emphasize on the oxidative stress parameters, genotoxicological, and histopathological alterations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:78641-78652. [PMID: 37273057 PMCID: PMC10313852 DOI: 10.1007/s11356-023-27668-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023]
Abstract
Bulinus truncatus snail is one of the most medically important snails. The goal of this study was to evaluate the molluscicidal effect of saponin on these snails and study how it affects their biological functions. The present results showed that saponin had a molluscicidal activity against adult B. truncatus snails after 24h and 72h with LC50 (57.5 and 27.1 ppm, respectively) and had ovicidal acivity on the snails' embryos. By studying the effect of the sublethal concentrations (LC10 48.63 ppm or LC25 52.83 ppm) exposure on B. truncatus snails, they resulted in significant decreases in the survivorship, egg-laying, and the reproductive rate compared to untreated snails. Both concentrations caused morphological changes to the snails' hemocytes, where, after the exposure, granulocytes and hyalinocytes had irregular outer cell membrane and some cell formed pseudopodia. Granulocytes had large number of granules, vacuoles, while hyalinocytes' nucleus was shrunken. Also, these concentrations resulted in significant increases in sex hormone levels (17β-estradiol and testosterone) in tissue homogenate of B. truncatus snails. It resulted in significant decrease in total antioxidant (TAO) activity, while, significantly increased lipid peroxidase (LPO) level, superoxide dismutase (SOD), nitrogen oxide (NO), and glutathione-S-transferase (GST) as compared to control group. Histopathological and genotoxicological damages occurred in snails' tissue after exposure to these concentrations. Conclusion, saponin has a molluscicidal effect on B. truncatus snails and might be used for the control of schistosomiasis haematobium. Besides, these snails could be used as invertebrate models to reflect the toxic effects of saponin in the aquatic ecosystem.
Collapse
Affiliation(s)
- Amina M Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Imbaba, Giza, P.O:11635, Egypt.
| | - Ali A Al-Fanharawi
- Biology Department, College of Science, University of Al-Muthanna, Al-Muthanna, Iraq
| | - Hebat-Allah A Dokmak
- Medical Malacology Department, Theodor Bilharz Research Institute, Imbaba, Giza, P.O:11635, Egypt
| |
Collapse
|
11
|
Helmy ET, Ayyad MA, Ali MA, Mohamedbakr HG, Pan JH. Biochemical, Histological Changes, Protein Electrophoretic Pattern, and Field Application of CuPb-Ferrite/TiO 2 Nanocomposites for Controlling Terrestrial Gastropod Eobania vermiculata (Müller). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6626-6634. [PMID: 37070858 DOI: 10.1021/acs.jafc.3c01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Eobania vermiculata is a hazardous snail that can damage ornamental plants and cause significant harm to plant sections in Egyptian areas. Herein, the molluscicidal activity of CuPb-Ferrite/TiO2 and TiO2 nanoparticles (NPs) against E. vermiculata was evaluated using the poisonous bait method. LC50 values were determined using the leaf dipping and contact methods, with values of 631.23 and 1703.49 ppm for CuPb-Ferrite/TiO2 and 193.67 and 574.97 ppm for TiO2. Exposure to both NPs resulted in a significant increase in the biochemical parameters of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), as well as a decrease in total protein (TP) percentage of E. vermiculata. Histological examinations revealed that many digestive cells had ruptured, and their contents had been lost, while the foot's epithelial layer became ruptured. The average reduction was 66.36% for CuPb-Ferrite/TiO2 NPs compared to the recommended molluscicide, Neomyl, with a 70.23% reduction in the field application. Electrophoretic separation of total protein using sodium dodecyl sulfate-polyacrylamide gel electrophoresis after treatment with LC50 concentrations of TiO2 and CuPb-Ferrite/TiO2 demonstrated the potency of these synthetic compounds as molluscicidal agents. Therefore, we recommend the use of CuPb-Ferrite/TiO2 NPs as a novel land snail molluscicide because it is safe to use, and the baits are arranged to not affect irrigation water, with a high molluscicidal effect.
Collapse
Affiliation(s)
- Elsayed T Helmy
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
- Environment Division, National Institute of Oceanography and Fisheries, KayetBey, Elanfoushy, Alexandria 12345, Egypt
| | - Mohamed A Ayyad
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza 12345, Egypt
| | - Mona A Ali
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza 12345, Egypt
| | - H G Mohamedbakr
- Faculty of Science, Chemistry Department, Jazan University, P.O. Box 2097, Jazan 45142, Kingdom of Saudi Arabia
- Faculty of Science, Chemistry Department, Suez Canal University, Ismailia 41522, Egypt
| | - Jia Hong Pan
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
12
|
Raj A, Kumar A. Recent advances in assessment methods and mechanism of microbe-mediated chlorpyrifos remediation. ENVIRONMENTAL RESEARCH 2022; 214:114011. [PMID: 35985484 DOI: 10.1016/j.envres.2022.114011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Chlorpyrifos (CP) is one of the Organophosphorus pesticides (OPs) primarily used in agriculture to safeguard crops from pests and diseases. The pervasive use of chlorpyrifos is hazardous to humans and the environment as it inhibits the receptor for acetylcholinesterase activity, leading to abnormalities linked to the central nervous system. Hence, there is an ardent need to develop an effective and sustainable approach to the on-site degradation of chlorpyrifos. The role of microbes in the remediation of pesticides is considered the most effective and eco-friendly approach, as they have strong degradative potential due to their gene and enzymes naturally adapted to these sites. Several reports have previously been published on exploring the role of microbes in the degradation of CP. However, detection of CP as an environmental contaminant is an essential prerequisite for developing an efficient microbial-mediated biodegradation method with less harmful intermediates. Most of the articles published to date discuss the fate and impact of CP in the environment along with its degradation mechanism but still fail to discuss the analytical portion. This review is focused on the latest developments in the field of bioremediation of CP along with its physicochemical properties, toxicity, fate, and conventional (UV-Visible spectrophotometer, FTIR, NMR, GC-MS, etc) and advanced detection methods (Biosensors and immunochromatography-based methods) from different environmental samples. Apart from it, this review explores the role of metagenomics, system biology, in-silico tools, and genetic engineering in facilitating the bioremediation of CP. One of the objectives of this review is to educate policymakers with scientific data that will enable the development of appropriate strategies to reduce pesticide exposure and the harmful health impacts on both Human and other environmental components. Moreover, this review provides up-to-date developments related to the sustainable remediation of CP.
Collapse
Affiliation(s)
- Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, MP, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, MP, India.
| |
Collapse
|