1
|
Olejnik P, Roszkowska Z, Adamus S, Kasarełło K. Multiple sclerosis: a narrative overview of current pharmacotherapies and emerging treatment prospects. Pharmacol Rep 2024; 76:926-943. [PMID: 39177889 PMCID: PMC11387431 DOI: 10.1007/s43440-024-00642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by pathological processes of demyelination, subsequent axonal loss, and neurodegeneration within the central nervous system. Despite the availability of numerous disease-modifying therapies that effectively manage this condition, there is an emerging need to identify novel therapeutic targets, particularly for progressive forms of MS. Based on contemporary insights into disease pathophysiology, ongoing efforts are directed toward developing innovative treatment modalities. Primarily, monoclonal antibodies have been extensively investigated for their efficacy in influencing specific pathological pathways not yet targeted. Emerging approaches emphasizing cellular mechanisms, such as chimeric antigen receptor T cell therapy targeting immunological cells, are attracting increasing interest. The evolving understanding of microglia and the involvement of ferroptotic mechanisms in MS pathogenesis presents further avenues for targeted therapies. Moreover, innovative treatment strategies extend beyond conventional approaches to encompass interventions that target alterations in microbiota composition and dietary modifications. These adjunctive therapies hold promise as complementary methods for the holistic management of MS. This narrative review aims to summarize current therapies and outline potential treatment methods for individuals with MS.
Collapse
Affiliation(s)
- Piotr Olejnik
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Roszkowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Sylwia Adamus
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Kaja Kasarełło
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Rana N, Gupta P, Singh H, Nagarajan K. Role of Bioactive Compounds, Novel Drug Delivery Systems, and Polyherbal Formulations in the Management of Rheumatoid Arthritis. Comb Chem High Throughput Screen 2024; 27:353-385. [PMID: 37711009 DOI: 10.2174/1386207326666230914103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disorder that generally causes joint synovial inflammation as well as gradual cartilage and degenerative changes, resulting in progressive immobility. Cartilage destruction induces synovial inflammation, including synovial cell hyperplasia, increased synovial fluid, and synovial pane development. This phenomenon causes articular cartilage damage and joint alkalosis. Traditional medicinal system exerts their effect through several cellular mechanisms, including inhibition of inflammatory mediators, oxidative stress suppression, cartilage degradation inhibition, increasing antioxidants and decreasing rheumatic biomarkers. The medicinal plants have yielded a variety of active constituents from various chemical categories, including alkaloids, triterpenoids, steroids, glycosides, volatile oils, flavonoids, lignans, coumarins, terpenes, sesquiterpene lactones, anthocyanins, and anthraquinones. This review sheds light on the utilization of medicinal plants in the treatment of RA. It explains various phytoconstituents present in medicinal plants and their mechanism of action against RA. It also briefs about the uses of polyherbal formulations (PHF), which are currently in the market and the toxicity associated with the use of medicinal plants and PHF, along with the limitations and research gaps in the field of PHF. This review paper is an attempt to understand various mechanistic approaches employed by several medicinal plants, their possible drug delivery systems and synergistic effects for curing RA with minimum side effects.
Collapse
Affiliation(s)
- Neha Rana
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Piyush Gupta
- Department of Chemistry, SRM Institute of Science and Technology, Faculty of Engineering and Technology, NCR Campus, Delhi-NCR Campus, Delhi-Meerut Road, Modinagar, 201204, Ghaziabad, Uttar Pradesh, India
| | - Hridayanand Singh
- Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar, 201204, Uttar Pradesh, India
| | - Kandasamy Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| |
Collapse
|
3
|
Herman S, Arvidsson McShane S, Zjukovskaja C, Khoonsari PE, Svenningsson A, Burman J, Spjuth O, Kultima K. Disease phenotype prediction in multiple sclerosis. iScience 2023; 26:106906. [PMID: 37332601 PMCID: PMC10275960 DOI: 10.1016/j.isci.2023.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/09/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Progressive multiple sclerosis (PMS) is currently diagnosed retrospectively. Here, we work toward a set of biomarkers that could assist in early diagnosis of PMS. A selection of cerebrospinal fluid metabolites (n = 15) was shown to differentiate between PMS and its preceding phenotype in an independent cohort (AUC = 0.93). Complementing the classifier with conformal prediction showed that highly confident predictions could be made, and that three out of eight patients developing PMS within three years of sample collection were predicted as PMS at that time point. Finally, this methodology was applied to PMS patients as part of a clinical trial for intrathecal treatment with rituximab. The methodology showed that 68% of the patients decreased their similarity to the PMS phenotype one year after treatment. In conclusion, the inclusion of confidence predictors contributes with more information compared to traditional machine learning, and this information is relevant for disease monitoring.
Collapse
Affiliation(s)
- Stephanie Herman
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | | | - Payam Emami Khoonsari
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, 17121 Solna, Sweden
| | - Anders Svenningsson
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Joachim Burman
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Baskaran AB, Grebenciucova E, Shoemaker T, Graham EL. Current Updates on the Diagnosis and Management of Multiple Sclerosis for the General Neurologist. J Clin Neurol 2023; 19:217-229. [PMID: 37151139 PMCID: PMC10169923 DOI: 10.3988/jcn.2022.0208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/04/2022] [Accepted: 01/04/2023] [Indexed: 05/09/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-driven disease that affects the central nervous system and is characterized by acute-on-chronic demyelination attacks. It is a major cause of global neurological disability, and its prevalence has increased in the United States. Conceptual understandings of MS have evolved over time, including the identification of B cells as key factors in its pathophysiology. The foundation of MS management involves preventing flares so as to avoid long-term functional decline. Treatments may be categorized into low-, middle-, and high-efficacy medications based on their efficacy in relapse prevention. With 24 FDA-approved treatments for MS, individual therapy is chosen based on distinct mechanisms and potential side effects. This review provides a detailed update on the epidemiology, diagnosis, treatment advances, and major ongoing research investigations in MS.
Collapse
Affiliation(s)
| | - Elena Grebenciucova
- Division of Neuroimmunology, Division of Neuroinfectious Diseases, Northwestern University, Chicago, IL, USA
| | | | - Edith L Graham
- Division of Neuroimmunology, Division of Neuroinfectious Diseases, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
5
|
Moradi V, Esfandiary E, Ghanadian M, Ghasemi N, Rashidi B. The effect of Zingiber Officinale Extract on Preventing Demyelination of Corpus Callosum in a Rat Model of Multiple Sclerosis. IRANIAN BIOMEDICAL JOURNAL 2022; 26:330-9. [PMID: 36029169 PMCID: PMC9432465 DOI: 10.52547/ibj.2979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022]
Abstract
Background Multiple sclerosis (MS) is the most prevalent neurological disability of young adults. Anti-inflammatory drugs have relative effects on MS. The anti-inflammatory and antioxidative effects of Zingiber officinale (ginger) have been proven in some experimental and clinical investigations. The aim of this study was to evaluate the effects of ginger extract on preventing myelin degradation in a rat model of MS. Methods Forty nine male Wistar rats were used in this study and divided into four control groups: the normal group, cuprizone-induced group, sham group (cuprizone [CPZ] + sodium carboxymethyl cellulose [NaCMC]), standard control group (fingolimod + cuprizone), including three experimental groups of CPZ, each receiving three different doses of ginger extract: 150, 300, and 600mg/kg /kg/day. Results Ginger extract of 600 mg/kg prevented corpus callosum from demyelination; however, a significant difference was observed in the fingolimod group (p < 0.05). Difference in the CPZ group was quite significant (p < 0.05). Conclusion Treatment with ginger inhibited demyelination and alleviated remyelination of corpus callosum in rats. Therefore, it could serve as a therapeutic agent in the MS.
Collapse
Affiliation(s)
- Valiollah Moradi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Esfandiary
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nazem Ghasemi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Thyroid Disorders in Patients Treated with Dimethyl Fumarate for Multiple Sclerosis: A Retrospective Observational Study. Antioxidants (Basel) 2022; 11:antiox11051015. [PMID: 35624879 PMCID: PMC9138003 DOI: 10.3390/antiox11051015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Dimethyl fumarate (DMF), a drug used for the treatment of multiple sclerosis (MS) and psoriasis, has been shown to activate the Keap1/Nrf2 antioxidant response. Nrf2 exerts pleiotropic roles in the thyroid gland; among others, single nucleotide polymorphisms (SNPs) in the gene encoding Nrf2 modulate the risk of Hashimoto’s thyroiditis (HT), suggesting that pharmacological activation of Nrf2 might also be protective. However, a patient with acute exacerbation of HT after starting DMF for MS was recently reported, raising questions about the thyroidal safety of Nrf2 activators. Methods: In a retrospective observational study, we investigated the prevalence and incidence of thyroid disorders (TD) among 163 patients with MS treated with DMF. Results: Only 7/163 patients (4.3%) were diagnosed with functional TD; most (5/163, 3.0%) were diagnosed before DMF treatment. Functional TD were diagnosed under or after DMF in only 2 patients (1.2%). Under DMF, one patient developed transient mild hypothyroidism with negative thyroid autoantibodies. After DMF discontinuation, another patient developed hyperthyroidism due to Graves’ disease. No patient developed thyroid structural disease under or after DMF. Conclusions: The very low incidence of functional TD indicates an overall very good thyroid tolerance of DMF, arguing against screening for TD in MS patients considered for or treated with DMF, and supporting the further study of Nrf2 activators for the prevention and treatment of TD.
Collapse
|
7
|
Feng X, Tang M, Dede M, Su D, Pei G, Jiang D, Wang C, Chen Z, Li M, Nie L, Xiong Y, Li S, Park JM, Zhang H, Huang M, Szymonowicz K, Zhao Z, Hart T, Chen J. Genome-wide CRISPR screens using isogenic cells reveal vulnerabilities conferred by loss of tumor suppressors. SCIENCE ADVANCES 2022; 8:eabm6638. [PMID: 35559673 PMCID: PMC9106303 DOI: 10.1126/sciadv.abm6638] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/30/2022] [Indexed: 05/05/2023]
Abstract
Exploiting cancer vulnerabilities is critical for the discovery of anticancer drugs. However, tumor suppressors cannot be directly targeted because of their loss of function. To uncover specific vulnerabilities for cells with deficiency in any given tumor suppressor(s), we performed genome-scale CRISPR loss-of-function screens using a panel of isogenic knockout cells we generated for 12 common tumor suppressors. Here, we provide a comprehensive and comparative dataset for genetic interactions between the whole-genome protein-coding genes and a panel of tumor suppressor genes, which allows us to uncover known and new high-confidence synthetic lethal interactions. Mining this dataset, we uncover essential paralog gene pairs, which could be a common mechanism for interpreting synthetic lethality. Moreover, we propose that some tumor suppressors could be targeted to suppress proliferation of cells with deficiency in other tumor suppressors. This dataset provides valuable information that can be further exploited for targeted cancer therapy.
Collapse
Affiliation(s)
- Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Merve Dede
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dadi Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mi Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yun Xiong
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeong-Min Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Klaudia Szymonowicz
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Maity S, Wairkar S. Dietary polyphenols for management of rheumatoid arthritis: Pharmacotherapy and novel delivery systems. Phytother Res 2022; 36:2324-2341. [PMID: 35318759 DOI: 10.1002/ptr.7444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic, complex, systemic autoimmune disease causing chronic inflammation, swelling, and pain. It affects pulmonary and ocular physiology, gastrointestinal disturbance, skeletal disorders, and renal malfunctioning. Although conventional and biological drugs available to treat RA are potent and effective, they lead to life-threatening side effects and patient discomfort. Hence, alternative therapies are explored for their treatment which is safe, effective, and economical. Herbal drugs are widely used as an alternative therapy and some medicinal plants, especially dietary polyphenols proved their efficacy in treating RA. Polyphenols are secondary metabolites of plants possessing several pharmacological actions. They exert anti-inflammatory, immunomodulatory and anti-rheumatoid activity by modulating tumor necrosis factor, mitogen-activated protein kinase, nuclear factor kappa-light-chain-enhancer of activated B cells, and c-Jun N-terminal kinases. Thus, polyphenols could be a promising option for the management of RA. Unfortunately, polyphenols suffer from poor bioavailability due to their physicochemical properties and incorporation into novel delivery systems such as liposomes, nanoparticles, nanoemulsions, micelles improved their oral bioavailability. This review article summarizes dietary polyphenols, their pharmacological actions and novel delivery systems for the treatment of RA. Nevertheless, the commercial translation of polyphenols could be only possible after establishing their safety profile and successful clinical trials.
Collapse
Affiliation(s)
- Siddharth Maity
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, India
| |
Collapse
|
9
|
Tripathy A, Swain N, Gupta B. Understanding the Role and Uses of Alternative Therapies for Management of Rheumatoid Arthritis. Curr Rheumatol Rev 2021; 18:89-100. [PMID: 34784872 DOI: 10.2174/1573397117666211116102454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
With growing popularity of complementary and alternative medicine (CAM) among the individuals with chronic pain and muscular problems, a number of patients with rheumatoid arthritis (RA) show their interest in CAM interventions for disease improvement. Various reports published on CAM are based on animal model of RA however there is often lack of high quality clinical investigations for explaining the success stories of CAM therapies in patients with RA. CAMs having potential to be used for therapy in patients with RA have been identified, however lack of awareness and scepticism of their efficacy has made the patients reluctant to choose these drug less therapies. In this review, we have summarized the existing evidences which suggest promising efficacy of different alternative therapies in managing RA and providing both physical and mental well being to RA patients.
Collapse
Affiliation(s)
- Archana Tripathy
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) deemed to be University, Bhubaneswar-751024, Odisha. India
| | - Nitish Swain
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) deemed to be University, Bhubaneswar-751024, Odisha. India
| | - Bhawna Gupta
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) deemed to be University, Bhubaneswar-751024, Odisha. India
| |
Collapse
|
10
|
Abstract
Teriflunomide (Aubagio®), which was developed by Sanofi, is an oral immunomodulatory agent targeting the mitochondrial enzyme dihydroorotate dehydrogenase and available to adults to treat relapsing-remitting multiple sclerosis (MS). On 18 June 2021, teriflunomide received its first approval in this indication in pediatric patients aged ≥ 10 years in the EU. This article summarizes the milestones in the development of teriflunomide leading to this first pediatric approval for relapsing-remitting MS.
Collapse
Affiliation(s)
- Julia Paik
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
11
|
Mollick T, Laín S. Modulating pyrimidine ribonucleotide levels for the treatment of cancer. Cancer Metab 2020; 8:12. [PMID: 33020720 PMCID: PMC7285601 DOI: 10.1186/s40170-020-00218-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
By providing the necessary building blocks for nucleic acids and precursors for cell membrane synthesis, pyrimidine ribonucleotides are essential for cell growth and proliferation. Therefore, depleting pyrimidine ribonucleotide pools has long been considered as a strategy to reduce cancer cell growth. Here, we review the pharmacological approaches that have been employed to modulate pyrimidine ribonucleotide synthesis and degradation routes and discuss their potential use in cancer therapy. New developments in the treatment of myeloid malignancies with inhibitors of pyrimidine ribonucleotide synthesis justify revisiting the literature as well as discussing whether targeting this metabolic pathway can be effective and sufficiently selective for cancer cells to warrant an acceptable therapeutic index in patients.
Collapse
Affiliation(s)
- Tanzina Mollick
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Solna, Stockholm, Sweden.,SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23, SE-171 65, Solna, Stockholm, Sweden
| | - Sonia Laín
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Solna, Stockholm, Sweden.,SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23, SE-171 65, Solna, Stockholm, Sweden
| |
Collapse
|
12
|
Morquette B, Juźwik CA, Drake SS, Charabati M, Zhang Y, Lécuyer MA, Galloway DA, Dumas A, de Faria Junior O, Paradis-Isler N, Bueno M, Rambaldi I, Zandee S, Moore C, Bar-Or A, Vallières L, Prat A, Fournier AE. MicroRNA-223 protects neurons from degeneration in experimental autoimmune encephalomyelitis. Brain 2019; 142:2979-2995. [DOI: 10.1093/brain/awz245] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/27/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of miRNAs has been observed in many neurodegenerative diseases, including multiple sclerosis. Morquette et al. show that overexpression of miR-223-3p prevents accumulation of axonal damage in a rodent model of multiple sclerosis, in part through regulation of glutamate receptor signalling. Manipulation of miRNA levels may have therapeutic potential.
Collapse
Affiliation(s)
- Barbara Morquette
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| | - Camille A Juźwik
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| | - Sienna S Drake
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| | - Marc Charabati
- CHUM research centre - Université de Montreal, Montréal, QC, Canada
| | - Yang Zhang
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| | | | - Dylan A Galloway
- Division of BioMedical Sciences Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | - Aline Dumas
- Neuroscience Unit, University Hospital Centre of Québec - Laval University, Québec City, QC, Canada
| | | | | | - Mardja Bueno
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| | - Isabel Rambaldi
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| | - Stephanie Zandee
- CHUM research centre - Université de Montreal, Montréal, QC, Canada
| | - Craig Moore
- Division of BioMedical Sciences Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | - Amit Bar-Or
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luc Vallières
- Neuroscience Unit, University Hospital Centre of Québec - Laval University, Québec City, QC, Canada
| | - Alexandre Prat
- CHUM research centre - Université de Montreal, Montréal, QC, Canada
| | - Alyson E Fournier
- McGill University - Montréal Neurological Institute, Montréal, QC, Canada
| |
Collapse
|
13
|
Ciurleo R, Sessa E, Marino S, D’Aleo G, Bramanti P, Rifici C. Acute exacerbation of Hashimoto's thyroiditis in a patient treated with dimethyl fumarate for multiple sclerosis: A case report. Medicine (Baltimore) 2019; 98:e15185. [PMID: 31027063 PMCID: PMC6831155 DOI: 10.1097/md.0000000000015185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Dimethyl fumarate (DMF) has been recently approved for first-line monotherapy of Multiple Sclerosis (MS). Its effects are due to mechanism modulating the immune system and activating antioxidative and neuroprotective pathways. PATIENT CONCERNS A 59-year-old female patient affected by chronic Hashimoto's thyroiditis (HT) from 10 years was diagnosed with relapsing remitting MS in 2013. She started therapy with DMF in November 2016. DIAGNOSIS After 2 months of therapy with DMF, the results of thyroid function test were abnormal. Thyroid ultrasonography confirmed the diagnosis of acute exacerbation of HT. INTERVENTIONS This condition led to discontinuation of DMF therapy. OUTCOME Two months after the interruption of DMF therapy, the findings of thyroid function test were within normal limits. CONCLUSION The association of MS with autoimmune thyroid diseases supports a common immune-mediated pathogenic mechanism. We assume that the acute exacerbation of HT in our MS patient is associated not with the immunomodulatory effect of DMF but rather with its antioxidative mechanism.Constant monitoring of thyroid hormone levels should be recommended especially if the MS patients in treatment with DMF are affected by concomitant autoimmune thyroid diseases.
Collapse
|
14
|
Anti-Neuroinflammatory Effect of Jaeumganghwa-Tang in an Animal Model of Amyotrophic Lateral Sclerosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1893526. [PMID: 30891075 PMCID: PMC6390261 DOI: 10.1155/2019/1893526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is considered a critical factor in the pathologic mechanisms of amyotrophic lateral sclerosis (ALS). This study examined the levels of neuroinflammatory proteins in the spinal cord of JGT-treated hSOD1G93A transgenic mice to determine the effect of Jaeumganghwa-Tang (JGT) on neuroinflammation. Twelve 8-week-old male experimental mice were randomly allocated to three groups: a non-transgenic group, a hSOD1G93A transgenic group, and a hSOD1G93A transgenic group that received JGT 1 mg/g orally once daily for 6 weeks. After 6 weeks, the spinal cord tissues were analyzed for inflammatory proteins (Iba-1, toll-like receptor 4, and tumor necrosis factor-α) and oxidative stress-related proteins (transferrin, ferritin, HO1, and NQO1) by Western blot analysis. Administration of JGT significantly delayed motor function impairment and reduced oxidative stress in hSOD1G93A transgenic mice. JGT effectively ameliorated neuroinflammation mechanisms by downregulating TLR4-related signaling proteins and improving iron homeostasis in the spinal cord of hSOD1G93A mice. JGT could help to decrease neuroinflammation and protect neuronal cells by strengthening the immune response in the central nervous system. This is the first study to demonstrate the role of JGT in neuroinflammation in an animal model of ALS.
Collapse
|
15
|
Biochemical Differences in Cerebrospinal Fluid between Secondary Progressive and Relapsing⁻Remitting Multiple Sclerosis. Cells 2019; 8:cells8020084. [PMID: 30678351 PMCID: PMC6406712 DOI: 10.3390/cells8020084] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 11/29/2022] Open
Abstract
To better understand the pathophysiological differences between secondary progressive multiple sclerosis (SPMS) and relapsing-remitting multiple sclerosis (RRMS), and to identify potential biomarkers of disease progression, we applied high-resolution mass spectrometry (HRMS) to investigate the metabolome of cerebrospinal fluid (CSF). The biochemical differences were determined using partial least squares discriminant analysis (PLS-DA) and connected to biochemical pathways as well as associated to clinical and radiological measures. Tryptophan metabolism was significantly altered, with perturbed levels of kynurenate, 5-hydroxytryptophan, 5-hydroxyindoleacetate, and N-acetylserotonin in SPMS patients compared with RRMS and controls. SPMS patients had altered kynurenine compared with RRMS patients, and altered indole-3-acetate compared with controls. Regarding the pyrimidine metabolism, SPMS patients had altered levels of uridine and deoxyuridine compared with RRMS and controls, and altered thymine and glutamine compared with RRMS patients. Metabolites from the pyrimidine metabolism were significantly associated with disability, disease activity and brain atrophy, making them of particular interest for understanding the disease mechanisms and as markers of disease progression. Overall, these findings are of importance for the characterization of the molecular pathogenesis of SPMS and support the hypothesis that the CSF metabolome may be used to explore changes that occur in the transition between the RRMS and SPMS pathologies.
Collapse
|
16
|
Mojaverrostami S, Bojnordi MN, Ghasemi-Kasman M, Ebrahimzadeh MA, Hamidabadi HG. A Review of Herbal Therapy in Multiple Sclerosis. Adv Pharm Bull 2018; 8:575-590. [PMID: 30607330 PMCID: PMC6311642 DOI: 10.15171/apb.2018.066] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis is a complex autoimmune disorder which characterized by demyelination and axonal loss in the central nervous system (CNS). Several evidences indicate that some new drugs and stem cell therapy have opened a new horizon for multiple sclerosis treatment, but current therapies are partially effective or not safe in the long term. Recently, herbal therapies represent a promising therapeutic approach for multiple sclerosis disease. Here, we consider the potential benefits of some herbal compounds on different aspects of multiple sclerosis disease. The medicinal plants and their derivatives; Ginkgo biloba, Zingiber officinale, Curcuma longa, Hypericum perforatum, Valeriana officinalis, Vaccinium macrocarpon, Nigella sativa,Piper methysticum, Crocus sativus, Panax ginseng, Boswellia papyrifera, Vitis vinifera, Gastrodia elata, Camellia sinensis, Oenothera biennis, MS14 and Cannabis sativa have been informed to have several therapeutic effects in MS patients.
Collapse
Affiliation(s)
- Sina Mojaverrostami
- Young Researchers and Elite Club, Behshahr Branch, Islamic Azad University, Behshahr, Iran
| | - Maryam Nazm Bojnordi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Cellular and Molecular Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
17
|
Negron A, Robinson RR, Stüve O, Forsthuber TG. The role of B cells in multiple sclerosis: Current and future therapies. Cell Immunol 2018; 339:10-23. [PMID: 31130183 DOI: 10.1016/j.cellimm.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
While it was long held that T cells were the primary mediators of multiple sclerosis (MS) pathogenesis, the beneficial effects observed in response to treatment with Rituximab (RTX), a monoclonal antibody (mAb) targeting CD20, shed light on a key contributor to MS that had been previously underappreciated: B cells. This has been reaffirmed by results from clinical trials testing the efficacy of subsequently developed B cell-depleting mAbs targeting CD20 as well as studies revisiting the effects of previous disease-modifying therapies (DMTs) on B cell subsets thought to modulate disease severity. In this review, we summarize current knowledge regarding the complex roles of B cells in MS pathogenesis and current and potential future B cell-directed therapies.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Rachel R Robinson
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, TX, USA
| | | |
Collapse
|
18
|
Boccella S, Guida F, De Logu F, De Gregorio D, Mazzitelli M, Belardo C, Iannotta M, Serra N, Nassini R, de Novellis V, Geppetti P, Maione S, Luongo L. Ketones and pain: unexplored role of hydroxyl carboxylic acid receptor type 2 in the pathophysiology of neuropathic pain. FASEB J 2018; 33:1062-1073. [PMID: 30085883 DOI: 10.1096/fj.201801033r] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The mechanisms underlying neuropathic pain are poorly understood. Here we show the unexplored role of the hydroxyl carboxylic acid receptor type 2 (HCAR2) in 2 models of neuropathic pain. We used an oral treatment with dimethyl fumarate and the HCAR2 endogenous ligand β-hydroxybutyrate (BHB) in wild-type (WT) and HCAR2-null mice. We found an up-regulation of the HCAR2 in the sciatic nerve and the dorsal root ganglia in neuropathic mice. Accordingly, acute and chronic treatment with dimethylfumarate (DMF) and BHB reduced the tactile allodynia. This effect was completely lost in the HCAR2-null mice after a 2-d starvation protocol, in which the BHB reached the concentration able to activate the HCAR2-reduced tactile allodynia in female WT mice, but not in the HCAR2-null mice. Finally, we showed that chronic treatment with DMF reduced the firing of the ON cells (cells responding with an excitation after noxious stimulation) of the rostral ventromedial medulla. Our results pave the way for investigating the mechanisms by which HCAR2 regulates neuropathic pain plasticity.-Boccella, S., Guida, F., De Logu, F., De Gregorio, D., Mazzitelli, M., Belardo, C., Iannotta, M., Serra, N., Nassini, R., de Novellis, V., Geppetti, P., Maione, S., Luongo, L. Ketones and pain: unexplored role of hydroxyl carboxylic acid receptor type 2 in the pathophysiology of neuropathic pain.
Collapse
Affiliation(s)
- Serena Boccella
- Department of Experimental Medicine, Università della Campania L. Vanvitelli, Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Università della Campania L. Vanvitelli, Naples, Italy
| | - Francesco De Logu
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; and
| | - Carmela Belardo
- Department of Experimental Medicine, Università della Campania L. Vanvitelli, Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, Università della Campania L. Vanvitelli, Naples, Italy
| | - Nicola Serra
- Department of Radiology, University of Campania L. Vanvitelli, Naples, Italy
| | - Romina Nassini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Vito de Novellis
- Department of Experimental Medicine, Università della Campania L. Vanvitelli, Naples, Italy
| | - Pierangelo Geppetti
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Università della Campania L. Vanvitelli, Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Università della Campania L. Vanvitelli, Naples, Italy
| |
Collapse
|
19
|
Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res 2018; 6:15. [PMID: 29736302 PMCID: PMC5920070 DOI: 10.1038/s41413-018-0016-9] [Citation(s) in RCA: 895] [Impact Index Per Article: 127.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that primarily affects the lining of the synovial joints and is associated with progressive disability, premature death, and socioeconomic burdens. A better understanding of how the pathological mechanisms drive the deterioration of RA progress in individuals is urgently required in order to develop therapies that will effectively treat patients at each stage of the disease progress. Here we dissect the etiology and pathology at specific stages: (i) triggering, (ii) maturation, (iii) targeting, and (iv) fulminant stage, concomitant with hyperplastic synovium, cartilage damage, bone erosion, and systemic consequences. Modern pharmacologic therapies (including conventional, biological, and novel potential small molecule disease-modifying anti-rheumatic drugs) remain the mainstay of RA treatment and there has been significant progress toward achieving disease remission without joint deformity. Despite this, a significant proportion of RA patients do not effectively respond to the current therapies and thus new drugs are urgently required. This review discusses recent advances of our understanding of RA pathogenesis, disease modifying drugs, and provides perspectives on next generation therapeutics for RA. The preclinical stages of rheumatoid arthritis (RA) represent a golden window for the development of therapies which could someday prevent the onset of clinical disease. The autoimmune processes underpinning RA usually begin many years before symptoms such as joint pain and stiffness emerge. Recent studies have identified some of the key cellular players driving these processes and begun to unpick how genetic and environmental risk factors combine to trigger them; they also suggest the existence of several distinct subtypes of RA, which require further exploration. Jiake Xu at the University of Western Australia in Perth and colleagues review current treatment strategies for RA and how such insights could ultimately lead to the earlier diagnosis of RA - as well as providing new opportunities for drug treatment and prevention through behavioral changes in high-risk individuals.
Collapse
Affiliation(s)
- Qiang Guo
- 1Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, 410008 Changsha, China.,2School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia
| | - Yuxiang Wang
- 1Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, 410008 Changsha, China
| | - Dan Xu
- 2School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia.,Musculoskeletal Health Network, Department of Health WA, 189 Royal Street, East Perth, WA 6004 Australia
| | - Johannes Nossent
- Musculoskeletal Health Network, Department of Health WA, 189 Royal Street, East Perth, WA 6004 Australia.,4School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia
| | - Nathan J Pavlos
- 2School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia
| | - Jiake Xu
- 2School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia
| |
Collapse
|
20
|
Shen D, Chu F, Lang Y, Geng Y, Zheng X, Zhu J, Liu K. Beneficial or Harmful Role of Macrophages in Guillain-Barré Syndrome and Experimental Autoimmune Neuritis. Mediators Inflamm 2018; 2018:4286364. [PMID: 29853789 PMCID: PMC5944239 DOI: 10.1155/2018/4286364+10.1155/2018/4286364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/01/2018] [Indexed: 01/21/2024] Open
Abstract
Guillain-Barré syndrome (GBS), an immune-mediated demyelinating peripheral neuropathy, is characterized by acute weakness of the extremities and areflexia or hyporeflexia. Experimental autoimmune neuritis (EAN) is a common animal model for GBS, which represents a CD4+ T cell-mediated inflammatory autoimmune demyelination of the peripheral nervous system (PNS), and is used to investigate the pathogenic mechanism of GBS. It has been found that macrophages play a critical role in the pathogenesis of both GBS and EAN. Macrophages have been primarily classified into two major phenotypes: proinflammatory macrophages (M1) and anti-inflammatory macrophages (M2). The two different macrophage subsets M1 and M2 may play a decisive role in initiation and development of GBS and EAN. However, recently, it has been indicated that the roles of macrophages in immune regulation and autoimmune diseases are more complex than those suggested by a simple M1-M2 dichotomy. Macrophages might exert either inflammatory or anti-inflammatory effect by secreting pro- or anti-inflammatory cytokines, and either inducing the activation of T cells to mediate immune response, resulting in inflammation and demyelination in the PNS, or promoting disease recovery. In this review, we summarize the dual roles of macrophages in GBS and EAN and explore the mechanism of macrophage polarization to provide a potential therapeutic approach for GBS in the future.
Collapse
Affiliation(s)
- Donghui Shen
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Fengna Chu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Yue Lang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Yunlong Geng
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Xiangyu Zheng
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital, SE-14157 Huddinge, Stockholm, Sweden
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| |
Collapse
|
21
|
Beneficial or Harmful Role of Macrophages in Guillain-Barré Syndrome and Experimental Autoimmune Neuritis. Mediators Inflamm 2018; 2018:4286364. [PMID: 29853789 PMCID: PMC5944239 DOI: 10.1155/2018/4286364 10.1155/2018/4286364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Guillain-Barré syndrome (GBS), an immune-mediated demyelinating peripheral neuropathy, is characterized by acute weakness of the extremities and areflexia or hyporeflexia. Experimental autoimmune neuritis (EAN) is a common animal model for GBS, which represents a CD4+ T cell-mediated inflammatory autoimmune demyelination of the peripheral nervous system (PNS), and is used to investigate the pathogenic mechanism of GBS. It has been found that macrophages play a critical role in the pathogenesis of both GBS and EAN. Macrophages have been primarily classified into two major phenotypes: proinflammatory macrophages (M1) and anti-inflammatory macrophages (M2). The two different macrophage subsets M1 and M2 may play a decisive role in initiation and development of GBS and EAN. However, recently, it has been indicated that the roles of macrophages in immune regulation and autoimmune diseases are more complex than those suggested by a simple M1-M2 dichotomy. Macrophages might exert either inflammatory or anti-inflammatory effect by secreting pro- or anti-inflammatory cytokines, and either inducing the activation of T cells to mediate immune response, resulting in inflammation and demyelination in the PNS, or promoting disease recovery. In this review, we summarize the dual roles of macrophages in GBS and EAN and explore the mechanism of macrophage polarization to provide a potential therapeutic approach for GBS in the future.
Collapse
|
22
|
Beneficial or Harmful Role of Macrophages in Guillain-Barré Syndrome and Experimental Autoimmune Neuritis. Mediators Inflamm 2018; 2018:4286364. [PMID: 29853789 PMCID: PMC5944239 DOI: 10.1155/2018/4286364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/01/2018] [Indexed: 12/11/2022] Open
Abstract
Guillain-Barré syndrome (GBS), an immune-mediated demyelinating peripheral neuropathy, is characterized by acute weakness of the extremities and areflexia or hyporeflexia. Experimental autoimmune neuritis (EAN) is a common animal model for GBS, which represents a CD4+ T cell-mediated inflammatory autoimmune demyelination of the peripheral nervous system (PNS), and is used to investigate the pathogenic mechanism of GBS. It has been found that macrophages play a critical role in the pathogenesis of both GBS and EAN. Macrophages have been primarily classified into two major phenotypes: proinflammatory macrophages (M1) and anti-inflammatory macrophages (M2). The two different macrophage subsets M1 and M2 may play a decisive role in initiation and development of GBS and EAN. However, recently, it has been indicated that the roles of macrophages in immune regulation and autoimmune diseases are more complex than those suggested by a simple M1-M2 dichotomy. Macrophages might exert either inflammatory or anti-inflammatory effect by secreting pro- or anti-inflammatory cytokines, and either inducing the activation of T cells to mediate immune response, resulting in inflammation and demyelination in the PNS, or promoting disease recovery. In this review, we summarize the dual roles of macrophages in GBS and EAN and explore the mechanism of macrophage polarization to provide a potential therapeutic approach for GBS in the future.
Collapse
|
23
|
Li X, Lu T, Xue W, Wang Y, Luo Q, Ge H, Tan R, Shen Y, Xu Q. Small molecule-mediated upregulation of CCR7 ameliorates murine experimental autoimmune encephalomyelitis by accelerating T-cell homing. Int Immunopharmacol 2017; 53:33-41. [DOI: 10.1016/j.intimp.2017.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
|
24
|
Redox Regulation of Inflammatory Processes Is Enzymatically Controlled. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8459402. [PMID: 29118897 PMCID: PMC5651112 DOI: 10.1155/2017/8459402] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/06/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022]
Abstract
Redox regulation depends on the enzymatically controlled production and decay of redox active molecules. NADPH oxidases, superoxide dismutases, nitric oxide synthases, and others produce the redox active molecules superoxide, hydrogen peroxide, nitric oxide, and hydrogen sulfide. These react with target proteins inducing spatiotemporal modifications of cysteine residues within different signaling cascades. Thioredoxin family proteins are key regulators of the redox state of proteins. They regulate the formation and removal of oxidative modifications by specific thiol reduction and oxidation. All of these redox enzymes affect inflammatory processes and the innate and adaptive immune response. Interestingly, this regulation involves different mechanisms in different biological compartments and specialized cell types. The localization and activity of distinct proteins including, for instance, the transcription factor NFκB and the immune mediator HMGB1 are redox-regulated. The transmembrane protein ADAM17 releases proinflammatory mediators, such as TNFα, and is itself regulated by a thiol switch. Moreover, extracellular redox enzymes were shown to modulate the activity and migration behavior of various types of immune cells by acting as cytokines and/or chemokines. Within this review article, we will address the concept of redox signaling and the functions of both redox enzymes and redox active molecules in innate and adaptive immune responses.
Collapse
|
25
|
Treatment of Theiler’s virus-induced demyelinating disease with teriflunomide. J Neurovirol 2017; 23:825-838. [DOI: 10.1007/s13365-017-0570-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/21/2017] [Accepted: 08/21/2017] [Indexed: 12/28/2022]
|