1
|
Anwar F, Mosley MT, Jasbi P, Chi J, Gu H, Jadavji NM. Maternal Dietary Deficiencies in Folic Acid and Choline Change Metabolites Levels in Offspring after Ischemic Stroke. Metabolites 2024; 14:552. [PMID: 39452933 PMCID: PMC11509810 DOI: 10.3390/metabo14100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Background/objectives: Ischemic stroke is a major health concern, and nutrition is a modifiable risk factor that can influence recovery outcomes. This study investigated the impact of maternal dietary deficiencies in folic acid (FADD) or choline (ChDD) on the metabolite profiles of offspring after ischemic stroke. Methods: A total of 32 mice (17 males and 15 females) were used to analyze sex-specific differences in response to these deficiencies. Results: At 1-week post-stroke, female offspring from the FADD group showed the greatest number of altered metabolites, including pathways involved in cholesterol metabolism and neuroprotection. At 4 weeks post-stroke, both FADD and ChDD groups exhibited significant disruptions in metabolites linked to inflammation, oxidative stress, and neurotransmission. Conclusions: These alterations were more pronounced in females compared to males, suggesting sex-dependent responses to maternal dietary deficiencies. The practical implications of these findings suggest that ensuring adequate maternal nutrition during pregnancy may be crucial for reducing stroke susceptibility and improving post-stroke recovery in offspring. Nutritional supplementation strategies targeting folic acid and choline intake could potentially mitigate the long-term adverse effects on metabolic pathways and promote better neurological outcomes. Future research should explore these dietary interventions in clinical settings to develop comprehensive guidelines for maternal nutrition and stroke prevention.
Collapse
Affiliation(s)
- Faizan Anwar
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA; (F.A.); (M.-T.M.)
| | - Mary-Tyler Mosley
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA; (F.A.); (M.-T.M.)
- Department of Human Biology, Stanford University, Stanford, CA 94305, USA
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (P.J.); (J.C.); (H.G.)
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA
| | - Jinhua Chi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (P.J.); (J.C.); (H.G.)
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (P.J.); (J.C.); (H.G.)
| | - Nafisa M. Jadavji
- Department of Biomedical Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Child Health, University of Arizona, Phoenix, AZ 85004, USA
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
2
|
Breivogel CS, Brenseke BM, Eldeeb K, Nichols K, Jonas A, Mistry AH, Barbalato L, Luibil N, Howlett AC, Leone-Kabler S, Hilgers RPH, Pulgar VM. Effects of Δ 9-Tetrahydrocannabinol and the Aminoalkylindole K2/Spice Constituent JWH-073 on Cardiac Tissue and Mesenteric Vascular Reactivity. Cannabis Cannabinoid Res 2024; 9:e1056-e1062. [PMID: 37010379 PMCID: PMC11386992 DOI: 10.1089/can.2022.0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Background: Although use of Cannabis sativa is not associated with serious adverse effects, recreational use of aminoalkylindole (AAI) cannabinoid receptor agonists found in K2/Spice herbal blends has been reported to cause adverse cardiovascular events, including angina, arrhythmia, changes in blood pressure, ischemic stroke, and myocardial infarction. Δ9-Tetrahydrocannabinol (Δ9-THC) is the primary CB1 agonist found in cannabis and JWH-073 is one of the AAI CB1 agonists found in K2/Spice brands sold to the public. Methods: This study used in vitro, in vivo, and ex vivo approaches to investigate potential differences on cardiac tissue and vascular effects betweenJWH-073 and Δ9-THC. Male C57BL/6 mice were treated with JWH-073 or Δ9-THC and cardiac injury was assessed by histology. Effects of JWH-073 and Δ9-THC on H9C2 cell viability and ex vivo mesenteric vascular reactivity were also determined. Results: JWH-073 or Δ9-THC induced typical cannabinoid effects of antinociception and hypothermia but did not promote death of cardiac myocytes. No differences in cell viability were observed in cultured H9C2 cardiac myocytes after 24 h of treatment. In isolated mesenteric arteries from drug-naive animals, JWH-073 produced significantly greater maximal relaxation (96%±2% vs. 73%±5%, p<0.05) and significantly greater inhibition of phenylephrine-mediated maximal contraction (Control 174%±11%KMAX) compared with Δ9-THC (50%±17% vs. 119%±16%KMAX, p<0.05). Discussion: These findings suggest that neither cannabinoid at the concentrations/dose studied caused cardiac cell death, but JWH-073 has the potential for greater vascular adverse events than Δ9-THC through an increased vasodilatory effect.
Collapse
Affiliation(s)
- Chris S Breivogel
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Bonnie M Brenseke
- School of Osteopathic Medicine, Campbell University, Buies Creek, North Carolina, USA
| | - Khalil Eldeeb
- School of Osteopathic Medicine, Campbell University, Buies Creek, North Carolina, USA
- Al Azhar Damietta Faculty of Medicine, New Damietta, Egypt
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Katlyn Nichols
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Amreen Jonas
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Artik H Mistry
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Laura Barbalato
- School of Osteopathic Medicine, Campbell University, Buies Creek, North Carolina, USA
| | - Nicholas Luibil
- School of Osteopathic Medicine, Campbell University, Buies Creek, North Carolina, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sandra Leone-Kabler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Rob P H Hilgers
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Victor M Pulgar
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, North Carolina, USA
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Biomedical Research Infrastructure Center, Winston-Salem State University, Winston-Salem, North Carolina, USA
| |
Collapse
|
3
|
Costas-Insua C, Hermoso-López A, Moreno E, Montero-Fernández C, Álvaro-Blázquez A, Maroto IB, Sánchez-Ruiz A, Diez-Alarcia R, Blázquez C, Morales P, Canela EI, Casadó V, Urigüen L, Perea G, Bellocchio L, Rodríguez-Crespo I, Guzmán M. The CB 1 receptor interacts with cereblon and drives cereblon deficiency-associated memory shortfalls. EMBO Mol Med 2024; 16:755-783. [PMID: 38514794 PMCID: PMC11018632 DOI: 10.1038/s44321-024-00054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Cereblon/CRBN is a substrate-recognition component of the Cullin4A-DDB1-Roc1 E3 ubiquitin ligase complex. Destabilizing mutations in the human CRBN gene cause a form of autosomal recessive non-syndromic intellectual disability (ARNSID) that is modelled by knocking-out the mouse Crbn gene. A reduction in excitatory neurotransmission has been proposed as an underlying mechanism of the disease. However, the precise factors eliciting this impairment remain mostly unknown. Here we report that CRBN molecules selectively located on glutamatergic neurons are necessary for proper memory function. Combining various in vivo approaches, we show that the cannabinoid CB1 receptor (CB1R), a key suppressor of synaptic transmission, is overactivated in CRBN deficiency-linked ARNSID mouse models, and that the memory deficits observed in these animals can be rescued by acute CB1R-selective pharmacological antagonism. Molecular studies demonstrated that CRBN interacts physically with CB1R and impairs the CB1R-Gi/o-cAMP-PKA pathway in a ubiquitin ligase-independent manner. Taken together, these findings unveil that CB1R overactivation is a driving mechanism of CRBN deficiency-linked ARNSID and anticipate that the antagonism of CB1R could constitute a new therapy for this orphan disease.
Collapse
Affiliation(s)
- Carlos Costas-Insua
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Alba Hermoso-López
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Carlos Montero-Fernández
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Alicia Álvaro-Blázquez
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Irene B Maroto
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | | | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country/Euskal Herriko Unibertsitatea, 48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain
- BioBizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Cristina Blázquez
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Paula Morales
- Instituto de Química Médica, CSIC, 28006, Madrid, Spain
| | - Enric I Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country/Euskal Herriko Unibertsitatea, 48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain
- BioBizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | | | - Luigi Bellocchio
- Institut National de la Santé et de la Recherche Médicale (INSERM) and University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, 33077, Bordeaux, France
| | - Ignacio Rodríguez-Crespo
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Manuel Guzmán
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain.
| |
Collapse
|
4
|
Mensah E, Tabrizchi R, Daneshtalab N. Pharmacognosy and Effects of Cannabinoids in the Vascular System. ACS Pharmacol Transl Sci 2022; 5:1034-1049. [PMID: 36407955 PMCID: PMC9667477 DOI: 10.1021/acsptsci.2c00141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/29/2022]
Abstract
Understanding the pharmacodynamics of cannabinoids is an essential subject due to the recent increasing global acceptance of cannabis and its derivation for recreational and therapeutic purposes. Elucidating the interaction between cannabinoids and the vascular system is critical to exploring cannabinoids as a prospective therapeutic agent for treating vascular-associated clinical conditions. This review aims to examine the effect of cannabinoids on the vascular system and further discuss the fundamental pharmacological properties and mechanisms of action of cannabinoids in the vascular system. Data from literature revealed a substantial interaction between endocannabinoids, phytocannabinoids, and synthetic cannabinoids within the vasculature of both humans and animal models. However, the mechanisms and the ensuing functional response is blood vessels and species-dependent. The current understanding of classical cannabinoid receptor subtypes and the recently discovered atypical cannabinoid receptors and the development of new synthetic analogs have further enhanced the pharmacological characterization of the vascular cannabinoid receptors. Compelling evidence also suggest that cannabinoids represent a formidable therapeutic candidate for vascular-associated conditions. Nonetheless, explanations of the mechanisms underlining these processes are complex and paradoxical based on the heterogeneity of receptors and signaling pathways. Further insight from studies that uncover the mechanisms underlining the therapeutic effect of cannabinoids in the treatment of vascular-associated conditions is required to determine whether the known benefits of cannabinoids thus currently outweigh the known/unknown risks.
Collapse
Affiliation(s)
- Eric Mensah
- Faculty
of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Reza Tabrizchi
- Faculty
of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Noriko Daneshtalab
- School
of Pharmacy, Memorial University of Newfoundland
and Labrador, St. John’s, NL A1B 3V6, Canada
| |
Collapse
|
5
|
Laudanski K, Wain J. Considerations for Cannabinoids in Perioperative Care by Anesthesiologists. J Clin Med 2022; 11:jcm11030558. [PMID: 35160010 PMCID: PMC8836924 DOI: 10.3390/jcm11030558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Increased usage of recreational and medically indicated cannabinoid compounds has been an undeniable reality for anesthesiologists in recent years. These compounds’ complicated pharmacology, composition, and biological effects result in challenging issues for anesthesiologists during different phases of perioperative care. Here, we review the existing formulation of cannabinoids and their biological activity to put them into the context of the anesthesia plan execution. Perioperative considerations should include a way to gauge the patient’s intake of cannabinoids, the ability to gain consent properly, and vigilance to the increased risk of pulmonary and airway problems. Intraoperative management in individuals with cannabinoid use is complicated by the effects cannabinoids have on general anesthetics and depth of anesthesia monitoring while simultaneously increasing the potential occurrence of intraoperative hemodynamic instability. Postoperative planning should involve higher vigilance to the risk of postoperative strokes and acute coronary syndromes. However, most of the data are not up to date, rending definite conclusions on the importance of perioperative cannabinoid intake on anesthesia management difficult.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (K.L.); (J.W.)
| | - Justin Wain
- School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
- Correspondence: (K.L.); (J.W.)
| |
Collapse
|
6
|
Cannabinoids-A New Perspective in Adjuvant Therapy for Pulmonary Hypertension. Int J Mol Sci 2021; 22:ijms221810048. [PMID: 34576212 PMCID: PMC8472313 DOI: 10.3390/ijms221810048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Currently, no treatment can completely cure pulmonary hypertension (PH), which can lead to right ventricular failure and, consequently, death. Therefore, searching for new therapies remains important. Increased resistance in pulmonary circulation is mainly caused by the excessive contraction and proliferation of small pulmonary arteries. Cannabinoids, a group of lipophilic compounds that all interact with cannabinoid receptors, exert a pulmonary vasodilatory effect through several different mechanisms, including mechanisms that depend on vascular endothelium and/or receptor-based mechanisms, and may also have anti-proliferative and anti-inflammatory properties. The vasodilatory effect is important in regulating pulmonary resistance, which can improve patients’ quality of life. Moreover, experimental studies on the effects of cannabidiol (plant-derived, non-psychoactive cannabinoid) in animal PH models have shown that cannabidiol reduces right ventricular systolic pressure and excessive remodelling and decreases pulmonary vascular hypertrophy and pulmonary vascular resistance. Due to the potentially beneficial effects of cannabinoids on pulmonary circulation and PH, in this work, we review whether cannabinoids can be used as an adjunctive therapy for PH. However, clinical trials are still needed to recommend the use of cannabinoids in the treatment of PH.
Collapse
|
7
|
Molecular Mechanisms of Action of Novel Psychoactive Substances (NPS). A New Threat for Young Drug Users with Forensic-Toxicological Implications. Life (Basel) 2021; 11:life11050440. [PMID: 34068903 PMCID: PMC8156937 DOI: 10.3390/life11050440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Novel psychoactive substances (NPS) represent a severe health risk for drug users. Even though the phenomenon has been growing since the early 2000s, the mechanisms of action of NPS at the receptors and beyond them are still scarcely understood. The aim of the present study was to provide a systematic review of the updated knowledge regarding the molecular mechanisms underlying the toxicity of synthetic opioids, cannabinoids, cathinones, and stimulants. The study was conducted on the PubMed database. Study eligibility criteria included relevance to the topic, English language, and time of publication (2010–2020). A combined Mesh and free-text protocols search was performed. Study selection was performed on the title/abstract and, in doubtful cases, on the full texts of papers. Of the 580 records identified through PubMed searching and reference checking, 307 were excluded by title/abstract and 78 additional papers were excluded after full-text reading, leaving a total of 155 included papers. Molecular mechanisms of synthetic opioids, synthetic cannabinoids, stimulants, psychedelics, and hallucinogens were reviewed and mostly involved both a receptor-mediated and non-receptor mediated cellular modulation with multiple neurotransmitters interactions. The molecular mechanisms underlying the action of NPS are more complex than expected, with a wide range of overlap among activated receptors and neurotransmitter systems. The peculiar action profile of single compounds does not necessarily reflect that of the structural class to which they belong, accounting for possible unexpected toxic reactions.
Collapse
|
8
|
Andrade F, Rangel-Sandoval C, Rodríguez-Hernández A, López-Dyck E, Elizalde A, Virgen-Ortiz A, Bonales-Alatorre E, Valencia-Cruz G, Sánchez-Pastor E. Capsaicin Causes Vasorelaxation of Rat Aorta through Blocking of L-type Ca 2+ Channels and Activation of CB 1 Receptors. Molecules 2020; 25:molecules25173957. [PMID: 32872656 PMCID: PMC7504815 DOI: 10.3390/molecules25173957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 01/21/2023] Open
Abstract
The aim of this work was to determine whether Capsaicin may exert a vascular regulation through the activation of CB1 and/or CB2 receptors causing vasorelaxation in the rat aorta. Our results show the location of TRPV1 mainly in the endothelial and smooth muscle cells membrane. Nevertheless, Capsaicin caused vasorelaxation of this artery through a mechanism independent of TRPV1, since the specific antagonists Capsazepine and SB-366791 did not block the effect of Capsaicin. Because the significant expression of CB1 and CB2 receptors has been previously reported in the rat aorta, we used antagonists for these two receptors prior to the addition of Capsaicin. In these experiments, we found that the inhibition of CB1 using AM281, decreases the vasorelaxant effect caused by Capsaicin. On the other hand, the vasorelaxant effect is not altered in the presence of the CB2 receptor antagonist AM630. Furthermore, a partial decrease of the effect of Capsaicin was also seen when L-type calcium channels are blocked. A complete block of Capsaicin-induced vasorelaxation was achieved using a combination of Verapamil and AM281. In accordance to our results, Capsaicin-induced vasorelaxation of the rat aorta is neither dependent of TRPV1 or CB2 receptors, but rather it is strongly suggested that a tandem mechanism between inactivation of L-type calcium channels and the direct activation of CB1 receptors is involved. These findings are supported by CB1 docking simulation which predicted a binding site on CB1 receptors for Capsaicin.
Collapse
Affiliation(s)
- Felipa Andrade
- National Technological Institute of Mexico/Technological Institute of Colima, Avenida Tecnológico No. 1, CP 28976 Villa de Álvarez, Colima, Mexico;
| | - Cinthia Rangel-Sandoval
- University Center for Biomedical Research, University of Colima, Apdo. Postal No. 11, CP 28040 Colima, Colima, Mexico; (C.R.-S.); (A.E.); (A.V.-O.); (E.B.-A.); (G.V.-C.)
| | | | - Evelyn López-Dyck
- State University of Sonora, Navojoa Academic Unit. Blvd. Manlio Fabio Beltrones 810, CP 85875 Navojoa, Sonora, Mexico;
| | - Alejandro Elizalde
- University Center for Biomedical Research, University of Colima, Apdo. Postal No. 11, CP 28040 Colima, Colima, Mexico; (C.R.-S.); (A.E.); (A.V.-O.); (E.B.-A.); (G.V.-C.)
| | - Adolfo Virgen-Ortiz
- University Center for Biomedical Research, University of Colima, Apdo. Postal No. 11, CP 28040 Colima, Colima, Mexico; (C.R.-S.); (A.E.); (A.V.-O.); (E.B.-A.); (G.V.-C.)
| | - Edgar Bonales-Alatorre
- University Center for Biomedical Research, University of Colima, Apdo. Postal No. 11, CP 28040 Colima, Colima, Mexico; (C.R.-S.); (A.E.); (A.V.-O.); (E.B.-A.); (G.V.-C.)
| | - Georgina Valencia-Cruz
- University Center for Biomedical Research, University of Colima, Apdo. Postal No. 11, CP 28040 Colima, Colima, Mexico; (C.R.-S.); (A.E.); (A.V.-O.); (E.B.-A.); (G.V.-C.)
| | - Enrique Sánchez-Pastor
- University Center for Biomedical Research, University of Colima, Apdo. Postal No. 11, CP 28040 Colima, Colima, Mexico; (C.R.-S.); (A.E.); (A.V.-O.); (E.B.-A.); (G.V.-C.)
- Correspondence: ; Tel.: +52 (312) 31-611-29
| |
Collapse
|
9
|
Dogan MF, Yildiz O, Arslan SO, Ulusoy KG. Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. Fundam Clin Pharmacol 2019; 33:504-523. [PMID: 30851197 DOI: 10.1111/fcp.12461] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/23/2022]
Abstract
Potassium (K+ ) ion channel activity is an important determinant of vascular tone by regulating cell membrane potential (MP). Activation of K+ channels leads to membrane hyperpolarization and subsequently vasodilatation, while inhibition of the channels causes membrane depolarization and then vasoconstriction. So far five distinct types of K+ channels have been identified in vascular smooth muscle cells (VSMCs): Ca+2 -activated K+ channels (BKC a ), voltage-dependent K+ channels (KV ), ATP-sensitive K+ channels (KATP ), inward rectifier K+ channels (Kir ), and tandem two-pore K+ channels (K2 P). The activity and expression of vascular K+ channels are changed during major vascular diseases such as hypertension, pulmonary hypertension, hypercholesterolemia, atherosclerosis, and diabetes mellitus. The defective function of K+ channels is commonly associated with impaired vascular responses and is likely to become as a result of changes in K+ channels during vascular diseases. Increased K+ channel function and expression may also help to compensate for increased abnormal vascular tone. There are many pharmacological and genotypic studies which were carried out on the subtypes of K+ channels expressed in variable amounts in different vascular beds. Modulation of K+ channel activity by molecular approaches and selective drug development may be a novel treatment modality for vascular dysfunction in the future. This review presents the basic properties, physiological functions, pathophysiological, and pharmacological roles of the five major classes of K+ channels that have been determined in VSMCs.
Collapse
Affiliation(s)
- Muhammed Fatih Dogan
- Department of Pharmacology, Ankara Yildirim Beyazit University, Bilkent, Ankara, 06010, Turkey
| | - Oguzhan Yildiz
- Department of Pharmacology, Gulhane Faculty of Medicine, University of Health Sciences, Etlik, Ankara, 06170, Turkey
| | - Seyfullah Oktay Arslan
- Department of Pharmacology, Ankara Yildirim Beyazit University, Bilkent, Ankara, 06010, Turkey
| | - Kemal Gokhan Ulusoy
- Department of Pharmacology, Gulhane Faculty of Medicine, University of Health Sciences, Etlik, Ankara, 06170, Turkey
| |
Collapse
|
10
|
Pressly JD, Soni H, Jiang S, Wei J, Liu R, Moore BM, Adebiyi A, Park F. Activation of the cannabinoid receptor 2 increases renal perfusion. Physiol Genomics 2019; 51:90-96. [PMID: 30707046 DOI: 10.1152/physiolgenomics.00001.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acute kidney injury (AKI) is an increasing clinical problem that is associated with chronic kidney disease progression. Cannabinoid receptor 2 (CB2) activation has been shown to mitigate some of the deleterious tubular effects due to AKI, but its role on the renal vasculature has not been fully described. In this study, we investigated the effects of our novel CB2 receptor agonist, SMM-295, on renal vasculature by assessing cortical perfusion with laser Doppler flowmetry and changes in luminal diameter with isolated afferent arterioles. In this study, intravenously infused SMM-295 (6 mg/kg) significantly increased cortical renal perfusion (13.8 ± 0.6%; P < 0.0001; n = 7) compared with vehicle (0.1 ± 1.5%; n = 10) normalized to baseline values in anesthetized C57BL/6J mice. This effect was not dependent upon activation of the CB1 receptor (met-anandamide; 6 mg/kg iv) and was predominantly abolished in Cnr2 knockout mice with SMM-295 (6 mg/kg iv). Ablation of the renal afferent nerves with capsaicin blocked the SMM-295-dependent increase in renal cortical perfusion, and the increased renal blood flow was not dependent upon products synthesized by cyclooxygenase or nitric oxide synthase. The increased renal perfusion by CB2 receptor activation is also attributed to a direct vascular effect, since SMM-295 (5 μM) engendered a significant 37 ± 7% increase ( P < 0.0001; n = 4) in luminal diameters of norepinephrine-preconstricted afferent arterioles. These data provide new insight into the potential benefit of SMM-295 by activating vascular and nonvascular CB2 receptors to promote renal vasodilation, and provide a new therapeutic target to treat renal injuries that impact renal blood flow dynamics.
Collapse
Affiliation(s)
- J D Pressly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| | - H Soni
- Department of Physiology, University of Tennessee Health Science Center , Memphis, Tennessee
| | - S Jiang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - J Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - R Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - B M Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| | - A Adebiyi
- Department of Physiology, University of Tennessee Health Science Center , Memphis, Tennessee
| | - F Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| |
Collapse
|
11
|
Potential Mechanisms Underlying the Deleterious Effects of Synthetic Cannabinoids Found in Spice/K2 Products. Brain Sci 2019; 9:brainsci9010014. [PMID: 30654473 PMCID: PMC6357179 DOI: 10.3390/brainsci9010014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/17/2022] Open
Abstract
The chief psychoactive constituent of many bioactive phytocannabinoids (Δ9-tetrahydrocannabinol, Δ9-THC) found in hemp, cannabis or marijuana plants are scientifically denoted by the Latin term, Cannabis sativa, acts on cell surface receptors. These receptors are ubiquitously expressed. To date, two cannabinoid receptors have been cloned and characterized. Cannabinoid receptor type 1 (CB1R) is found to serve as the archetype for cannabinoid action in the brain. They have attracted wide interest as the mediator of all psychoactive properties of exogenous and endogenous cannabinoids and they are abundantly expressed on most inhibitory and excitatory neurons. Recent evidence established that cannabinoid receptor type 2 (CB2R) is also expressed in the neurons at both presynaptic and postsynaptic terminals and are involved in neuropsychiatric effects. Distinct types of cells in many regions in the brain express CB2Rs and the cellular origin of CB2Rs that induce specific behavioral effects are emerging. To mimic the bliss effects of marijuana, synthetic cannabinoids (SCBs) have been sprayed onto plant material, and this plant material has been consequently packaged and sold under brand name “Spice” or “K2”. These SCBs have been shown to maintain their affinity and functional activity for CB1R and CB2R and have been shown to cause severe harmful effects when compared to the effects of Δ9-THC. The present review discusses the potential brain mechanisms that are involved in the deleterious effects of SCBs.
Collapse
|
12
|
Abstract
Cannabinoids influence cardiovascular variables in health and disease via multiple mechanisms. The chapter covers the impact of cannabinoids on cardiovascular function in physiology and pathology and presents a critical analysis of the proposed signalling pathways governing regulation of cardiovascular function by endogenously produced and exogenous cannabinoids. We know that endocannabinoid system is overactivated under pathological conditions and plays both a protective compensatory role, such as in some forms of hypertension, atherosclerosis and other inflammatory conditions, and a pathophysiological role, such as in disease states associated with excessive hypotension. This chapter focuses on the mechanisms affecting hemodynamics and vasomotor effects of cannabinoids in health and disease states, highlighting mismatches between some studies. The chapter will first review the effects of marijuana smoking on cardiovascular system and then describe the impact of exogenous cannabinoids on cardiovascular parameters in humans and experimental animals. This will be followed by analysis of the impact of cannabinoids on reactivity of isolated vessels. The article critically reviews current knowledge on cannabinoid induction of vascular relaxation by cannabinoid receptor-dependent and -independent mechanisms and dysregulation of vascular endocannabinoid signaling in disease states.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kiev, Ukraine.
| |
Collapse
|
13
|
Bondarenko AI, Panasiuk O, Okhai I, Montecucco F, Brandt KJ, Mach F. Ca 2+-dependent potassium channels and cannabinoid signaling in the endothelium of apolipoprotein E knockout mice before plaque formation. J Mol Cell Cardiol 2018; 115:54-63. [PMID: 29305938 DOI: 10.1016/j.yjmcc.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 01/06/2023]
Abstract
Endothelial Ca2+-dependent K+ channels (KCa) regulate endothelial function. We also know that stimulation of type 2 cannabinoid (CB2) receptors ameliorates atherosclerosis. However, whether atherosclerosis is accompanied by altered endothelial KCa- and CB2 receptor-dependent signaling is unknown. By utilizing an in situ patch-clamp approach, we directly evaluated the KCa channel function and the CB2 receptor-dependent electrical responses in the endothelium of aortic strips from young ApoE-/- and C57Bl/6 mice. In the ApoE-/- group, the resting membrane potential (-30.1±1.1mV) was less negative (p<0.05) compared to WT (-38.9±1.4mV) and voltage ramps generated an overall KCa current of reduced amplitude. The peak hyperpolarization to 2μM Ach was not different between the groups. However, the sustained component was significantly reduced in ApoE-/- strips. In contrast, the peak hyperpolarization to 0.2μM Ach was increased in the ApoE-/- group, and SKA-31, a direct IKCa/SKCa channel opener, produced a hyperpolarization and whole-cell current of greater amplitude. The BKCa opener NS1619 produced hyperpolarization that was enhanced in ApoE-/- group. N-arachidonoyl glycine, a BKCa opener, produced a hyperpolarization of enhanced amplitude in ApoE-/- arteries. Selective CB2 receptor agonist AM1241 (5μM) had no effect on endothelial membrane potential in WT group; however, in ApoE-/- group, it elicited hyperpolarization that was inhibited by a selective CB2 receptor antagonist AM630. Conclusively, our data point to functional down-regulation of basal IKCa activity in unstimulated endothelium of ApoE-/- mice. Direct and indirect IKCa stimulation resulted in increased recruitment of the channels. In addition, our data point to up-regulation of endothelial BKCa channels and CB2 receptors in ApoE-/- arteries.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, Bogomoletz Institute of Physiology, NAS of Ukraine, Bogomoletz Str.4, 01024 Kiev, Ukraine.
| | - Olga Panasiuk
- Circulatory Physiology Department, Bogomoletz Institute of Physiology, NAS of Ukraine, Bogomoletz Str.4, 01024 Kiev, Ukraine
| | - Iryna Okhai
- Circulatory Physiology Department, Bogomoletz Institute of Physiology, NAS of Ukraine, Bogomoletz Str.4, 01024 Kiev, Ukraine
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Ospedale Policlinico San Martino, largo Benzi 10, 16132 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Karim J Brandt
- Division of Cardiology, Foundation for Medical Researches, Department of Internal Medicine, University of Geneva, Av. de la Roseraie 64, CH -1211 Geneva, 4, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Internal Medicine, University of Geneva, Av. de la Roseraie 64, CH -1211 Geneva, 4, Switzerland
| |
Collapse
|