1
|
Rajizadeh MA, Bejeshk MA, Aminizadeh A, Yari A, Rostamabadi F, Bagheri F, Najafipour H, Nematollahi MH, Amirkhosravi A, Mehrabani M, Mehrabani M. Inhalation of Spray-Dried Extract of Salvia rosmarinus Spenn Alleviates Lung Inflammatory, Oxidative, and Remodeling Changes in Asthmatic Rats. Pharmacology 2023; 109:10-21. [PMID: 37918369 DOI: 10.1159/000534392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION For centuries, Salvia rosmarinus Spenn has been applied as folk medicine to cure different diseases due to its anti-inflammatory, antibacterial, antioxidant, antifungal, and antitumor effects. To find bioactive medicinal herbs exerting a protective effect on airway inflammation and remodeling, we assessed the anti-oxidative and anti-inflammatory effects of an aqueous spray-dried extract of Salvia rosmarinus Spenn. (rosemary) in an ovalbumin-induced asthmatic rat model. METHODS Rats were randomly divided into normal control (control), asthma, asthma+rosemary extract (RE) (13 mg/kg), asthma+RE (50 mg/kg), and asthma+budesonide groups. After 50 days, animals were anesthetized, and then blood, bronchoalveolar lavage fluid (BALF), and lung tissues were collected for subsequent serological and pathological studies. Histopathology of lung tissues was evaluated by H&E staining. The oxidative stress parameters and airway inflammation factors in BALF and lung tissue were explored. RESULTS Using thin layer chromatography, the presence of rosmarinic acid was confirmed in aqueous extract of rosemary. Furthermore, RE markedly decreased immunoglobulin E levels (50 mg/kg; p < 0.001 vs. asthma group) and inflammatory cytokines (50 mg/kg; p < 0.001 vs. asthma group) and increased antioxidant enzymes (50 mg/kg, p < 0.001 vs. asthma group). Furthermore, RE at a concentration of 50 mg/kg obviously reduced the number of inflammatory cells, goblet cells, and pathological changes compared to the asthma group. CONCLUSION The results showed that RE administration might prevent or alleviate allergic asthma-related pathological change, probably via antioxidant and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhashem Aminizadeh
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Abolfazl Yari
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fahimeh Rostamabadi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Fatemeh Bagheri
- Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour School of Medicine, Kerman, Iran
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Arian Amirkhosravi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Student Research Committee, Kerman University of Medical Science, Kerman, Iran
| | - Mitra Mehrabani
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Randjelović M, Branković S, Jovanović M, Kitić N, Živanović S, Mihajilov-Krstev T, Miladinović B, Milutinović M, Kitić D. An In Vitro and In Silico Characterization of Salvia sclarea L. Methanolic Extracts as Spasmolytic Agents. Pharmaceutics 2023; 15:pharmaceutics15051376. [PMID: 37242618 DOI: 10.3390/pharmaceutics15051376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The use of medicinal plant species and their products is widespread in the field of gastrointestinal and respiratory diseases. This study aimed to evaluate the traditional use of Salvia sclarea L., clary sage, finding the possible mechanisms of its spasmolytic and bronchodilator actions in in vitro conditions supported by molecular docking analysis, along with the antimicrobial effects. Four dry extracts were prepared from the aerial parts of S. sclarea, using absolute or 80% (v/v) methanol by the method of a single-stage maceration or an ultrasound-assisted extraction. Characterization of the bioactive compounds by high-performance liquid chromatography indicated the presence of significant amounts of polyphenolics, with rosmarinic acid as the prevalent one. The spontaneous ileal contractions were best inhibited by the extract prepared with 80% methanol and maceration. The same extract was superior in the carbachol- and KCl-induced tracheal smooth muscle contractions, being the strongest bronchodilator agent. The most powerful relaxation of KCl-induced ileal contractions was achieved with the extract made of absolute methanol by maceration, while the 80% methanolic extract made with the ultrasound method generated the best spasmolytic effects in the acetylcholine-induced ileal contractions. Docking analysis suggested that apigenin-7-O-glucoside and luteolin-7-O-glucoside exhibited the highest binding affinity to voltage-gated calcium channels. Gram (+) bacteria were more susceptible to the effects of the extracts, particularly Staphylococcus aureus, in contrast to Gram (-) bacteria and Candida albicans. This is the first study to point out the influence of S. sclarea methanolic extracts on the gastrointestinal and respiratory spasm reduction, paving the way for their potential place in complementary medicine.
Collapse
Affiliation(s)
- Milica Randjelović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjića 81, 18000 Niš, Serbia
| | - Suzana Branković
- Department of Physiology, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjića 81, 18000 Niš, Serbia
| | - Miloš Jovanović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjića 81, 18000 Niš, Serbia
| | - Nemanja Kitić
- Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjića 81, 18000 Niš, Serbia
| | - Slavoljub Živanović
- Research Center for Biomedicine, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjića 81, 18000 Niš, Serbia
| | - Tatjana Mihajilov-Krstev
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Nis, Višegradska 33, 18000 Niš, Serbia
| | - Bojana Miladinović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjića 81, 18000 Niš, Serbia
| | - Milica Milutinović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjića 81, 18000 Niš, Serbia
| | - Dušanka Kitić
- Department of Pharmacy, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjića 81, 18000 Niš, Serbia
| |
Collapse
|
3
|
Srivastava A, Subhashini, Pandey V, Yadav V, Singh S, Srivastava R. Potential of hydroethanolic leaf extract of Ocimum sanctum in ameliorating redox status and lung injury in COPD: an in vivo and in silico study. Sci Rep 2023; 13:1131. [PMID: 36670131 PMCID: PMC9860039 DOI: 10.1038/s41598-023-27543-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Oxidative stress and inflammation are hypothesised as the main contributor for Chronic Obstructive Pulmonary Disease (COPD). Cigarette smoke (CS), a major cause of COPD leads to inflammation resulting in recruitment of neutrophils and macrophages which are rich sources of oxidants. Activation of these cells produces excess oxidants and depletes antioxidants resulting in stress. Presently, effective drug for COPD is limited; therefore, novel compounds from natural sources, including plants are under exploration. The present study aims to investigate the protective effect of Ocimum sanctum leaf extract (OLE) in CS - induced model of COPD. Exposure to CS was performed thrice a week for 8 weeks and OLE (200 mg/kg and 400 mg/kg) was administered an hour before CS exposure. Control group (negative control) were exposed to ambient air while COPD group was exposed to CS (positive control). Administration of OLE doses reduced inflammation, decreased oxidant concentration and increased antioxidant concentration (p < 0.01). Molecular docking studies between the major phytocompounds of OLE (Eugenol, Cyclohexane and Caryophyllene) and antioxidant enzymes Superoxide dismutase (SOD), Catalase, Glutathione peroxidase (GPx), Glutathione reductase (GR) and Glutathione S Transferase (GST) showed strong binding interaction in terms of binding energy. In vivo and in silico findings for the first time indicates that OLE extract significantly alleviates oxidative stress by its potent free radical scavenging property and strong interaction with antioxidant enzymes. OLE extract may prove to be a therapeutic option for COPD prevention and treatment.
Collapse
Affiliation(s)
- Atul Srivastava
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Subhashini
- Neuroimmunobiology Lab, Department of Zoology, MahilaMahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vinita Pandey
- Neuroimmunobiology Lab, Department of Zoology, MahilaMahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vandana Yadav
- Neuroimmunobiology Lab, Department of Zoology, MahilaMahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sangita Singh
- Neuroimmunobiology Lab, Department of Zoology, MahilaMahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ragini Srivastava
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
4
|
Niemiec T, Skowron K, Świderek W, Kwiecińska-Piróg J, Gryń G, Wójcik-Trechcińska U, Gajewska M, Zglińska K, Łozicki A, Koczoń P. Effect of radiant catalytic ionization on environmental conditions in rodent rooms and the haematological status of mice. BMC Vet Res 2022; 18:298. [PMID: 35922808 PMCID: PMC9347109 DOI: 10.1186/s12917-022-03402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
High stocking densities, closed animal houses, and elevated concentrations of bacteria, fungi, and the products of their activity, including ammonia and hydrogen sulphide, have adverse health effects. Active techniques used to reduce unfavourable environmental conditions, such as ventilation, sprinkling, bedding sorbents, and nutritional treatments, are not always sufficient to improve the animals’ living environment. The current paper aims to evaluate the effect of radiant catalytic ionization (RCI) on airborne microorganisms, cage microbiological status, gaseous ammonia concentrations, and the haematological status of mice in animal houses. After one week of operation of an RCI system, the number of airborne bacteria and fungi in the experimental room decreased in comparison to the first day of the experiment (p < 0.05 and p < 0.05 respectively), as did the concentrations of ammonia (p < 0.01) and dust. At the same time, the basic health parameters of the mice, determined in the blood, were very similar between the control and experimental room. RCI seems to be an ideal solution to ensure high hygiene standards in animal rooms and houses with limited use of disinfectants or antibiotic treatment of sick animals. An additional, environmental benefit is the limited amount of nitrogen released.
Collapse
Affiliation(s)
- Tomasz Niemiec
- Institute of Animal Sciences, Warsaw University of Animal Sciences, Warsaw, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Wiesław Świderek
- Institute of Animal Sciences, Warsaw University of Animal Sciences, Warsaw, Poland
| | - Joanna Kwiecińska-Piróg
- Department of Microbiology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Grzegorz Gryń
- Plant Breeding and Acclimatization Institute - National Research Institute, Bydgoszcz, Poland
| | | | - Marta Gajewska
- Institute of Animal Sciences, Warsaw University of Animal Sciences, Warsaw, Poland
| | - Klara Zglińska
- Institute of Animal Sciences, Warsaw University of Animal Sciences, Warsaw, Poland.
| | - Andrzej Łozicki
- Institute of Animal Sciences, Warsaw University of Animal Sciences, Warsaw, Poland
| | - Piotr Koczoń
- Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Aminian AR, Mohebbati R, Boskabady MH. The Effect of Ocimum basilicum L. and Its Main Ingredients on Respiratory Disorders: An Experimental, Preclinical, and Clinical Review. Front Pharmacol 2022; 12:805391. [PMID: 35046828 PMCID: PMC8762307 DOI: 10.3389/fphar.2021.805391] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Ocimum basilicum L. (O. basilicum) and its constituents show anti-inflammatory, immunomodulatory, and antioxidant effects. The plant has been mainly utilized in traditional medicine for the treatment of respiratory disorders. In the present article, effects of O. basilicum and its main constituents on respiratory disorders, assessed by experimental and clinical studies, were reviewed. Relevant studies were searched in PubMed, Science Direct, Medline, and Embase databases using relevant keywords including “Ocimum basilicum,” “basilicums,” “linalool,” “respiratory disease,” “asthma,” “obstructive pulmonary disease,” “bronchodilatory,” “bronchitis,” “lung cancer,” and “pulmonary fibrosis,” and other related keywords.The reviewed articles showed both relieving and preventing effects of the plant and its ingredients on obstructive pulmonary diseases such as chronic obstructive pulmonary disease (COPD), asthma, and other respiratory disorders such as bronchitis, aspergillosis tuberculosis, and lung cancer. The results of the reviewed articles suggest the therapeutic potential of O. basilicum and its constituent, linalool, on respiratory disorders.
Collapse
Affiliation(s)
- Ahmad Reza Aminian
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Mohebbati
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Potential Anti-Inflammatory Effect of Rosmarinus officinalis in Preclinical In Vivo Models of Inflammation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030609. [PMID: 35163873 PMCID: PMC8840442 DOI: 10.3390/molecules27030609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
This systematic review aimed to evaluate the potential anti-inflammatory effect of Rosmarinus officinalis in preclinical in vivo models of inflammation. A search was conducted in the databases PubMed, Scopus, and Web of Science, with related keywords. The inclusion criteria were inflammation, plant, and studies on rats or mice; while, the exclusion criteria were reviews, studies with in vitro models, and associated plants. The predominant animal models were paw edema, acute liver injury, and asthma. Rosemary was more commonly used in its entirety than in compounds, and the prevalent methods of extraction were maceration and hydrodistillation. The most common routes of administration reported were gavage, intraperitoneal, and oral, on a route-dependent dosage. Treatment took place daily, or was single-dose, on average for 21 days, and it more often started before the induction. The most evaluated biomarkers were tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-10, myeloperoxidase (MPO), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), malondialdehyde (MDA), and superoxide dismutase (SOD). The best results emerged at a dose of 60 mg/kg, via IP of carnosic acid, a dose of 400 mg/kg via gavage of Rosmarinus officinalis, and a dose of 10 mg/kg via IP of rosmarinic acid. Rosmarinus officinalis L. showed anti-inflammatory activity before and after induction of treatments.
Collapse
|
7
|
Shiravi A, Akbari A, Mohammadi Z, Khalilian MS, Zeinalian A, Zeinalian M. Rosemary and its protective potencies against COVID-19 and other cytokine storm associated infections: A molecular review. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2021. [DOI: 10.3233/mnm-210013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND: Nowadays, medicinal plants have attracted great interest in treatment of human diseases. Rosemary is a well-known medicinal plant which has been widely used for different therapeutic purposes. METHODS: This is a narrative review using databases including PubMed, ISI, Scopus, ScienceDirect, Cochrane, and google scholar, the most authoritative articles were searched, screened, and analyzed. RESULTS: Rosemary is a natural antioxidant which removes reactive oxygen species from tissues and increases expression on Nrf2 gene. Rosemary and its metabolites reduce inflammation by inhibiting production of pro-inflammatory cytokines, decreasing expression of NF-κB, inhibiting infiltration of immune cells to inflamed sites, and affecting gut microbiome. Besides, rosmarinic acid in rosemary extract has positive effects on renin-angiotensin-system. Rosemary affects respiratory system by reducing oxidative stress, inflammation, muscle spasm, and also through anti-fibrotic properties. Carnosic acid is able to penetrate blood-brain-barrier and act against free radicals, ischemia and neurodegeneration in brain. Cardioprotective effects include correcting lipid profile, controlling blood pressure by inhibition of ACE, prevention of atherosclerosis, and reduction of cardiac muscle hypertrophy. CONCLUSIONS: Accordingly, rosemary supplementation has potential protective effects against COVID-19 and other cytokine storm associated infections, a conclusion that needs more evaluations in the next clinical trials.
Collapse
Affiliation(s)
- Amirabbas Shiravi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aliakbar Akbari
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Mohammadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad-Sadegh Khalilian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Zeinalian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Zeinalian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Iranians Cancer Control Charity Institute (MACSA), Isfahan, Iran
- Pediatric Inherited Disease Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Triposkiadis F, Starling RC, Xanthopoulos A, Butler J, Boudoulas H. The Counter Regulatory Axis of the Lung Renin-Angiotensin System in Severe COVID-19: Pathophysiology and Clinical Implications. Heart Lung Circ 2021; 30:786-794. [PMID: 33454213 PMCID: PMC7831862 DOI: 10.1016/j.hlc.2020.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/17/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV)-2, which is responsible for coronavirus disease 2019 (COVID-19), uses angiotensin (ANG)-converting enzyme 2 (ACE2) as the entrance receptor. Although most COVID-19 cases are mild, some are severe or critical, predominantly due to acute lung injury. It has been widely accepted that a counter regulatory renin-angiotensin system (RAS) axis including the ACE2/ANG [1-7]/Mas protects the lungs from acute lung injury. However, recent evidence suggests that the generation of protective ANG [1-7] in the lungs is predominantly mediated by proinflammatory prolyl oligopeptidase (POP), which has been repeatedly demonstrated to be involved in lung pathology. This review contends that acute lung injury in severe COVID-19 is characterised by a) ACE2 downregulation and malfunction (inflammatory signalling) due to viral occupation, and b) dysregulation of the protective RAS axis, predominantly due to increased activity of proinflammatory POP. It follows that a reasonable treatment strategy in COVID-19-related acute lung injury would be delivering functional recombinant (r) ACE2 forms to trap the virus. Additionally, or alternatively to rACE2 delivery, the potential benefits resulting from lowering POP activity should also be explored. These treatment strategies deserve further investigation.
Collapse
Affiliation(s)
| | - Randall C Starling
- Kaufman Center for Heart Failure and Recovery, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew Xanthopoulos
- Department of Cardiology, Larissa University General Hospital, Larissa, Greece
| | - Javed Butler
- Department of Medicine, University of Mississippi, Jackson, MS, USA
| | - Harisios Boudoulas
- Department of Medicine/Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Liang Z, Wu L, Deng X, Liang Q, Xu Y, Deng R, Lv L, Ji M, Hao Z, He J. The Antioxidant Rosmarinic Acid Ameliorates Oxidative Lung Damage in Experimental Allergic Asthma via Modulation of NADPH Oxidases and Antioxidant Enzymes. Inflammation 2020; 43:1902-1912. [PMID: 32519269 DOI: 10.1007/s10753-020-01264-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress can induce lung damage and aggravate airway inflammation in asthma. Previously, we reported that rosmarinic acid (RA) exerted strong anti-inflammatory effects in a mouse allergic asthma model. Therefore, we hypothesized that RA might also have antioxidative effects in a superimposed asthma mouse model with oxidative lung damage challenged with ovalbumin (Ova) and hydrogen peroxide (H2O2). We evaluated the antioxidative and anti-asthmatic activity of RA and explored its possible mechanisms of action. Mice sensitized to Ova and challenged with Ova and H2O2 were treated with RA 1 h after challenge. RA treatment greatly diminished the number of inflammatory cells; decreased IL-4, IL-5, and IL-13 production; increased IFN-γ secretion; significantly downregulated ROS production; and markedly upregulated the activities of SOD, GPx, and CAT. Furthermore, RA treatment resulted in a significant increase in the expression of Cu/Zn SOD and a notable reduction in NOX-2 and NOX-4 expression in lung tissues. These findings suggest that RA may effectively alleviate oxidative lung damage and airway inflammation in asthma.
Collapse
Affiliation(s)
- Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, People's Republic of China
| | - Liqin Wu
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, People's Republic of China
| | - Xin Deng
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, People's Republic of China
| | - Qiuling Liang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, People's Republic of China
| | - Yangfeng Xu
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, People's Republic of China
| | - Ruihan Deng
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, People's Republic of China
| | - Li Lv
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, People's Republic of China
| | - Min Ji
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, People's Republic of China
| | - Zhihui Hao
- The Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi, People's Republic of China.
| |
Collapse
|
10
|
Mokhtari-Zaer A, Hosseini M, Roshan NM, Boskabady MH. Treadmill exercise ameliorates memory deficits and hippocampal inflammation in ovalbumin-sensitized juvenile rats. Brain Res Bull 2020; 165:40-47. [PMID: 32998022 DOI: 10.1016/j.brainresbull.2020.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/29/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022]
Abstract
The behavioral changes, including spatial learning and memory impairment as well as depressive- and anxiety-like behaviors in an animal model of asthma were demonstrated previously. On the other hand, there is increasing evidence that the anti-inflammatory actions of exercise are related to their neuroprotective properties against different insults in the brain. This study was aimed to explore the effects of moderate treadmill exercise on cognitive deficits and possible anti-inflammatory mechanisms in ovalbumin (OVA)-sensitized rats. The exercise groups were trained to run on the treadmill 30 min/day with an intensity of 12 m/min, 5 days/week for 4 weeks. Animals in the OVA groups were sensitized by two intraperitoneal (i.p.) injections of OVA (10 μg/injection) and challenged with OVA by inhalation during the treadmill running exercise period. Passive avoidance (PA) memory, levels of interleukin (IL)-10 and tumor necrosis factor (TNF)-α in the hippocampus, total and differential white blood cell (WBC) count in the blood as well as pathological changes of the lung were then evaluated. OVA-sensitization was resulted in cognitive deficits in the PA task, along with increased total and differential WBC in blood and TNF-α in the hippocampus. However, exercise ameliorated these changes and increased the IL-10 level in the hippocampus, suggesting that moderate treadmill exercise can improve memory impairment in OVA-sensitized rats due to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Amin Mokhtari-Zaer
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nama Mohammadian Roshan
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Eftekhar N, Moghimi A, Hossein Boskabady M, Kaveh M, Shakeri F. Ocimum basilicum affects tracheal responsiveness, lung inflammatory cells and oxidant-antioxidant biomarkers in sensitized rats. Drug Chem Toxicol 2018; 42:286-294. [PMID: 29683006 DOI: 10.1080/01480545.2018.1459672] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The anti-inflammatory and antioxidant effects of Ocimum basilicum (O. basilicum) was shown previously. In the present study, the effect of O. basilicum on tracheal responsiveness (TR) to methacholine and ovalbumin (OVA), bronchoalveolar lavage fluid (BALF) levels of oxidant-antioxidant biomarkers as well as total and differential white blood cell (WBC) in sensitized rats was examined. Six groups of rats including control (group C), sensitized rats to OVA (group S), S groups treated with three concentrations of O. basilicum (0.75, 1.50, and 3.00 mg/ml) and one concentration of dexamethasone (1.25 μg/ml) (n = 8 for all groups) were studied. TR to methacholine and OVA, total WBC count, percentages of eosinophils, monocytes, neutrophils, and levels of oxidant biomarkers were significantly increased but other measured parameters were significantly decreased in group S compared to group C. TR to methacholine and OVA, percentages of eosinophils, monocytes, neutrophils, and levels of oxidant biomarkers were significantly decreased but lymphocytes and antioxidant biomarkers were significantly increased in S groups treated with dexamethasone and at least two higher concentrations of the extract compared to group S. Total WBC count was also decreased in treated S groups with dexamethasone and high extract concentration. The effect of extract on most measured parameters was significantly lower than dexamethasone treatment. The effects of two higher concentrations of the extract on most variables were significantly higher than the effect of low extract concentration. These results showed the concentration-dependent effect of O. basilicum on tracheal responses, lung inflammatory cells, and oxidant-antioxidant parameters in sensitized rats.
Collapse
Affiliation(s)
- Naeima Eftekhar
- a Department of Biology, Faculty of Science , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Ali Moghimi
- a Department of Biology, Faculty of Science , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Mohammad Hossein Boskabady
- b Neurogenic Inflammation Research Center , Mashhad University of Medical Sciences , Mashhad , Iran.,c Department of Physiology, School of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mahsa Kaveh
- d Department of Biology , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Farzaneh Shakeri
- e Natural Products and Medicinal Plants Research Center , North Khorasan University of Medical Sciences , Bojnurd , Iran
| |
Collapse
|