1
|
Zhang X, Yang Z, Xu Q, Xu C, Shi W, Pang R, Zhang K, Liang X, Li H, Li Z, Zhang H. Dexamethasone Induced Osteocyte Apoptosis in Steroid-Induced Femoral Head Osteonecrosis through ROS-Mediated Oxidative Stress. Orthop Surg 2024; 16:733-744. [PMID: 38384174 PMCID: PMC10925516 DOI: 10.1111/os.14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
OBJECTIVE Glucocorticoid (GC) overuse is strongly associated with steroid-induced osteonecrosis of the femoral head (SINFH). However, the underlying mechanism of SINFH remains unclear. This study aims to investigate the effect of dexamethasone (Dex)-induced oxidative stress on osteocyte apoptosis and the underlying mechanisms. METHODS Ten patients with SINFH and 10 patients with developmental dysplasia of the hips (DDH) were enrolled in our study. Sixty rats were randomly assigned to the Control, Dex, Dex + N-Acetyl-L-cysteine (NAC), Dex + Dibenziodolium chloride (DPI), NAC, and DPI groups. Magnetic resonance imaging (MRI) was used to examine edema in the femoral head of rats. Histopathological staining was performed to assess osteonecrosis. Immunofluorescence staining with TUNEL and 8-OHdG was conducted to evaluate osteocyte apoptosis and oxidative damage. Immunohistochemical staining was carried out to detect the expression of NOX1, NOX2, and NOX4. Viability and apoptosis of MLO-Y4 cells were measured using the CCK-8 assay and TUNEL staining. 8-OHdG staining was conducted to detect oxidative stress. 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) staining was performed to measure reactive oxygen species (ROS). The expression of NOX1, NOX2, and NOX4 in MLO-Y4 cells was analyzed by Western blotting. Multiple comparisons were performed using one-way analysis of variance (ANOVA). RESULTS In patients and the rat model, hematoxylin-eosin (HE) staining revealed a significantly higher rate of empty lacunae in the SINFH group than in the DDH group. Immunofluorescence staining indicated a significant increase in TUNEL-positive cells and 8-OHdG-positive cells in the SINFH group compared to the DDH group. Immunohistochemical staining demonstrated a significant increase in the expression of NOX1, NOX2, and NOX4 proteins in SINFH patients compared to DDH patients. Moreover, immunohistochemical staining showed a significant increase in the proportion of NOX2-positive cells compared to the Control group in the femoral head of rats. In vitro, Dex significantly inhibited the viability of osteocyte cells and induced apoptosis. After Dex treatment, the intracellular ROS level increased. However, Dex treatment did not alter the expression of NOX proteins in vitro. Additionally, NAC and DPI inhibited the generation of intracellular ROS and partially alleviated osteocyte apoptosis in vivo and in vitro. CONCLUSION This study demonstrates that GC promotes apoptosis of osteocyte cells through ROS-induced oxidative stress. Furthermore, we found that the increased expression of NOXs induced by GC serves as an important source of ROS generation.
Collapse
Affiliation(s)
- Xinglong Zhang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
- Department of OrthopaedicsTianjin Nankai HospitalTianjinChina
| | - Zhenhuan Yang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Qian Xu
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Chunlei Xu
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Wei Shi
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Ran Pang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
- Department of OrthopaedicsTianjin Nankai HospitalTianjinChina
| | - Kai Zhang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Xinyu Liang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Hui Li
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Zhijun Li
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Huafeng Zhang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
2
|
Oxidative Stress and Inflammation in Osteoporosis: Molecular Mechanisms Involved and the Relationship with microRNAs. Int J Mol Sci 2023; 24:ijms24043772. [PMID: 36835184 PMCID: PMC9963528 DOI: 10.3390/ijms24043772] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Osteoporosis is characterized by the alteration of bone homeostasis due to an imbalance between osteoclastic bone resorption and osteoblastic bone formation. Estrogen deficiency causes bone loss and postmenopausal osteoporosis, the pathogenesis of which also involves oxidative stress, inflammatory processes, and the dysregulation of the expression of microRNAs (miRNAs) that control gene expression at post-transcriptional levels. Oxidative stress, due to an increase in reactive oxygen species (ROS), proinflammatory mediators and altered levels of miRNAs enhance osteoclastogenesis and reduce osteoblastogenesis through mechanisms involving the activation of MAPK and transcription factors. The present review summarizes the principal molecular mechanisms involved in the role of ROS and proinflammatory cytokines on osteoporosis. Moreover, it highlights the interplay among altered miRNA levels, oxidative stress, and an inflammatory state. In fact, ROS, by activating the transcriptional factors, can affect miRNA expression, and miRNAs can regulate ROS production and inflammatory processes. Therefore, the present review should help in identifying targets for the development of new therapeutic approaches to osteoporotic treatment and improve the quality of life of patients.
Collapse
|
3
|
Sun J, Su Y, Xu Y, Qin D, He Q, Qiu H, Zhuo J, Li W. CD36 deficiency inhibits proliferation by cell cycle control in skeletal muscle cells. Front Physiol 2022; 13:947325. [PMID: 36111143 PMCID: PMC9468905 DOI: 10.3389/fphys.2022.947325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity-related muscular dysfunction and relative muscle atrophy affect an increasing number of people. Elucidating the molecular mechanisms of skeletal muscle cell development and growth may contribute to the maintenance of skeletal muscle mass in obesity. Fatty acid translocase (FAT/CD36), as a long-chain fatty acid transport protein, is crucial for lipid metabolism and signaling. CD36 is known to function in myogenic differentiation, and whether it affects the proliferation of skeletal muscle cells and the underlying mechanisms remain unclear. In this study, the effect of CD36 deficiency on skeletal muscle cell viability and proliferation was examined using C2C12 myoblasts. Results showed that the deletion of CD36 enhanced the inhibitory effect of PA on the proliferation and the promotion of apoptosis in skeletal muscle cells. Intriguingly, the silencing of CD36 suppressed cell proliferation by preventing the cell cycle from the G0/G1 phase to the S phase in a cyclin D1/CDK4-dependent manner. Overall, we demonstrated that CD36 was involved in skeletal muscle cell proliferation by cell cycle control, and these findings might facilitate the treatment of obesity-related muscle wasting.
Collapse
|
4
|
Domazetovic V, Falsetti I, Ciuffi S, Iantomasi T, Marcucci G, Vincenzini MT, Brandi ML. Effect of Oxidative Stress-Induced Apoptosis on Active FGF23 Levels in MLO-Y4 Cells: The Protective Role of 17-β-Estradiol. Int J Mol Sci 2022; 23:ijms23042103. [PMID: 35216216 PMCID: PMC8879671 DOI: 10.3390/ijms23042103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
The discovery that osteocytes secrete phosphaturic fibroblast growth factor 23 (FGF23) has defined bone as an endocrine organ. However, the autocrine and paracrine functions of FGF23 are still unknown. The present study focuses on the cellular and molecular mechanisms involved in the complex control of FGF23 production and local bone remodeling functions. FGF23 was assayed using ELISA kit in the presence or absence of 17β–estradiol in starved MLO-Y4 osteocytes. In these cells, a relationship between oxidative stress-induced apoptosis and up-regulation of active FGF23 levels due to MAP Kinases activation with involvement of the transcriptional factor (NF-kB) has been demonstrated. The active FGF23 increase can be due to up-regulation of its expression and post-transcriptional modifications. 17β–estradiol prevents the increase of FGF23 by inhibiting JNK and NF-kB activation, osteocyte apoptosis and by the down-regulation of osteoclastogenic factors, such as sclerostin. No alteration in the levels of dentin matrix protein 1, a FGF23 negative regulator, has been determined. The results of this study identify biological targets on which drugs and estrogen may act to control active FGF23 levels in oxidative stress-related bone and non-bone inflammatory diseases.
Collapse
Affiliation(s)
- Vladana Domazetovic
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Simone Ciuffi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Gemma Marcucci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Maria Teresa Vincenzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50141 Florence, Italy
- Correspondence:
| |
Collapse
|
5
|
Sibilia V, Bottai D, Maggi R, Pagani F, Chiaramonte R, Giannandrea D, Citro V, Platonova N, Casati L. Sex Steroid Regulation of Oxidative Stress in Bone Cells: An In Vitro Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212168. [PMID: 34831936 PMCID: PMC8621144 DOI: 10.3390/ijerph182212168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Environmental stimuli, including sex hormones and oxidative stress (OS), affect bone balance, modifying the epigenetic profiles of key osteogenic genes. Nonetheless, the interplay between sex steroids, epigenome and OS has yet be fully elucidated. This paper aims to study in vitro the role of sex steroids in OS-induced alteration in bone cells’ homeostasis, and to assess the possible contribution of epigenetic modifications. Toward this purpose, osteoblast (MC3T3-E1) and osteocyte (MLOY-4) cell lines were exposed to two different sources of free oxygen radicals, i.e., tert-butyl hydroperoxide and dexamethasone, and the protective effect of pre-treatment with androgens and estrogens was evaluated. In particular, we analyzed parameters that reflect bone cell homeostasis such as cell viability, cell migration, transcriptomic profile, transcriptional activity, and epigenetic signature. Our findings indicate that estrogens and androgens counteract OS effects. Using partially overlapping strategies, they reduce OS outcomes regarding cell viability, cell migration, the transcriptomic profile of gene families involved in bone remodeling, and epigenetic profile, i.e., H3K4me3 level. Additionally, we demonstrated that the protective effect of steroids against OS on bone homeostasis is partially mediated by the Akt pathway. Overall, these results suggest that the hormonal milieu may influence the mechanisms of age-related bone disease.
Collapse
Affiliation(s)
- Valeria Sibilia
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milano, Italy; (V.S.); (F.P.)
| | - Daniele Bottai
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (D.B.); (R.C.); (D.G.); (V.C.); (N.P.)
| | - Roberto Maggi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Francesca Pagani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milano, Italy; (V.S.); (F.P.)
| | - Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (D.B.); (R.C.); (D.G.); (V.C.); (N.P.)
| | - Domenica Giannandrea
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (D.B.); (R.C.); (D.G.); (V.C.); (N.P.)
| | - Valentina Citro
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (D.B.); (R.C.); (D.G.); (V.C.); (N.P.)
| | - Natalia Platonova
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (D.B.); (R.C.); (D.G.); (V.C.); (N.P.)
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (D.B.); (R.C.); (D.G.); (V.C.); (N.P.)
- Correspondence:
| |
Collapse
|
6
|
Liao DJ, Cheng XP, Li N, Liang KL, Fan H, Zhang SY, Hu XQ, Fan P, Wu YS. A Comparative Study on the Incidence, Aggravation, and Remission of Lupus Nephritis Based on iTRAQ Technology. Comb Chem High Throughput Screen 2021; 23:649-657. [PMID: 32297573 DOI: 10.2174/1386207323666200416151836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 02/24/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE Lupus nephritis (LN) is one of the major complications of systemic lupus erythematosus (SLE). The specific mechanisms of pathogenesis, aggravation, and remission processes in LN have not been clarified but is of great need in the clinic. Using isobaric tags for relative and absolute quantitation (iTRAQ) technology to screen the functional proteins of LN in mice. Especially under intervention factors of lipopolysaccharide (LPS) and dexamethasone. METHODS Mrl-lps mice were intervened with LPS, dexamethasone, and normal saline (NS) using intraperitoneal injection, and c57 mice intervened with NS as control. The anti-ANA antibody enzyme-linked immunosorbent assay (ELISA) was used to verify disease severity. Kidney tissue is collected and processed for iTRAQ to screen out functional proteins closely related to the onset and development of LN. Western blot method and rt-PCR (real-time Polymerase Chain Reaction) were used for verification. RESULTS We identified 136 proteins that marked quantitative information. Among them, Hp, Igkv8-27, Itgb2, Got2, and Pcx proteins showed significant abnormal manifestations. CONCLUSION Using iTRAQ methods, the functional proteins Hp, Igkv8-27, Itgb2, Got2, and Pcx were screened out for a close relationship with the pathogenesis and development of LN, which is worth further study.
Collapse
Affiliation(s)
- Dong-Jiang Liao
- Dermatology Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Province, China
| | - Xi-Ping Cheng
- The First Affiliated Hospital of Guangzhou Medical University, Guangdong Province, China
| | - Nan Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangdong Province, China
| | - Kang-Li Liang
- The First Affiliated Hospital of Guangzhou Medical University, Guangdong Province, China
| | - Hui Fan
- The First Affiliated Hospital of Guangzhou Medical University, Guangdong Province, China
| | - Sui-Ying Zhang
- The First Affiliated Hospital of Guangzhou Medical University, Guangdong Province, China
| | - Xiao-Qian Hu
- The First Affiliated Hospital of Guangzhou Medical University, Guangdong Province, China
| | - Ping Fan
- The First Affiliated Hospital of Guangzhou Medical University, Guangdong Province, China
| | - Yuan-Sheng Wu
- Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Yang N, Sun H, Xue Y, Zhang W, Wang H, Tao H, Liang X, Li M, Xu Y, Chen L, Zhang L, Huang L, Geng D. Inhibition of MAGL activates the Keap1/Nrf2 pathway to attenuate glucocorticoid-induced osteonecrosis of the femoral head. Clin Transl Med 2021; 11:e447. [PMID: 34185425 PMCID: PMC8167863 DOI: 10.1002/ctm2.447] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 01/12/2023] Open
Abstract
Glucocorticoids (GCs) are used in treating viral infections, acute spinal cord injury, autoimmune diseases, and shock. Several patients develop GC-induced osteonecrosis of the femoral head (ONFH). However, the pathogenic mechanisms underlying GC-induced ONFH remain poorly understood. GC-directed bone marrow mesenchymal stem cells (BMSCs) fate is an important factor that determines GC-induced ONFH. At high concentrations, GCs induce BMSC apoptosis by promoting oxidative stress. In the present study, we aimed to elucidate the molecular mechanisms that relieve GC-induced oxidative stress in BMSCs, which would be vital for treating ONFH. The endocannabinoid system regulates oxidative stress in multiple organs. Here, we found that monoacylglycerol lipase (MAGL), a key molecule in the endocannabinoid system, was significantly upregulated during GC treatment in osteoblasts both in vitro and in vivo. MAGL expression was positively correlated with expression of the NADPH oxidase family and apoptosis-related proteins. Functional analysis showed that MAGL inhibition markedly reduced oxidative stress and partially rescued BMSC apoptosis. Additionally, in vivo studies indicated that MAGL inhibition effectively attenuated GC-induced ONFH. Pathway analysis showed that MAGL inhibition regulated oxidative stress in BMSCs via the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. The expression of Nrf2, a major regulator of intracellular antioxidants, was upregulated by inhibiting MAGL. Nrf2 activation can mimic the effect of MAGL inhibition and significantly reduce GC-induced oxidative damage in BMSCs. The beneficial effects of MAGL inhibition were attenuated after the blockade of the Keap1/Nrf2 antioxidant signaling pathway. Notably, pharmacological blockade of MAGL conferred femoral head protection in GC-induced ONFH, even after oxidative stress responses were initiated. Therefore, MAGL may represent a novel target for the prevention and treatment of GC-induced ONFH.
Collapse
Affiliation(s)
- Ning Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Houyi Sun
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Yi Xue
- Department of OrthopaedicsChangshu Hospital Affiliated to Nanjing University of Traditional Chinese MedicineChangshuChina
| | - Weicheng Zhang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Hongzhi Wang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Huaqiang Tao
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Xiaolong Liang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Meng Li
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Yaozeng Xu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Liang Chen
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Liang Zhang
- Department of Orthopaedics, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Lixin Huang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Dechun Geng
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| |
Collapse
|
8
|
Retraction Note to: Alpinumisoflavone rescues glucocorticoid-induced apoptosis of osteocytes via suppressing Nox2-dependent ROS generation. Pharmacol Rep 2021; 73:322. [PMID: 33458796 DOI: 10.1007/s43440-020-00211-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Wang XY, Gong LJ, Huang JM, Jiang C, Yan ZQ. Pinocembrin alleviates glucocorticoid-induced apoptosis by activating autophagy via suppressing the PI3K/Akt/mTOR pathway in osteocytes. Eur J Pharmacol 2020; 880:173212. [PMID: 32470335 DOI: 10.1016/j.ejphar.2020.173212] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
Glucocorticoids are widely used in clinical practice, but are associated with potentially severe side effects like glucocorticoid-induced osteoporosis (GIOP) and glucocorticoid-associated osteonecrosis of the femoral head (GA-ONFH). Glucocorticoid-induced osteocyte apoptosis plays critical roles in the pathological processes of both GIOP and GA-ONFH. Pinocembrin is a natural flavonoid that may exert protective effects on osteocytes. The present study investigated the effects of pinocembrin on glucocorticoid-induced apoptosis of murine long bone osteocyte Y4 (MLO-Y4) cells and sought to elucidate the underlying molecular mechanism. We found that pinocembrin attenuated glucocorticoid-induced cell viability injury and apoptosis of MLO-Y4 cells. Moreover, pinocembrin increased Beclin-1 and LC3B-II level, but decreased p62 expression, suggesting that pinocembrin activates autophagy in glucocorticoid-treated MLO-Y4 cells. The protective effects of pinocembrin on glucocorticoid-induced apoptosis of MLO-Y4 cells were mimicked by a known stimulator of autophagy but prevented by a known inhibitor of autophagy. Pinocembrin also suppressed the PI3K/Akt/mTOR signaling pathway, which regulates cell autophagy, in glucocorticoid-treated MLO-Y4 cells. In conclusion, the results indicate that pinocembrin alleviates glucocorticoid-induced osteocyte apoptosis by activating autophagy via suppressing the PI3K/Akt/mTOR pathway. Pinocembrin may represent a potential natural agent for preventing and treating GIOP and GA-ONFH.
Collapse
Affiliation(s)
- Xin-Yuan Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Lin-Jing Gong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jun-Ming Huang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chang Jiang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Zuo-Qin Yan
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Lu J, Huang Q, Zhang D, Lan T, Zhang Y, Tang X, Xu P, Zhao D, Cong D, Zhao D, Sun L, Li X, Wang J. The Protective Effect of DiDang Tang Against AlCl 3-Induced Oxidative Stress and Apoptosis in PC12 Cells Through the Activation of SIRT1-Mediated Akt/Nrf2/HO-1 Pathway. Front Pharmacol 2020; 11:466. [PMID: 32372957 PMCID: PMC7179660 DOI: 10.3389/fphar.2020.00466] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Aluminum (Al) is considered a pathological factor for various neurological and neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The neurotoxicity of aluminum can cause oxidative brain damage, trigger apoptosis, and ultimately cause irreversible damage to neurons. DiDang Tang (DDT), a classic formula within traditional Chinese medicine for promoting blood circulation and removing blood stasis and collaterals, is widely used for the treatment of stroke and AD. In this study, models of oxidative stress and apoptosis were established using AlCl3, and the effects of DDT were evaluated. We found that DDT treatment for 48 h significantly increased cell viability and reduced the release of lactate dehydrogenase (LDH) in AlCl3-induced PC12 cells. Moreover, DDT attenuated AlCl3-induced oxidative stress damage by increasing antioxidant activities and apoptosis through mitochondrial apoptotic pathways. Additionally, DDT treatment significantly activated the Sirtuin 1 (SIRT1) -mediated Akt/nuclear factor E2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathways to limit AlCl3-mediated neurotoxicity. Our data indicated that DDT potently inhibited AlCl3-induced oxidative-stress damage and apoptosis in neural cells by activating the SIRT1-mediated Akt/Nrf2/HO-1 pathway, which provides further support for the beneficial effects of DDT on Al-induced neurotoxicity.
Collapse
Affiliation(s)
- Jing Lu
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China.,Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| | - Qingxia Huang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China.,Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| | - Dongmei Zhang
- Scientific Research Office, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Tianye Lan
- Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Ying Zhang
- Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiaolei Tang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Xu
- Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Dexi Zhao
- Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Deyu Cong
- Department of Tuina, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China.,Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| | - Xiangyan Li
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China.,Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jian Wang
- Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
11
|
Lu J, Yang J, Zheng Y, Chen X, Fang S. Extracellular vesicles from endothelial progenitor cells prevent steroid-induced osteoporosis by suppressing the ferroptotic pathway in mouse osteoblasts based on bioinformatics evidence. Sci Rep 2019; 9:16130. [PMID: 31695092 PMCID: PMC6834614 DOI: 10.1038/s41598-019-52513-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022] Open
Abstract
Abnormal antioxidative capabilities were observed in the pathogenesis of steroid-induced osteoporosis (SIOP). Ferroptosis is a recently discovered type of cell death that is characterized by the overproduction of ROS in response to GPX4 and system Xc- downregulation, which is mediated by an Fe2+ fenton reaction. However, investigations focusing on the relationship between ferroptosis and steroid-induced bone disease remain limited. In the present study, high-dose dexamethasone was used to establish a mouse SIOP model, and extracellular vesicles extracted from bone marrow-derived endothelial progenitor cells (EPC-EVs) alleviated the pathological changes in SIOP via microtomography (micro-CT), with elevations in bone volume (BV), bone surface (BS), trabecular thickness (Tb.Th), and trabecular connectivity density (Conn-D) and decreases in trabecular separation (Tb.sp) and the structure model index (SMI). Histopathological analysis, such as haematoxylin and eosin (HE) and Masson staining, showed that EPC-EVs treatment increased the volume and density of the trabecular bone and bone marrow. RNA sequencing (RNA-seq) and bioinformatics analysis revealed subcellular biological alterations upon steroid and EPC-EVs treatment. Compared with the control, high-dose dexamethasone downregulated GPX4 and system XC-, and the Kyoto Encyclopedia of Genes and Genomes (KEGG)-based gene set enrichment analysis suggested that the ferroptotic pathway was activated. In contrast, combination treatment with EPC-EVs partly reversed the KEGG-mapped changes in the ferroptotic pathway at both the gene and mRNA expression levels. In addition, alterations in ferroptotic marker expression, such as SLC3A2, SLC7A11, and GPX4, were further confirmed by RNA-seq. EPC-EVs were able to reverse dexamethasone treatment-induced alterations in cysteine and several oxidative injury markers, such as malondialdehyde (MDA), glutathione (GSH), and glutathione disulphide (GSSG) (as detected by ELISA). In conclusion, EPC-EVs prevented mouse glucocorticoid-induced osteoporosis by suppressing the ferroptotic pathway in osteoblasts, which may provide a basis for novel therapies for SIOP in humans.
Collapse
Affiliation(s)
- Jinsen Lu
- Department of Orthopaedics, Anhui Provincial Hospital, Anhui Medical University, Lujiang Road No. 17, 230001, Hefei, China.
| | - Jiazhao Yang
- Department of Orthopaedics, Anhui Provincial Hospital, Anhui Medical University, Lujiang Road No. 17, 230001, Hefei, China
| | - Yongshun Zheng
- Department of Orthopaedics, Anhui Provincial Hospital, Anhui Medical University, Lujiang Road No. 17, 230001, Hefei, China
| | - Xiaoyu Chen
- Department of Histology and Embryology, Anhui Medical University, Meishan Road No. 81, 230032, Hefei, China
| | - Shiyuan Fang
- Department of Orthopaedics, Anhui Provincial Hospital, Anhui Medical University, Lujiang Road No. 17, 230001, Hefei, China.
| |
Collapse
|
12
|
Ateba SB, Mvondo MA, Djiogue S, Zingué S, Krenn L, Njamen D. A Pharmacological Overview of Alpinumisoflavone, a Natural Prenylated Isoflavonoid. Front Pharmacol 2019; 10:952. [PMID: 31551770 PMCID: PMC6746831 DOI: 10.3389/fphar.2019.00952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/26/2019] [Indexed: 12/29/2022] Open
Abstract
Over the last decade, several studies demonstrated that prenylation of flavonoids enhances various biological activities as compared to the respective nonprenylated compounds. In line with this, the natural prenylated isoflavonoid alpinumisoflavone (AIF) has been explored for a number of biological and pharmacological effects (therapeutic potential). In this review, we summarize the current information on health-promoting properties of AIF. Reported data evidenced that AIF has a multitherapeutic potential with antiosteoporotic, antioxidant and anti-inflammatory, antimicrobial, anticancer, estrogenic and antiestrogenic, antidiabetic, and neuroprotective properties. However, research on these aspects of AIF is not sufficient and needs to be reevaluated using more appropriate methods and methodology. Further series of studies are needed to confirm these pharmacological effects, and this review should lay the basis for the design of respective investigations. Overall, despite the drawbacks of studies recorded, AIF exhibits a potential as drug candidate.
Collapse
Affiliation(s)
- Sylvin Benjamin Ateba
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Marie Alfrede Mvondo
- Research Unit of Animal Physiology and Phytopharmacology, Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Sefirin Djiogue
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Stéphane Zingué
- Department of Life and Earth Sciences, Higher Teachers’ Training College, University of Maroua, Maroua, Cameroon
| | - Liselotte Krenn
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Dieudonné Njamen
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
13
|
Sun L, Chen Y, Shen X, Xu T, Yin Y, Zhang H, Ding S, Zhao Y, Zhang Y, Guan Y, Li W. Inhibition of NOX2-NLRP1 signaling pathway protects against chronic glucocorticoids exposure-induced hippocampal neuronal damage. Int Immunopharmacol 2019; 74:105721. [DOI: 10.1016/j.intimp.2019.105721] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 12/15/2022]
|
14
|
Yang L, Guan G, Lei L, Liu J, Cao L, Wang X. Oxidative and endoplasmic reticulum stresses are involved in palmitic acid-induced H9c2 cell apoptosis. Biosci Rep 2019; 39:BSR20190225. [PMID: 31064816 PMCID: PMC6527925 DOI: 10.1042/bsr20190225] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 01/18/2023] Open
Abstract
Palmitic acid (PA) is the most common saturated long-chain fatty acid that causes damage to heart muscle cells. However, the molecular mechanism of PA toxicity in myocardial cells is not fully understood. In the present study, we explored the effects of PA on proliferation and apoptosis of H9c2 cardiomyocytes, and uncovered the signaling pathways involved in PA toxicity. Our study revealed induction of both oxidative and endoplasmic reticulum (ER) stresses and exacerbation of apoptosis in PA-treated H9c2 cells. Inhibition of oxidative stress by N-acetylcysteine (NAC) reduced apoptosis and decreased ER stress in PA-treated H9c2 cells. Moreover, inhibition of ER stress by 4-phenyl butyric acid decreased apoptosis and attenuated oxidative stress. In summary, the present study demonstrated that oxidative stress coordinates with ER stress to play important roles in PA-induced H9c2 cell apoptosis.
Collapse
Affiliation(s)
- Lei Yang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- College of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi 332000, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Gaopeng Guan
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, Jiangxi 332000, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Lanjie Lei
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, Jiangxi 332000, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Jianyun Liu
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, Jiangxi 332000, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Lingling Cao
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
- Department of Endocrinology, The First Hospital of Jiujiang City, Jiujiang 332000, China
| | - Xiangguo Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
15
|
Pignolo RJ, Samsonraj RM, Law SF, Wang H, Chandra A. Targeting Cell Senescence for the Treatment of Age-Related Bone Loss. Curr Osteoporos Rep 2019; 17:70-85. [PMID: 30806947 DOI: 10.1007/s11914-019-00504-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We review cell senescence in the context of age-related bone loss by broadly discussing aging mechanisms in bone, currently known inducers and markers of senescence, the senescence-associated secretory phenotype (SASP), and the emerging roles of senescence in bone homeostasis and pathology. RECENT FINDINGS Cellular senescence is a state of irreversible cell cycle arrest induced by insults or stressors including telomere attrition, oxidative stress, DNA damage, oncogene activation, and other intrinsic or extrinsic triggers and there is mounting evidence for the role of senescence in aging bone. Cellular aging also instigates a SASP that exerts detrimental paracrine and likely systemic effects. With aging, multiple cell types in the bone microenvironment become senescent, with osteocytes and myeloid cells as primary contributors to the SASP. Targeting undesired senescent cells may be a favorable strategy to promote bone anabolic and anti-resorptive functions in aging bone, with the possibility of improving bone quality and function with normal aging and/or disease.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of Geriatric Medicine & Gerontology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
| | | | - Susan F Law
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Haitao Wang
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Geriatric Medicine & Gerontology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Abhishek Chandra
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Geriatric Medicine & Gerontology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
16
|
Li D, Li X, Li G, Meng Y, Jin Y, Shang S, Li Y. Alpinumisoflavone causes DNA damage in Colorectal Cancer Cells via blocking DNA repair mediated by RAD51. Life Sci 2018; 216:259-270. [PMID: 30448264 DOI: 10.1016/j.lfs.2018.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 01/12/2023]
Abstract
AIMS Colorectal Cancer (CRC) accounts for 6.1% incidence and 9.2% mortality worldwide. The current study aimed to investigate the effect of alpinumisoflavone (AIF) on CRC and its possible molecular mechanism. METHODS HCT-116 and SW480 cells were chosen as cell model to study the anti-cancer activity of AIF in vitro experiments. Cells proliferative capacity and clonogenicity were examined by CCK-8 assay and colony formation assay, while cell apoptosis was detected by Hoechst 33258 staining and Flow cytometer. The protein expression levels of related gene were examined by western blotting. Transcriptome analyses were conducted to identify the differentially expressed genes in CRC cells, following AIF treatment. DNA damage was examined by γH2AX foci assay. The anti-cancer effect of AIF in vivo was validated in CRC xenograft model. KEY FINDINGS We found that AIF inhibited CRC cell proliferation and promoted apoptosis in a dose-dependent manner, as well as increased the number of γ-H2AX foci. In addition, microarray analysis showed that the DNA-double strand break (DSB) repair gene RAD51 was aberrantly overexpressed in CRC tissues, and was positively correlated with lymph node metastasis, TNM stage and poor outcomes. Both in vitro and in vivo experiments confirm that AIF treatment significantly decreased RAD51 levels. Knockdown RAD51 could enhance the anti-cancer activity of AIF against CRC, while abrogated by RAD51 overexpression. SIGNIFICANCE These findings suggest that AIF can be regarded as a potential anti-cancer drug and provide new insights into CRC treatment.
Collapse
Affiliation(s)
- Dong Li
- Department of Pharmacy, Puyang Oilfield General Hospital, Henan, China.
| | - Xiaoyan Li
- Department of Pharmacy, Puyang Oilfield General Hospital, Henan, China
| | - Genqu Li
- Department of Pharmacy, Puyang Oilfield General Hospital, Henan, China
| | - Yan Meng
- Department of Pharmacy, Puyang Oilfield General Hospital, Henan, China
| | - Yanghong Jin
- Department of Pharmacy, Puyang Oilfield General Hospital, Henan, China
| | - Shuang Shang
- Department of Pharmacy, Puyang Oilfield General Hospital, Henan, China
| | - Yanjie Li
- Department of Pharmacy, Puyang Oilfield General Hospital, Henan, China
| |
Collapse
|