1
|
Iorjiim WM, Omale S, Ede S, Ugokwe CV, Alemika TE. Involvement of functional senescence in efavirenz-induced toxicity in fruit fly. Toxicol Res (Camb) 2023; 12:853-862. [PMID: 37915498 PMCID: PMC10615817 DOI: 10.1093/toxres/tfad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 05/24/2023] [Indexed: 11/03/2023] Open
Abstract
Background We aimed in this article to assess the likeliness of efavirenz to induce functional senescence in Drosophila melanogaster (fruit fly). Methods Ten different concentrations of EFV were mixed with fly food and fed to 3-day-old flies orally for a 7 day LC50 calculation. Drug concentrations from LC50 were selected for a 28 day survival to determine the duration of treatment for behavioral and biochemical assays. A 5day feeding plan was used to investigate the effects of the drug on organismal, neuromuscular, reproductive, and metabolic senescence. An in silico study was executed to decipher a molecular interaction of Drosophila enzymes glutathione-s-transferase (GST) or acetylcholinesterase (AChE) with EFV. Results The calculated LC50 of EFV was 118 mg/10-g fly diet. The test drug induced a significant (P < 0.05) increase in fly mortality, climbing difficulty, and procreative deficits after a 5 day oral exposure. Similarly, there were significant (P < 0.05) biochemical alterations, which suggested in vivo biochemical damage against total thiols (T-SH), SOD (superoxide dismutase), CAT (catalase), GST, AChE, and MDA (malondialdehyde) in the test flies compared to the control groups. In silico study revealed a significantly (P < 0.05) higher binding energy between EFV and the active amino acids of fly AChE and GST when compared to the substrates or standard inhibitors respectively. Conclusion EFV exhibited ecotoxic potentials evidenced by age-related deficits in the fly's functional integrity such as sluggish movement, procreative deficiency, increased mortality, and oxidant-antioxidant inequality. Results from in silico study suggested antagonism against GST and AChE activities as a likely mechanism of EFV-induced toxicity in the fruit fly.
Collapse
Affiliation(s)
- Walter Mdekera Iorjiim
- Department of Pharmacology and Toxicology, University of Jos, Bauchi Road, Jos North, Postcode-930003, Plateau State, Nigeria
| | - Simeon Omale
- Department of Pharmacology and Toxicology, University of Jos, Bauchi Road, Jos North, Postcode-930003, Plateau State, Nigeria
- Africa Centre of Excellence in Phytomedicine Research and Development (ACEPRD), University of Jos, Bauchi Road, Jos North, Postcode-930003 Plateau State, Nigeria
| | - Samuel Ede
- Department of Pharmacology and Toxicology, University of Jos, Bauchi Road, Jos North, Postcode-930003, Plateau State, Nigeria
| | - Chinelo Vera Ugokwe
- Department of Biochemistry, University of Jos, Bauchi Road, Jos North, Postcode-93003, Plateau State, Nigeria
| | - Taiwo Emmanuel Alemika
- Africa Centre of Excellence in Phytomedicine Research and Development (ACEPRD), University of Jos, Bauchi Road, Jos North, Postcode-930003 Plateau State, Nigeria
- Department of Pharmaceutical and Medicinal Chemistry, University of Jos, Bauchi Road, Jos North, Postcode-930003 Plateau State, Nigeria
| |
Collapse
|
2
|
Wang X, Ma Y, Xu Q, Shikov AN, Pozharitskaya ON, Flisyuk EV, Liu M, Li H, Vargas-Murga L, Duez P. Flavonoids and saponins: What have we got or missed? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154580. [PMID: 36610132 DOI: 10.1016/j.phymed.2022.154580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Flavonoids and saponins are important bioactive compounds that have attracted wide research interests. This review aims to summarise the state of the art of the pharmacology, toxicology and clinical efficacy of these compounds. METHODS Data were retrieved from PubMed, Cochrane Library, Web of Science, Proquest, CNKI, Chongqing VIP, Wanfang, NPASS and HIT 2.0 databases. Meta-analysis and systematic reviews were evaluated following the PRISMA guideline. Statistical analyses were conducted using SPSS23.0. RESULTS Rising research trends on flavonoids and saponins were observed since the 1990s and the 2000s, respectively. Studies on pharmacological targets and activities of flavonoids and saponins represent an important area of research advances over the past decade, and these important resources have been documented in open-access specialised databases and can be retrieved with ease. The rising research on flavonoids and saponins can be attributed, at least in part, to their links with some highly investigated fields of research, e.g., oxidative stress, inflammation and cancer; i.e., 6.88% and 3.03% of publications on oxidative stress cited by PubMed in 1990 - 2021 involved flavonoids and saponins, respectively, significantly higher than the percentage involving alkaloids (1.88%). The effects of flavonoids concern chronic venous insufficiency, cervical lesions, diabetes, rhinitis, dermatopathy, prostatitis, menopausal symptoms, angina pectoris, male pattern hair loss, lymphocytic leukaemia, gastrointestinal diseases and traumatic cerebral infarction, etc, while those of saponins may have impact on venous oedema in chronic deep vein incompetence, erectile dysfunction, acute impact injuries and systemic lupus erythematosus, etc. The volume of in vitro research appears way higher than in vivo and clinical studies, with only 10 meta-analyses and systematic reviews (involving 290 interventional and observational studies), and 36 clinical studies on flavonoids and saponins. Data are sorely needed on pharmacokinetics, in vitro pan-assay interferences, purity of tested compounds, interactions in complex herbal extracts, real impact of anti-oxidative strategies, and mid- and long-term toxicities. To fill these important gaps, further investigations are warranted. On the other hand, drug interactions may cause adverse effects but might also be useful for synergism, with the goals of enhancing effects or of detoxifying. Furthermore, the interactions between phytochemicals and the intestinal microbiota are worth investigating as the field may present a promising potential for novel drug development.
Collapse
Affiliation(s)
- Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital; Hubei Key Laboratory of Wudang Local Chinese Medicine Research; Biomedical Research Institute; School of Pharmaceutical Sciences and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, South Renmin Road, Shiyan, 442000, China..
| | - Yan Ma
- Molecular Research in Traditional Chinese Medicine, Division of Comparative Immunology and Oncology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Vienna General Hospital, Medical University of Vienna
| | - Qihe Xu
- Renal Sciences and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Alexander N Shikov
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, Saint-Petersburg, 197376, Russia
| | - Olga N Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences, Vladimirskaya, 17, Murmansk, 183010, Russia
| | - Elena V Flisyuk
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, Saint-Petersburg, 197376, Russia
| | - Meifeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongliang Li
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital; Hubei Key Laboratory of Wudang Local Chinese Medicine Research; Biomedical Research Institute; School of Pharmaceutical Sciences and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, South Renmin Road, Shiyan, 442000, China
| | - Liliana Vargas-Murga
- BIOTHANI, Can Lleganya, 17451 Sant Feliu de Buixalleu, Catalonia, Spain; Department of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona (UdG), 17003 Girona, Catalonia, Spain
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium..
| |
Collapse
|
3
|
Iorjiim WM, Omale S, Etuh MA, Ubani A, Alemika ET, Gyang SS. Senescence and Oxidative Stress Toxicities Induced by Lamivudine and Tenofovir in Drosophila melanogaster. ANNALES PHARMACEUTIQUES FRANÇAISES 2022; 80:864-875. [PMID: 35231396 DOI: 10.1016/j.pharma.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022]
|
4
|
Abubakar IB, Kankara SS, Malami I, Danjuma JB, Muhammad YZ, Yahaya H, Singh D, Usman UJ, Ukwuani-Kwaja AN, Muhammad A, Ahmed SJ, Folami SO, Falana MB, Nurudeen QO. Traditional medicinal plants used for treating emerging and re-emerging viral diseases in northern Nigeria. Eur J Integr Med 2022; 49:102094. [PMID: 36573184 PMCID: PMC9760313 DOI: 10.1016/j.eujim.2021.102094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 02/09/2023]
Abstract
Introduction For decades, viral diseases have been treated using medicinal plants and herbal practices in the northern part of Nigeria. Though scarcely investigated, these medicinal plants could serve as potential sources for novel antiviral drugs against emerging and remerging viral diseases. Therefore, this study is aimed at investigating the medicinal practices and plants used to treat emerging and re-emerging viral diseases including hepatitis, poliomyelitis, monkeypox, smallpox, yellow fever, Lassa fever, meningitis, and COVID-19 in some northern states; Katsina, Kebbi, Kwara and Sokoto states. Method Administered questionnaires and oral interviews were used to collect information on medicinal plants, method of preparation of herbal formulations, diagnosis, and treatment of viral diseases. Medicinal plants were collected, botanically identified, and assigned voucher numbers. The plant names were verified using www.theplantlist.org, www.worldfloraonline.org and the international plant names index. Result A total of 280 participating herbal medicine practitioners (HMPs) mentioned 131 plants belonging to 65 families. Plant parts such as roots, bark, leaf, seed, and fruit were prepared as a decoction, concoction, infusion, or ointment for oral and topical treatment of viral diseases. Moringa oleifera (75.3%), Elaeis guineensis Jacq. (80%), and Acacia nilotica (70%) were the most frequently mentioned plants in Kebbi, Kwara and Sokoto states, respectively. Conclusion The study revealed scarcely investigated and uninvestigated medicinal plants used to treat hepatitis, poliomyelitis, monkeypox, smallpox, yellow fever, Lassa fever, meningitis, and COVID-19. Future studies should be conducted to determine the antiviral potency and isolate novel bioactive agents from these plants against viral diseases.
Collapse
Affiliation(s)
- Ibrahim Babangida Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria,Corresponding author
| | - Sulaiman Sani Kankara
- Department of Biology, Faculty of Natural and Applied Sciences, Umaru Musa Yar'adua University, PMB 2218 Katsina State, Nigeria
| | - Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodio University Sokoto, Nigeria
| | - Jamilu Bala Danjuma
- Department of Biochemistry, Faculty of Science, Federal University Birnin Kebbi, Kebbi State, Nigeria
| | | | - Hafsat Yahaya
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodio University Sokoto, Nigeria
| | - Dharmendra Singh
- Department of Plant Science and Biotechnology, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | - Umar Jaji Usman
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | - Angela Nnenna Ukwuani-Kwaja
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, 810271, Nigeria
| | - Sanusi Jega Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | - Sulaimon Olayiwola Folami
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | | | | |
Collapse
|