1
|
Lymperopoulos A, Stoicovy RA. RGS Proteins in Sympathetic Nervous System Regulation: Focus on Adrenal RGS4. FRONT BIOSCI-LANDMRK 2024; 29:355. [PMID: 39473413 DOI: 10.31083/j.fbl2910355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 01/11/2025]
Abstract
The sympathetic nervous system (SNS) consists largely of two different types of components: neurons that release the neurotransmitter norepinephrine (NE, noradrenaline) to modulate homeostasis of the innevrvated effector organ or tissue and adrenal chromaffin cells, which synthesize and secrete the hormone epinephrine (Epi, adrenaline) and some NE into the blood circulation to act at distant organs and tissues that are not directly innervated by the SNS. Like almost every physiological process in the human body, G protein-coupled receptors (GPCRs) tightly modulate both NE release from sympathetic neuronal terminals and catecholamine (CA) secretion from the adrenal medulla. Regulator of G protein Signaling (RGS) proteins, acting as guanosine triphosphatase (GTPase)-activating proteins (GAPs) for the Gα subunits of heterotrimeric guanine nucleotide-binding proteins (G proteins), play a central role in silencing G protein signaling from a plethora of GPCRs. Certain RGS proteins and, in particular, RGS4, have been implicated in regulation of SNS activity and of adrenal chromaffin cell CA secretion. More specifically, recent studies have implicated RGS4 in regulation of NE release from cardiac sympathetic neurons by means of terminating free fatty acid receptor (FFAR)-3 calcium signaling and in regulation of NE and Epi secretion from the adrenal medulla by means of terminating cholinergic calcium signaling in adrenal chromaffin cells. Thus, in this review, we provide an overview of the current literature on the involvement of RGS proteins, with a particular focus on RGS4, in these two processes, i.e., NE release from sympathetic nerve terminals & CA secretion from adrenal chromaffin cells. We also highlight the therapeutic potential of RGS4 pharmacological manipulation for diseases characterized by sympathetic dysfunction or SNS hyperactivity, such as heart failure and hypertension.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Davie/Fort Lauderdale, FL 33328-2018, USA
| | - Renee A Stoicovy
- Department of Pharmaceutical Sciences, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Davie/Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
2
|
Lou JS, Su M, Wang J, Do HN, Miao Y, Huang XY. Distinct binding conformations of epinephrine with α- and β-adrenergic receptors. Exp Mol Med 2024; 56:1952-1966. [PMID: 39218975 PMCID: PMC11447022 DOI: 10.1038/s12276-024-01296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/09/2024] [Accepted: 06/09/2024] [Indexed: 09/04/2024] Open
Abstract
Agonists targeting α2-adrenergic receptors (ARs) are used to treat diverse conditions, including hypertension, attention-deficit/hyperactivity disorder, pain, panic disorders, opioid and alcohol withdrawal symptoms, and cigarette cravings. These receptors transduce signals through heterotrimeric Gi proteins. Here, we elucidated cryo-EM structures that depict α2A-AR in complex with Gi proteins, along with the endogenous agonist epinephrine or the synthetic agonist dexmedetomidine. Molecular dynamics simulations and functional studies reinforce the results of the structural revelations. Our investigation revealed that epinephrine exhibits different conformations when engaging with α-ARs and β-ARs. Furthermore, α2A-AR and β1-AR (primarily coupled to Gs, with secondary associations to Gi) were compared and found to exhibit different interactions with Gi proteins. Notably, the stability of the epinephrine-α2A-AR-Gi complex is greater than that of the dexmedetomidine-α2A-AR-Gi complex. These findings substantiate and improve our knowledge on the intricate signaling mechanisms orchestrated by ARs and concurrently shed light on the regulation of α-ARs and β-ARs by epinephrine.
Collapse
Affiliation(s)
- Jian-Shu Lou
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Minfei Su
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Hung Nguyen Do
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
3
|
Yin Y, Zeng Z, Wei S, Shen Z, Cong Z, Zhu X. Using the sympathetic system, beta blockers and alpha-2 agonists, to address acute respiratory distress syndrome. Int Immunopharmacol 2024; 139:112670. [PMID: 39018694 DOI: 10.1016/j.intimp.2024.112670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
Acute Respiratory Distress Syndrome (ARDS) manifests as an acute inflammatory lung injury characterized by persistent hypoxemia, featuring a swift onset, high mortality, and predominantly supportive care as the current therapeutic approach, while effective treatments remain an area of active investigation. Adrenergic receptors (AR) play a pivotal role as stress hormone receptors, extensively participating in various inflammatory processes by initiating downstream signaling pathways. Advancements in molecular biology and pharmacology continually unveil the physiological significance of distinct AR subtypes. Interventions targeting these subtypes have the potential to induce specific alterations in cellular and organismal functions, presenting a promising avenue as a therapeutic target for managing ARDS. This article elucidates the pathogenesis of ARDS and the basic structure and function of AR. It also explores the relationship between AR and ARDS from the perspective of different AR subtypes, aiming to provide new insights for the improvement of ARDS.
Collapse
Affiliation(s)
- Yiyuan Yin
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Zhaojin Zeng
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Senhao Wei
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Ziyuan Shen
- Department of Anaesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhukai Cong
- Department of Anaesthesiology, Peking University Third Hospital, Beijing, China.
| | - Xi Zhu
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
4
|
Rosenberg MF, Godoy MI, Wade SD, Paredes MF, Zhang Y, Molofsky AV. β-Adrenergic Signaling Promotes Morphological Maturation of Astrocytes in Female Mice. J Neurosci 2023; 43:8621-8636. [PMID: 37845031 PMCID: PMC10727121 DOI: 10.1523/jneurosci.0357-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/24/2023] [Accepted: 07/31/2023] [Indexed: 10/18/2023] Open
Abstract
Astrocytes play essential roles in the developing nervous system, including supporting synapse function. These astrocyte support functions emerge coincident with brain maturation and may be tailored in a region-specific manner. For example, gray matter astrocytes have elaborate synapse-associated processes and are morphologically and molecularly distinct from white matter astrocytes. This raises the question of whether there are unique environmental cues that promote gray matter astrocyte identity and synaptogenic function. We previously identified adrenergic receptors as preferentially enriched in developing gray versus white matter astrocytes, suggesting that noradrenergic signaling could be a cue that promotes the functional maturation of gray matter astrocytes. We first characterized noradrenergic projections during postnatal brain development in mouse and human, finding that process density was higher in the gray matter and increased concurrently with astrocyte maturation. RNA sequencing revealed that astrocytes in both species expressed α- and β-adrenergic receptors. We found that stimulation of β-adrenergic receptors increased primary branching of rodent astrocytes in vitro Conversely, astrocyte-conditional knockout of the β1-adrenergic receptor reduced the size of gray matter astrocytes and led to dysregulated sensorimotor integration in female mice. These studies suggest that adrenergic signaling to developing astrocytes impacts their morphology and has implications for adult behavior, particularly in female animals. More broadly, they demonstrate a mechanism through which environmental cues impact astrocyte development. Given the key roles of norepinephrine in brain states, such as arousal, stress, and learning, these findings could prompt further inquiry into how developmental stressors impact astrocyte development and adult brain function.SIGNIFICANCE STATEMENT This study demonstrates a role for noradrenergic signaling in the development of gray matter astrocytes. We provide new evidence that the β1-adrenergic receptor is robustly expressed by both mouse and human astrocytes, and that conditional KO of the β1-adrenergic receptor from female mouse astrocytes impairs gray matter astrocyte maturation. Moreover, female conditional KO mice exhibit behavioral deficits in two paradigms that test sensorimotor function. Given the emerging interest in moving beyond RNA sequencing to probe specific pathways that underlie astrocyte heterogeneity, this study provides a foundation for future investigation into the effect of noradrenergic signaling on astrocyte functions in conditions where noradrenergic signaling is altered, such as stress, arousal, and learning.
Collapse
Affiliation(s)
- Marci F Rosenberg
- Department of Psychiatry and Behavioral Sciences and Weill Institute of Neurosciences, University of California at San Francisco, San Francisco, California 94143
- Medical Scientist Training Program and Biomedical Sciences Graduate Program, University of California at San Francisco, San Francisco, California 94143
| | - Marlesa I Godoy
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Sarah D Wade
- Department of Psychiatry and Behavioral Sciences and Weill Institute of Neurosciences, University of California at San Francisco, San Francisco, California 94143
- Neurosciences Graduate Program, University of California at San Francisco, San Francisco, California 94143
| | - Mercedes F Paredes
- Department of Neurology, Weill Institute of Neurosciences, University of California, San Francisco, San Francisco, California 94143
- Chan Zuckerberg Biohub-San Francisco, San Francisco, California 94158
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Anna V Molofsky
- Department of Psychiatry and Behavioral Sciences and Weill Institute of Neurosciences, University of California at San Francisco, San Francisco, California 94143
- Neurosciences Graduate Program, University of California at San Francisco, San Francisco, California 94143
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
5
|
Yang C, Gao Q, Xu N, Yang K, Bian Z. Human Dental Pulp Stem Cells Are Subjected to Metabolic Reprogramming and Repressed Proliferation and Migration by the Sympathetic Nervous System via α1B-Adrenergic Receptor. J Endod 2023; 49:1641-1651.e6. [PMID: 37769871 DOI: 10.1016/j.joen.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
INTRODUCTION Human dental pulp stem cells (hDPSCs) reside in specialized microenvironments in the dental pulp, termed "niches," which are composed of diverse cellular components including nerves. Sensory nerves can positively regulate the expansion and differentiation of pulp cells, while the biological effects of the sympathetic nervous system (SNS) on hDPSCs remain elusive. This study is devoted to investigating the effects and underlying mechanisms of the SNS on the proliferation and migration of hDPSCs. METHODS The distribution of sympathetic nerve fibers in human dental pulp was examined by immunofluorescence staining of tyrosine hydroxylase. The concentration of norepinephrine in healthy and carious human dental pulp tissues was detected using enzyme-linked immunosorbent assay. RNA-sequencing was applied to identify the dominant sympathetic neurotransmitter receptor in hDPSCs. Seahorse metabolic assay, adenosine triphosphate assay, lactate assay, and mitochondrial DNA copy number were performed to determine the level of glycometabolism. Transwell assay, wound healing assay, 5-ethynyl-2'-deoxyuridine staining assay, cell cycle assay, and Cell Counting Kit-8 assay were conducted to analyze the migratory and proliferative capacities of hDPSCs. RESULTS Sprouting of sympathetic nerve fibers and an increased concentration of norepinephrine were observed in inflammatory pulp tissues. Sympathetic nerve fibers were mainly distributed along blood vessels, and aldehyde dehydrogenase 1-positive hDPSCs resided in close proximity to neurovascular bundles. ADRA1B was identified as the major sympathetic neurotransmitter receptor expressed in hDPSCs, and its expression was enhanced in inflammatory pulp tissues. In addition, the SNS inhibited the proliferation and migration of hDPSCs through metabolic reprogramming via ADRA1B and its crosstalk with serine-threonine kinase and p38 mitogen-activated protein kinase signaling pathways. CONCLUSIONS This study demonstrates that the SNS can shift the metabolism of hDPSCs from oxidative phosphorylation to anaerobic glycolysis via ADRA1B and its crosstalk with serine-threonine kinase and p38 mitogen-activated protein kinase signaling pathways, thereby inhibiting the proliferative and migratory abilities of hDPSCs. This metabolic shift may facilitate the maintenance of the quiescent state of hDPSCs.
Collapse
Affiliation(s)
- Chengcan Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Qian Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Nuo Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Kai Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Wang J, Zhu F, Huang W, Yang C, Chen Z, Lei Y, Wang Y, Meng Y, Liu Y, Liu X, Sun B, Li H. Acupuncture at ST36 ameliorates experimental autoimmune encephalomyelitis via affecting the function of B cells. Int Immunopharmacol 2023; 123:110748. [PMID: 37531831 DOI: 10.1016/j.intimp.2023.110748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/15/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Acupuncture at ST36 can alleviate a variety of autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), while the specific mechanism for the treatment of EAE is not clear. In this study, we found that acupuncture at ST36 can significantly increase the excitability of splenic sympathetic nerve, and promote the differentiation of peripheral B and CD4+T cells in the anti-inflammatory direction. After blocking the splenic sympathetic nerve with 6-OHDA, this anti-inflammatory effect of acupuncture is partially reversed. In addition, the results of western blot and qPCR showed that acupuncture at ST36 simultaneously activated the β2-AR-cAMP signaling pathway in the splenic B and CD4+T cells, and this activation was more significant in B cells. In vitro, when CD4+T cells were cultured alone, norepinephrine (NE) had no significant effect on their differentiation. While in the presence of B cells, NE significantly promotes the anti-inflammatory differentiation of B and CD4+T cells. Therefore, the above results reveal that acupuncture can relieve EAE by stimulating the sympathetic nerves of spleen, mainly through acting on B cells to mediate anti-inflammatory effects, and indirectly affecting the function of CD4+T cells.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Fangyi Zhu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Wei Huang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Changxin Yang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Zhengyi Chen
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yanting Lei
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yanping Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yanting Meng
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Yumei Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Xijun Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | - Bo Sun
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Hulun Li
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 157 Health Road, Nangang District, Harbin, Heilongjiang 150081, PR China.
| |
Collapse
|
7
|
Zefirov TL, Khisamieva LI, Khabibrakhmanov II, Ziyatdinova NI, Zefirov AL. α 2C-Adrenergic Receptor Blockade Inhibits Langendorff-Isolated Rat Heart Work. Bull Exp Biol Med 2023; 175:612-615. [PMID: 37864587 DOI: 10.1007/s10517-023-05911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 10/23/2023]
Abstract
We studied the effect of selective α2C-adrenergic receptor antagonist JP-1302 in concentrations of 10-9-10-6 M on inotropy, chronotropy, and coronary flow in the Langendorff-isolated rat heart. JP-1302 in all studied concentrations decreased the left-ventricular myocardium force contraction, HR, and coronary flow. The maximum inotropic, chronotropic, and vascular effects were observed when the antagonist was applied to the perfused solution in a concentration of 10-7 M. The least pronounced decrease in the studied parameters was observed at JP-1302 concentrations of 10-8 and 10-9 M. The obtained data indicate the participation of this subtype of α2-adrenergic receptors in the regulation of activity of isolated adult rats heart.
Collapse
Affiliation(s)
- T L Zefirov
- Department of Human Health Protection, Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia.
| | - L I Khisamieva
- Department of Human Health Protection, Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - I I Khabibrakhmanov
- Department of Human Health Protection, Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - N I Ziyatdinova
- Department of Human Health Protection, Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - A L Zefirov
- Department of Normal Physiology, Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Republic of Tatarstan, Russia
| |
Collapse
|
8
|
Su M, Wang J, Xiang G, Do HN, Levitz J, Miao Y, Huang XY. Structural basis of agonist specificity of α 1A-adrenergic receptor. Nat Commun 2023; 14:4819. [PMID: 37563160 PMCID: PMC10415349 DOI: 10.1038/s41467-023-40524-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
α1-adrenergic receptors (α1-ARs) play critical roles in the cardiovascular and nervous systems where they regulate blood pressure, cognition, and metabolism. However, the lack of specific agonists for all α1 subtypes has limited our understanding of the physiological roles of different α1-AR subtypes, and led to the stagnancy in agonist-based drug development for these receptors. Here we report cryo-EM structures of α1A-AR in complex with heterotrimeric G-proteins and either the endogenous common agonist epinephrine or the α1A-AR-specific synthetic agonist A61603. These structures provide molecular insights into the mechanisms underlying the discrimination between α1A-AR and α1B-AR by A61603. Guided by the structures and corresponding molecular dynamics simulations, we engineer α1A-AR mutants that are not responsive to A61603, and α1B-AR mutants that can be potently activated by A61603. Together, these findings advance our understanding of the agonist specificity for α1-ARs at the molecular level, opening the possibility of rational design of subtype-specific agonists.
Collapse
Affiliation(s)
- Minfei Su
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Guoqing Xiang
- Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Hung Nguyen Do
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA.
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
9
|
Wang X, Wang T, Fan X, Zhang Z, Wang Y, Li Z. A Molecular Toolbox of Positron Emission Tomography Tracers for General Anesthesia Mechanism Research. J Med Chem 2023; 66:6463-6497. [PMID: 37145921 DOI: 10.1021/acs.jmedchem.2c01965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
With appropriate radiotracers, positron emission tomography (PET) allows direct or indirect monitoring of the spatial and temporal distribution of anesthetics, neurotransmitters, and biomarkers, making it an indispensable tool for studying the general anesthesia mechanism. In this Perspective, PET tracers that have been recruited in general anesthesia research are introduced in the following order: 1) 11C/18F-labeled anesthetics, i.e., PET tracers made from inhaled and intravenous anesthetics; 2) PET tracers targeting anesthesia-related receptors, e.g., neurotransmitters and voltage-gated ion channels; and 3) PET tracers for studying anesthesia-related neurophysiological effects and neurotoxicity. The radiosynthesis, pharmacodynamics, and pharmacokinetics of the above PET tracers are mainly discussed to provide a practical molecular toolbox for radiochemists, anesthesiologists, and those who are interested in general anesthesia.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Tao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaowei Fan
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
10
|
Liang Y, Wu G, Luo T, Xie H, Zuo Q, Huang P, Li H, Chen L, Lu H, Chen Q. 10-Gingerol Enhances the Effect of Taxol in Triple-Negative Breast Cancer via Targeting ADRB2 Signaling. Drug Des Devel Ther 2023; 17:129-142. [PMID: 36712945 PMCID: PMC9880022 DOI: 10.2147/dddt.s390602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/22/2022] [Indexed: 01/21/2023] Open
Abstract
Purpose Although paclitaxel is widely used in cancer treatment, severe side effects and drug resistance limit its clinical use. 10-gingerol (10-G) is a natural compound isolated from ginger, which displays anti-inflammatory, antioxidant, and antiproliferative properties. However, the chemotherapy-sensitization effect of 10-G on triple-negative breast cancer (TNBC) has not been fully clarified. This study is aimed at investigating the effect of 10-G on the paclitaxel sensitivity in TNBC, and its underlying mechanism. Methods The study was determined through in vitro and in vivo experiments. Cell viability and proliferation were detected by cell counting kit 8 (CCK-8) and colony formation. To detect cell apoptosis, flow cytometry and TUNEL were used. The expression of proteins was detected by Western blotting and immunohistochemistry. The molecular docking and gene knockout were corroborated by interactions between 10-G and adrenoceptor Beta 2 (ADRB2). The body weight of mice, histopathology and organs (kidney and spleen) coefficients were used to monitor the drug toxicities. Results In vitro, 10-G increased the sensitivity of TNBC cells to paclitaxel, and could synergistically promote the apoptosis of TNBC cells induced by paclitaxel. In combination with molecular docking and lentivirus knockdown studies, ADRB2 was identified as a 10-G binding protein. 10-G inhibited ADRB2 by binding to the active site of ADRB2. Knockdown of ADRB2 reduces the proliferation activity of TNBC cells but also attenuates the sensitizing effects of 10-G to paclitaxel. Western blotting and immunohistochemistry showed that 10-G played an anti-proliferation and chemotherapy-sensitizing role by inhibiting the ADRB2/ERK signal. Toxicity evaluation showed that 10-G would not increase hepatorenal toxicity with paclitaxel. Conclusion This data suggests that 10-G may be used as a new chemotherapeutic synergist in combination with paclitaxel to enhance anticancer activity. The potential value of ADRB2 as a target for improving chemotherapy sensitivity was also emphasized.
Collapse
Affiliation(s)
- Yuqi Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People’s Republic of China,Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Guosong Wu
- Nanfang Hospital Baiyun Branch, Guangzhou, Guangdong, 510000, People’s Republic of China
| | - Tianyu Luo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People’s Republic of China,Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Haimei Xie
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Qian Zuo
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Ping Huang
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Huachao Li
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Liushan Chen
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Hai Lu
- The First People’s Hospital of Shaoguan, Shaoguan, Guangdong, 512099, People’s Republic of China,Hai Lu, The First People’s Hospital of Shaoguan, No. 3, South Dongdi Road, Shaoguan, 512099, People’s Republic of China, Tel +86 15622187291, Email
| | - Qianjun Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People’s Republic of China,Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China,Correspondence: Qianjun Chen, Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou, 510102, People’s Republic of China, Email
| |
Collapse
|
11
|
Lin S, Li P, Yang J, Liu S, Huang S, Huang Z, Zhou C, Liu Y. An immune genes signature for predicting mortality in sepsis patients. Front Immunol 2023; 14:1000431. [PMID: 36860871 PMCID: PMC9968838 DOI: 10.3389/fimmu.2023.1000431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
A growing body of evidence indicates that the immune system plays a central role in sepsis. By analyzing immune genes, we sought to establish a robust gene signature and develop a nomogram that could predict mortality in patients with sepsis. Herein, data were extracted from the Gene Expression Omnibus and Biological Information Database of Sepsis (BIDOS) databases. We enrolled 479 participants with complete survival data using the GSE65682 dataset, and grouped them randomly into training (n = 240) and internal validation (n = 239) sets based on a 1:1 proportion. GSE95233 was set as the external validation dataset (n=51). We validated the expression and prognostic value of the immune genes using the BIDOS database. We established a prognostic immune genes signature (including ADRB2, CTSG, CX3CR1, CXCR6, IL4R, LTB, and TMSB10) via LASSO and Cox regression analyses in the training set. Based on the training and validation sets, the Receiver Operating Characteristic curves and Kaplan-Meier analysis revealed that the immune risk signature has good predictive power in predicting sepsis mortality risk. The external validation cases also showed that mortality rates in the high-risk group were higher than those in the low-risk group. Subsequently, a nomogram integrating the combined immune risk score and other clinical features was developed. Finally, a web-based calculator was built to facilitate a convenient clinical application of the nomogram. In summary, the signature based on the immune gene holds potential as a novel prognostic predictor for sepsis.
Collapse
Affiliation(s)
- Shirong Lin
- Department of Emergency, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ping Li
- Department of Emergency, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jibin Yang
- Department of Emergency, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shiwen Liu
- Department of Emergency, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shaofang Huang
- Department of Emergency, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ziyan Huang
- Department of Emergency, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Congyang Zhou
- Department of Emergency, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ying Liu
- Department of Emergency, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Cattaneo A, Wipplinger C, Geske C, Semmler F, Wipplinger TM, Griessenauer CJ, Weiland J, Beez A, Ernestus RI, Westermaier T, Kunze E, Stetter C. Investigating the relationship between high-dose norepinephrine administration and the incidence of delayed cerebral infarction in patients with aneurysmal subarachnoid hemorrhage: A single-center retrospective evaluation. PLoS One 2023; 18:e0283180. [PMID: 36943859 PMCID: PMC10030022 DOI: 10.1371/journal.pone.0283180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/05/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND One of the longest-standing treatments to prevent delayed cerebral infarction (DCI) in patients with aneurysmal subarachnoid hemorrhage (aSAH) remains raising the blood pressure to a certain level of mean arterial pressure. This may require high doses of norepinephrine, which has been associated with severe end organ damage. With this study, we aimed to investigate the effects of norepinephrine on the incidence of DCI in a clinical setting. METHODS We conducted a retrospective evaluation of patients with aSAH admitted to our institution between November 2018 and March 2021. Potential risk factors for DCI were analyzed and significant predictors were assessed by means of a logistic regression analysis to account for potential confounders. RESULTS In this study, 104 patients were included. Hereof, 39 (38%) showed radiologic signs of DCI between day three and 14 post-intervention. These patients had more frequent vasospasms (n = 37 vs. 30, p = 0.022), a higher Hunt & Hess score (3 ± 2 vs. 2 ± 1, p = 0.004), a lower initial Glasgow Coma Scale score (9 ± 5 vs. 12 ± 4, p = 0.003) and received a higher median norepinephrine dose (20,356μg vs. 6,508μg, p < 0.001). A logistic regression analysis revealed that only high-dose norepinephrine administration (OR 2.84, CI 1.56-7.8) and vasospasm (OR 3.07, CI 1.2-7.84) appeared to be significant independent risk factors for DCI. CONCLUSION Our results indicate a significant association between higher dose norepinephrine administration and the occurrence of DCI. Future research including greater sample sizes and a prospective setting will be necessary to further investigate the relationship.
Collapse
Affiliation(s)
- Andrea Cattaneo
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | | | - Caroline Geske
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Florian Semmler
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Tamara M Wipplinger
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, United States of America
| | - Christoph J Griessenauer
- Department of Neurosurgery, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
- Research Institute of Neurointervention, Paracelsus Medical University, Salzburg, Austria
| | - Judith Weiland
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Alexandra Beez
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Ralf-Ingo Ernestus
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Westermaier
- Department of Neurosurgery, Helios-Amper Klinikum Dachau, Dachau, Germany
| | - Ekkehard Kunze
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Christian Stetter
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Carbone AM, Del Calvo G, Nagliya D, Sharma K, Lymperopoulos A. Autonomic Nervous System Regulation of Epicardial Adipose Tissue: Potential Roles for Regulator of G Protein Signaling-4. Curr Issues Mol Biol 2022; 44:6093-6103. [PMID: 36547076 PMCID: PMC9776453 DOI: 10.3390/cimb44120415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The epicardial adipose tissue (EAT) or epicardial fat is a visceral fat depot in the heart that contains intrinsic adrenergic and cholinergic nerves, through which it interacts with the cardiac sympathetic (adrenergic) and parasympathetic (cholinergic) nervous systems. These EAT nerves represent a significant source of several adipokines and other bioactive molecules, including norepinephrine, epinephrine, and free fatty acids. The production of these molecules is biologically relevant for the heart, since abnormalities in EAT secretion are implicated in the development of pathological conditions, including coronary atherosclerosis, atrial fibrillation, and heart failure. Sympathetic hyperactivity and parasympathetic (cholinergic) derangement are associated with EAT dysfunction, leading to a variety of adverse cardiac conditions, such as heart failure, diastolic dysfunction, atrial fibrillation, etc.; therefore, several studies have focused on exploring the autonomic regulation of EAT as it pertains to heart disease pathogenesis and progression. In addition, Regulator of G protein Signaling (RGS)-4 is a protein with significant regulatory roles in both adrenergic and muscarinic receptor signaling in the heart. In this review, we provide an overview of the autonomic regulation of EAT, with a specific focus on cardiac RGS4 and the potential roles this protein plays in this regulation.
Collapse
|
14
|
Liu JL, Zheng YH, Chen LJ, Zhang KK, Li JH, Yang JZ, Li XW, Zhao D, Xie XL, Wang Q. mRNA microarray analysis for the identification of potential biomarkers for vital reaction in burned skin: a preliminary pilot study. Forensic Sci Med Pathol 2022; 18:319-328. [PMID: 35543929 DOI: 10.1007/s12024-022-00474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2022] [Indexed: 12/14/2022]
Abstract
The identification of ante- and post-mortem burns is challenging in forensic pathology. In this study, microarray analysis was used to detect the mRNA expression profiles in the skin of an experimental burn mouse model; the results were validated using RT-qPCR. Differentially expressed mRNAs (DE-mRNAs) were assessed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Our results revealed that mRNA expression of 501 genes was significantly different, of which 273 were upregulated and 228 were downregulated in ante-mortem burned mice skin. The expression levels of eight random mRNAs were consistent when measured using the microarray assay-based method and RT-qPCR. Genes from different functional categories and signalling pathways were enriched, including interleukin-20 binding, type IV hypersensitivity, negative regulation of acute inflammatory response, sensory organ development, endocytosis, neuroactive ligand-receptor interaction, and Jak-STAT signalling pathway. Only five of the eight mRNAs exhibited consistent changes in expression between burned skin samples of mice and human autopsy specimens. Our findings showed that DE-mRNAs revealed using microarray are potential biomarkers of ante-mortem burns. However, DE-mRNAs identified from experimental animal models cannot be directly extended to autopsy specimens without careful validation.
Collapse
Affiliation(s)
- Jia-Li Liu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Guangzhou, 510515, China
| | - Ye-Hua Zheng
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Guangzhou, 510515, China
| | - Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Guangzhou, 510515, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Guangzhou, 510515, China
| | - Jia-Hao Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Guangzhou, 510515, China
| | - Jian-Zheng Yang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Guangzhou, 510515, China
| | - Xiu-Wen Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Guangzhou, 510515, China
| | - Dong Zhao
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, 100088, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University, (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, Guangzhou, 510515, China.
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1023, South Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Alluri S, Eisenberg SM, Grisanti LA, Tanner M, Volkow ND, Kim SW, Kil KE. Preclinical evaluation of new C-11 labeled benzo-1,4-dioxane PET radiotracers for brain α2C adrenergic receptors. Eur J Med Chem 2022; 243:114764. [DOI: 10.1016/j.ejmech.2022.114764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022]
|
16
|
Borges JI, Carbone AM, Cora N, Sizova A, Lymperopoulos A. GTPγS Assay for Measuring Agonist-Induced Desensitization of Two Human Polymorphic Alpha 2B-Adrenoceptor Variants. Methods Mol Biol 2022; 2547:267-273. [PMID: 36068469 DOI: 10.1007/978-1-0716-2573-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
α2-Adrenergic receptors (ARs) mediate many cellular actions of epinephrine and norepinephrine, including inhibition of their secretion (sympathetic inhibition) from adrenal chromaffin cells. Like many other G protein-coupled receptors (GPCRs), they undergo agonist-dependent phosphorylation and desensitization by GPCR kinases (GRKs), a phenomenon recently shown to play a major role in the sympathetic overdrive that accompanies and aggravates chronic heart failure. A three-glutamic acid deletion polymorphism in the human α2B-AR subtype gene (Glu301-303) causes impaired agonist-promoted receptor phosphorylation and desensitization, resulting in enhanced signaling to inhibition of cholinergic-induced catecholamine secretion in adrenal chromaffin cells. One of the various pharmacological assays that can be used to quantify and quantitatively compare the degrees of agonist-dependent desensitization, i.e., G protein decoupling, of these two polymorphic α2B-AR variants (or of any two GPCRs for that matter) is the guanosine-5'-O-3-thiotriphosphate (GTPγS) assay that can directly quantify heterotrimeric G protein activation.
Collapse
Affiliation(s)
- Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Alexandra M Carbone
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
17
|
Lu J, Liu G, Wang Z, Cao J, Chen Y, Dong Y. Restraint stress induces uterine microenvironment disorder in mice during early pregnancy through the β 2-AR/cAMP/PKA pathway. Stress 2021; 24:514-528. [PMID: 33280472 DOI: 10.1080/10253890.2020.1855419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During pregnancy, uterus undergoes the environment adaptation as part of a program of development. In the world, one in four people worldwide suffer from mental illness, especially pregnant women. β-Adrenergic receptor (β-AR) is an important regulator that converts environmental stimuli into intracellular signals in mice uterus. CD-1 (ICR) mice undergone restraint stress, which was a case in model to simulate the psychological stress. The plasma and implantation sites in uterus were obtained and examined. PCR analysis demonstrated that β2-AR expression levels in embryo day (E) 3, 5 and 7 were kept at a significantly higher level (p < 0.05) under restraint stress and higher than β1-AR and β3-AR in different gestation ages. The β2-AR protein levels were obviously increased (p < 0.05) due to the markedly elevated norepinephrine (NE) concentration (p < 0.05). In our previous study, restraint stress can induce the apoptosis and inflammation. Also, the matrix metalloprotein-9 (MMP-9) was decreased significantly (p < 0.05) under restraint stress. Meanwhile, Caspase3, p-NF-κB p65 and p-ERK1/2 were obviously increased (p < 0.05) in the work. In vitro studies showed that the p-ERK1/2 and Caspase-3 levels were raised (p < 0.05) after β2-AR was activated. However, they were decreased when PKA was blocked. The protein levels of Caspase-3 were reduced when ERK and NF-κB were blocked (p < 0.05). In conclusion, the β2-AR/cAMP/PKA pathway promoted apoptosis and affected the development of the uterus through the ERK and NF-κB signaling pathway. The findings of this study may provide evidence for female reproduction under psychological stress.
Collapse
Affiliation(s)
- Jiayin Lu
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Guanhui Liu
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Zixu Wang
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Jing Cao
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yaoxing Chen
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yulan Dong
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
18
|
Perez DM. Targeting Adrenergic Receptors in Metabolic Therapies for Heart Failure. Int J Mol Sci 2021; 22:5783. [PMID: 34071350 PMCID: PMC8198887 DOI: 10.3390/ijms22115783] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
The heart has a reduced capacity to generate sufficient energy when failing, resulting in an energy-starved condition with diminished functions. Studies have identified numerous changes in metabolic pathways in the failing heart that result in reduced oxidation of both glucose and fatty acid substrates, defects in mitochondrial functions and oxidative phosphorylation, and inefficient substrate utilization for the ATP that is produced. Recent early-phase clinical studies indicate that inhibitors of fatty acid oxidation and antioxidants that target the mitochondria may improve heart function during failure by increasing compensatory glucose oxidation. Adrenergic receptors (α1 and β) are a key sympathetic nervous system regulator that controls cardiac function. β-AR blockers are an established treatment for heart failure and α1A-AR agonists have potential therapeutic benefit. Besides regulating inotropy and chronotropy, α1- and β-adrenergic receptors also regulate metabolic functions in the heart that underlie many cardiac benefits. This review will highlight recent studies that describe how adrenergic receptor-mediated metabolic pathways may be able to restore cardiac energetics to non-failing levels that may offer promising therapeutic strategies.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
19
|
Identify potential miRNA-mRNA regulatory networks contributing to high-risk neuroblastoma. Invest New Drugs 2021; 39:901-913. [PMID: 33666785 DOI: 10.1007/s10637-021-01064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
Neuroblastoma (NB) is a common tumor in children, usually in the retroperitoneum. After various treatments, low- and intermediate-risk patients have achieved good results, but the prognosis of high-risk patients is still very poor. Therefore, it is necessary to find new effective targets for the treatment of high-risk patients. In this study, comprehensive bioinformatics analysis was used to identify the differentially expressed genes (DEG and DEM) between high-risk patients and non-high-risk patients, and it was identified that ADRB2 may affect the survival status of high-risk patients due to miR -30a-5p regulation. The GSE49710, GSE73517, and GSE121513 datasets were downloaded from the Gene Expression Synthesis (GEO) database, and DEG and DEM were selected. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were applied to the selected DEGs. The STRING database and Cytoscape software were used to construct protein-protein interaction (PPI) networks and perform modular analysis of the DEGs. The TARGET data set containing information on overall survival days were used for the prognostic analysis of central genes. We identified a total of 255 DEGs from GSE49710 and GSE73517, and 193 DEMs from GSE121513. We identified the 5 most important central genes from the PPI network, performed a prognostic analysis in the target data set, and verified their expression using RT-qPCR to select the most important ADRB2 gene to predict miRNA. Integrating the differential miRNA predicted by miRDB and miRSystem and GSE121513 between the targeted miRNA and the prognosis, miR-30a-5p was finally identified as the targeted miRNA of ADRB2.
Collapse
|
20
|
Sohn R, Rösch G, Junker M, Meurer A, Zaucke F, Jenei-Lanzl Z. Adrenergic signalling in osteoarthritis. Cell Signal 2021; 82:109948. [PMID: 33571663 DOI: 10.1016/j.cellsig.2021.109948] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022]
Abstract
Adrenoceptors (ARs) mediate the effects of the sympathetic neurotransmitters norepinephrine (NE) and epinephrine (E) in the human body and play a central role in physiologic and pathologic processes. Therefore, ARs have long been recognized as targets for therapeutic agents, especially in the field of cardiovascular medicine. During the past decades, the contribution of the sympathetic nervous system (SNS) and particularly of its major peripheral catecholamine NE to the pathogenesis of osteoarthritis (OA) attracted growing interest. OA is the most common degenerative joint disorder worldwide and a disease of the whole joint. It is characterized by progressive degradation of articular cartilage, synovial inflammation, osteophyte formation, and subchondral bone sclerosis mostly resulting in chronic pain. The subchondral bone marrow, the periosteum, the synovium, the vascular meniscus and numerous tendons and ligaments are innervated by tyrosine hydroxylase-positive (TH+) sympathetic nerve fibers that release NE into the synovial fluid and cells of all abovementioned joint tissues express at least one out of nine AR subtypes. During the past decades, several in vitro studies explored the AR-mediated effects of NE on different cell types in the joint. So far, only a few studies used animal OA models to investigate the contribution of distinct AR subtypes to OA pathogenesis in vivo. This narrative review shortly summarizes the current background knowledge about ARs and their signalling pathways at first. In the second part, we focus on recent findings in the field of NE-induced AR-mediated signalling in different joint tissues during OA pathogenesis and at the end, we will delineate the potential of targeting the adrenergic signalling for OA prevention or treatment. We used the PubMed bibliographic database to search for keywords such as 'joint' or 'cartilage' or 'synovium' or 'bone' and 'osteoarthritis' and/or 'trauma' and 'sympathetic nerve fibers' and/or 'norepinephrine' and 'adrenergic receptors / adrenoceptors' as well as 'adrenergic therapy'.
Collapse
Affiliation(s)
- Rebecca Sohn
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Gundula Rösch
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Marius Junker
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany.
| |
Collapse
|
21
|
The Role of the FOXO1/β 2-AR/p-NF-κB p65 Pathway in the Development of Endometrial Stromal Cells in Pregnant Mice under Restraint Stress. Int J Mol Sci 2021; 22:ijms22031478. [PMID: 33540675 PMCID: PMC7867244 DOI: 10.3390/ijms22031478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Restraint stress causes various maternal diseases during pregnancy. β2-Adrenergic receptor (β2-AR) and Forkhead transcription factor class O 1 (FOXO1) are critical factors not only in stress, but also in reproduction. However, the role of FOXO1 in restraint stress, causing changes in the β2-AR pathway in pregnant mice, has been unclear. The aim of this research was to investigate the β2-AR pathway of restraint stress and its impact on the oxidative stress of the maternal uterus. In the study, maternal mice were treated with restraint stress by being restrained in a transparent and ventilated device before sacrifice on Pregnancy Day 5 (P5), Pregnancy Day 10 (P10), Pregnancy Day 15 (P15), and Pregnancy Day 20 (P20) as well as on Non-Pregnancy Day 5 (NP5). Restraint stress augmented blood corticosterone (CORT), norepinephrine (NE), and blood glucose levels, while oestradiol (E2) levels decreased. Moreover, restraint stress increased the mRNA levels of the FOXO family, β2-AR, and even the protein levels of FOXO1 and β2-AR in the uterus and ovaries. Furthermore, restraint stress increased uterine oxidative stress level. In vitro, the protein levels of FOXO1 were also obviously increased when β2-AR was activated in endometrial stromal cells (ESCs). In addition, phosphorylated-nuclear factor kappa-B p65 (p-NF-κB p65) and its target genes decreased significantly when FOXO1 was inhibited. Overall, it can be said that the β2-AR/FOXO1/p-NF-κB p65 pathway was activated when pregnant mice were under restraint stress. This study provides a scientific basis for the origin of psychological stress in pregnant women.
Collapse
|
22
|
Mahmoodkhani M, Amini M, Derafshpour L, Ghasemi M, Mehranfard N. Negative relationship between brain α 1A-AR neurotransmission and βArr2 levels in anxious adolescent rats subjected to early life stress. Exp Brain Res 2020; 238:2833-2844. [PMID: 33025031 DOI: 10.1007/s00221-020-05937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/27/2020] [Indexed: 01/06/2023]
Abstract
Early-life stress is correlated with the development of anxiety-related behavior in adolescence, but underlying mechanisms remain poorly known. The α1A-adrenergic receptor (AR) is linked to mood regulation and its function is assumed to be regulated by β-arrestins (βArrs) via desensitization and downregulation. Here, we investigated correlation between changes in α1A-AR and βArr2 levels in the prefrontal cortex (PFC) and hippocampus of adolescent and adult male rats subjected to maternal separation (MS) and their relationship with anxiety-like behavior in adolescence. MS was performed 3 h per day from postnatal days 2-11 and anxiety-like behavior was evaluated in the elevated plus-maze and open field tests. The protein levels were examined using western blot assay. MS decreased α1A-AR expression and increased βArr2 expression in both brain regions of adolescent rats, while induced reverse changes in adulthood. MS adolescent rats demonstrated higher anxiety-type behavior and lower activity in behavioral tests than controls. Decreased α1A-AR levels in MS adolescence strongly correlated with reduced time spent in the open field central area, consistent with increased anxiety-like behavior. An anxiety-like phenotype was mimicked by acute and chronic treatment of developing rats with prazosin, an α1A-AR antagonist, suggesting α1A-AR downregulation may facilitate anxiety behavior in MS adolescent rats. Together, our results indicate a negative correlation between α1A-AR neurotransmission and βArr2 levels in both adults and anxious-adolescent rats and suggest that increased βArr2 levels may contribute to posttranslational regulation of α1A-AR and modulation of anxiety-like behavior in adolescent rats. This may provide a path to develop more effective anxiolytic treatments.
Collapse
Affiliation(s)
- Maryam Mahmoodkhani
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Amini
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Derafshpour
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
23
|
Qu L, Zhou Q, Xu Y, Guo Y, Chen X, Yao D, Han GW, Liu ZJ, Stevens RC, Zhong G, Wu D, Zhao S. Structural Basis of the Diversity of Adrenergic Receptors. Cell Rep 2020; 29:2929-2935.e4. [PMID: 31801060 DOI: 10.1016/j.celrep.2019.10.088] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/23/2019] [Accepted: 10/22/2019] [Indexed: 11/25/2022] Open
Abstract
Adrenergic receptors are highly homologous while at the same time display a wide diversity of ligand and G-protein binding, and understanding this diversity is key for designing selective or biased drugs for them. Here, we determine two crystal structures of the α2A adrenergic receptor (α2AAR) in complex with a partial agonist and an antagonist. Key non-conserved residues from the ligand-binding pocket (Phe7.39 and Tyr6.55) to G-protein coupling region (Ile34.51 and Lys34.56) are discovered to play a key role in the interplay between partial agonism and biased signaling of α2AAR, which provides insights into the diversity of ligand binding and G-protein coupling preference of adrenergic receptors and lays the foundation for the discovery of next-generation drugs targeting these receptors.
Collapse
Affiliation(s)
- Lu Qu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingtong Zhou
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yueming Xu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yu Guo
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Chen
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Deqiang Yao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Gye Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Dong Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
24
|
Alluri SR, Kim SW, Volkow ND, Kil KE. PET Radiotracers for CNS-Adrenergic Receptors: Developments and Perspectives. Molecules 2020; 25:molecules25174017. [PMID: 32899124 PMCID: PMC7504810 DOI: 10.3390/molecules25174017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022] Open
Abstract
Epinephrine (E) and norepinephrine (NE) play diverse roles in our body’s physiology. In addition to their role in the peripheral nervous system (PNS), E/NE systems including their receptors are critical to the central nervous system (CNS) and to mental health. Various antipsychotics, antidepressants, and psychostimulants exert their influence partially through different subtypes of adrenergic receptors (ARs). Despite the potential of pharmacological applications and long history of research related to E/NE systems, research efforts to identify the roles of ARs in the human brain taking advantage of imaging have been limited by the lack of subtype specific ligands for ARs and brain penetrability issues. This review provides an overview of the development of positron emission tomography (PET) radiotracers for in vivo imaging of AR system in the brain.
Collapse
Affiliation(s)
- Santosh Reddy Alluri
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211-5110, USA;
| | - Sung Won Kim
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1013, USA;
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1013, USA;
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892-1013, USA
- Correspondence: (N.D.V.); (K.-E.K.); Tel.: +1-(301)-443-6480 (N.D.V.); +1-(573)-884-7885 (K.-E.K.)
| | - Kun-Eek Kil
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211-5110, USA;
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence: (N.D.V.); (K.-E.K.); Tel.: +1-(301)-443-6480 (N.D.V.); +1-(573)-884-7885 (K.-E.K.)
| |
Collapse
|
25
|
Borovac JA, D'Amario D, Bozic J, Glavas D. Sympathetic nervous system activation and heart failure: Current state of evidence and the pathophysiology in the light of novel biomarkers. World J Cardiol 2020; 12:373-408. [PMID: 32879702 PMCID: PMC7439452 DOI: 10.4330/wjc.v12.i8.373] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/19/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome characterized by the activation of at least several neurohumoral pathways that have a common role in maintaining cardiac output and adequate perfusion pressure of target organs and tissues. The sympathetic nervous system (SNS) is upregulated in HF as evident in dysfunctional baroreceptor and chemoreceptor reflexes, circulating and neuronal catecholamine spillover, attenuated parasympathetic response, and augmented sympathetic outflow to the heart, kidneys and skeletal muscles. When these sympathoexcitatory effects on the cardiovascular system are sustained chronically they initiate the vicious circle of HF progression and become associated with cardiomyocyte apoptosis, maladaptive ventricular and vascular remodeling, arrhythmogenesis, and poor prognosis in patients with HF. These detrimental effects of SNS activity on outcomes in HF warrant adequate diagnostic and treatment modalities. Therefore, this review summarizes basic physiological concepts about the interaction of SNS with the cardiovascular system and highlights key pathophysiological mechanisms of SNS derangement in HF. Finally, special emphasis in this review is placed on the integrative and up-to-date overview of diagnostic modalities such as SNS imaging methods and novel laboratory biomarkers that could aid in the assessment of the degree of SNS activation and provide reliable prognostic information among patients with HF.
Collapse
Affiliation(s)
- Josip Anđelo Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Working Group on Heart Failure of Croatian Cardiac Society, Zagreb 10000, Croatia
| | - Domenico D'Amario
- Department of Cardiovascular and Thoracic Sciences, IRCCS Fondazione Policlinico A. Gemelli, Universita Cattolica Sacro Cuore, Rome 00168, Italy
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Duska Glavas
- Working Group on Heart Failure of Croatian Cardiac Society, Zagreb 10000, Croatia
- Clinic for Cardiovascular Diseases, University Hospital of Split, Split 21000, Croatia
| |
Collapse
|
26
|
Chen P, Luo X, Dai G, Jiang Y, Luo Y, Peng S, Wang H, Xie P, Qu C, Lin W, Hong J, Ning X, Li A. Dexmedetomidine promotes the progression of hepatocellular carcinoma through hepatic stellate cell activation. Exp Mol Med 2020; 52:1062-1074. [PMID: 32632241 PMCID: PMC8080602 DOI: 10.1038/s12276-020-0461-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/02/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Dexmedetomidine (DEX) is an anesthetic that is widely used in the clinic, and it has been reported to exhibit paradoxical effects in the progression of multiple solid tumors. In this study, we sought to explore the mechanism by which DEX regulates hepatocellular carcinoma (HCC) progression underlying liver fibrosis. We determined the effects of DEX on tumor progression in an orthotopic HCC mouse model of fibrotic liver. A coculture system and a subcutaneous xenograft model involving coimplantation of mouse hepatoma cells (H22) and primary activated hepatic stellate cells (aHSCs) were used to study the effects of DEX on HCC progression. We found that in the preclinical mouse model of liver fibrosis, DEX treatment significantly shortened median survival time and promoted tumor growth, intrahepatic metastasis and pulmonary metastasis. The DEX receptor (ADRA2A) was mainly expressed in aHSCs but was barely detected in HCC cells. DEX dramatically reinforced HCC malignant behaviors in the presence of aHSCs in both the coculture system and the coimplantation mouse model, but DEX alone exerted no significant effects on the malignancy of HCC. Mechanistically, DEX induced IL-6 secretion from aHSCs and promoted HCC progression via STAT3 activation. Our findings provide evidence that the clinical application of DEX may cause undesirable side effects in HCC patients with liver fibrosis.
Collapse
Affiliation(s)
- Peng Chen
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Xiaojun Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Guanqi Dai
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Yuchuan Jiang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Yue Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Shuang Peng
- Department of Pathophysiology, School of Medicine, Jinan University, 510632, Guangzhou, China
| | - Hao Wang
- Laboratory of Molecular Medicine, School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, China
| | - Penghui Xie
- Laboratory of Molecular Medicine, School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, China
| | - Chen Qu
- School of Medicine, Jinan University, 510632, Guangzhou, China
| | - Wenyu Lin
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Jian Hong
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
- School of Medicine, Jinan University, 510632, Guangzhou, China
| | - Xue Ning
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| | - Aimin Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| |
Collapse
|
27
|
Carbajal-García A, Reyes-García J, Montaño LM. Androgen Effects on the Adrenergic System of the Vascular, Airway, and Cardiac Myocytes and Their Relevance in Pathological Processes. Int J Endocrinol 2020; 2020:8849641. [PMID: 33273918 PMCID: PMC7676939 DOI: 10.1155/2020/8849641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Androgen signaling comprises nongenomic and genomic pathways. Nongenomic actions are not related to the binding of the androgen receptor (AR) and occur rapidly. The genomic effects implicate the binding to a cytosolic AR, leading to protein synthesis. Both events are independent of each other. Genomic effects have been associated with different pathologies such as vascular ischemia, hypertension, asthma, and cardiovascular diseases. Catecholamines play a crucial role in regulating vascular smooth muscle (VSM), airway smooth muscle (ASM), and cardiac muscle (CM) function and tone. OBJECTIVE The aim of this review is an updated analysis of the role of androgens in the adrenergic system of vascular, airway, and cardiac myocytes. Body. Testosterone (T) favors vasoconstriction, and its concentration fluctuation during life stages can affect the vascular tone and might contribute to the development of hypertension. In the VSM, T increases α1-adrenergic receptors (α 1-ARs) and decreases adenylyl cyclase expression, favoring high blood pressure and hypertension. Androgens have also been associated with asthma. During puberty, girls are more susceptible to present asthma symptoms than boys because of the increment in the plasmatic concentrations of T in young men. In the ASM, β 2-ARs are responsible for the bronchodilator effect, and T augments the expression of β 2-ARs evoking an increase in the relaxing response to salbutamol. The levels of T are also associated with an increment in atherosclerosis and cardiovascular risk. In the CM, activation of α 1A-ARs and β 2-ARs increases the ionotropic activity, leading to the development of contraction, and T upregulates the expression of both receptors and improves the myocardial performance. CONCLUSIONS Androgens play an essential role in the adrenergic system of vascular, airway, and cardiac myocytes, favoring either a state of health or disease. While the use of androgens as a therapeutic tool for treating asthma symptoms or heart disease is proposed, the vascular system is warmly affected.
Collapse
Affiliation(s)
- Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| |
Collapse
|
28
|
Kanashiro A, Leoncio TODL, Schneider AH, Alves HR, Bassi GS, Dutra SGV, Cunha FDQ, Ulloa L, Malvar DDC. Regulation of murine arthritis by systemic, spinal, and intra-articular adrenoceptors. Pharmacol Rep 2019; 71:1095-1103. [PMID: 31629939 DOI: 10.1016/j.pharep.2019.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/10/2019] [Accepted: 06/17/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND The regulation of the immune system by the sympathetic nervous system is allowing the design of novel treatments for inflammatory disorders such as arthritis. In this study, we have analyzed the effects of α- and β-adrenoceptor agonists injected subcutaneously, intrathecally, or intra-articularly in zymosan-induced arthritis. METHODS Murine arthritis was induced by intra-articular (knee joint) injection of zymosan. α1 (phenylephrine), α2 (clonidine), β1 (dobutamine), or β2 (salbutamol)-adrenoceptor agonists were injected subcutaneously (sc), intrathecally (it), or intra-articularly (ia) to activate peripheral, spinal, or intra-articular adrenoceptors and to study their effects on articular edema formation and neutrophil migration into the synovial cavity. RESULTS Treatments with phenylephrine did not affect the edema formation, but it increased neutrophil migration when injected subcutaneously (155.3%) or intra-articularly (187.7%). Treatments with clonidine inhibited neutrophil migration (59.9% sc, 68.7% it, 42.8% ia) regardless of the route of administration, but it inhibited edema formation only when injected intrathecally (66.7%) or intra-articularly (36%) but not subcutaneously. Treatments with dobutamine inhibited both edema (42.0% sc, 69.5% it, 61.6% ia) and neutrophil migration (28.4% sc, 70.3% it, 82.4% ia) in a concentration dependent manner. Likewise, all the treatments with salbutamol also inhibited edema formation (89.9% sc, 62.4% it, 69.8% ia) and neutrophil migration (76.6% sc, 39.1% it, 71.7% ia). CONCLUSION Whereas the β-adrenoceptor agonists induced anti-inflammatory effects regardless of their route of administration, α1- and α2-adrenoceptor agonists induced either pro- and anti-inflammatory effects, respectively.
Collapse
Affiliation(s)
- Alexandre Kanashiro
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil; Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | - Ayda Henriques Schneider
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Hélio Rocha Alves
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Gabriel Shimizu Bassi
- Department of Surgery, Center of Immunology and Inflammation, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | | | - Fernando de Queiróz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis Ulloa
- Department of Surgery, Center of Immunology and Inflammation, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - David do Carmo Malvar
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil.
| |
Collapse
|
29
|
Sustained GRK2-dependent CREB activation is essential for α 2-adrenergic receptor-induced PC12 neuronal differentiation. Cell Signal 2019; 66:109446. [PMID: 31678682 DOI: 10.1016/j.cellsig.2019.109446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022]
Abstract
Many aspects of neuronal development, such as neuronal survival and differentiation, are regulated by the transcription factor cAMP-response element-binding protein (CREB). We have previously reported that α2-adrenergic receptors (ARs), members of the G protein-coupled receptor (GPCR) superfamily, induce neuronal differentiation of rat pheochromocytoma (PC)-12 cells in a subtype-specific manner, i.e. α2A<α2B<α2C. Herein, we sought to investigate CREB`s involvement in this α2AR-dependent neurogenic process. We used a combination of gene reporter assays and immunoblotting analysis, coupled with co-immunoprecipitation and morphological analysis, in transfected PC12 cell lines. Chronic α2B- or α2C-AR activation results in sustained CREB activation, which is both necessary and sufficient for neuronal differentiation of PC12 cells expressing these two α2ARs. In contrast, chronic α2A activation only leads to transient CREB activation, insufficient for PC12 neuronal differentiation. However, upon CREB overexpression, α2A-AR triggers neuronal differentiation similarly to α2B- or α2C-ARs. Importantly, NGF (Nerve Growth Factor)`s TrkA receptor transactivation is essential for the sustained activation of CREB by all three α2 subtypes in PC12 cells, whereas protein kinase A (PKA), the prototypic kinase that phosphorylates CREB, is not. Instead, TrkA-activated GPCR-kinase (GRK)-2 mediates the sustained CREB activation during α2AR-induced neuronal differentiation of PC12 cells. In conclusion, catecholaminergic-induced neuronal differentiation of PC12 cells through α2ARs uses a non-canonical pathway involving TrkA transactivation and subsequent GRK2-dependent, sustained phosphorylation/activation of CREB. These findings provide novel insights into catecholaminergic neurogenesis and suggest that α2AR agonists, combined with NGF analogs or GRK2 stimulators, may exert neurogenic/neuroprotective effects.
Collapse
|
30
|
Effect of Stimulation of α 2-Adrenergic Receptors on Action Potential of Working Cardiomyocytes in Rat Atrium. Bull Exp Biol Med 2019; 167:603-605. [PMID: 31606802 DOI: 10.1007/s10517-019-04579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Indexed: 10/25/2022]
Abstract
The study examined the effect of clonidine hydrochloride (10-9-10-5 М) on electrical activity of working cardiomyocytes in rat right atrium. Stimulation of α2-adrenergic receptor with clonidine changed electrical activity of the heart. All tested concentrations of the agonist lengthened the action potential and decreased the firing rate of cardiomyocytes in a dose-dependent manner. The maximum effects of clonidine were observed at concentration of 10-5 М.
Collapse
|
31
|
Rivero EM, Martinez LM, Bruque CD, Gargiulo L, Bruzzone A, Lüthy IA. Prognostic significance of α- and β2-adrenoceptor gene expression in breast cancer patients. Br J Clin Pharmacol 2019; 85:2143-2154. [PMID: 31218733 DOI: 10.1111/bcp.14030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/04/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS Breast cancer is the most frequently diagnosed and leading cause of cancer death among women worldwide. It was classified within molecular intrinsic subtypes: luminal A, luminal B, human epidermal growth factor receptor 2-enriched and basal-like. Epinephrine and norepinephrine, released during stress, bind to adrenoceptors. α2 -adrenoceptors are encoded by the ADRA2A, ADRA2B and ADRA2C genes and β2 by ADRB2. METHODS We compiled several publicly available Affymetrix gene expression datasets, obtaining a large cohort of 1924 patients with distant metastasis-free survival (DMFS) data and evaluated the association between adrenoceptor expression, clinicopathological markers and outcome. RESULTS ADRA2A high expressing tumours also expressed hormone receptors and presented diminished tumour size, grade and not compromised lymph nodes. ADRB2 high expression was found in smaller, low grade, oestrogen receptor-positive tumours. Both were significantly associated with the absence of metastasis. High expression of ADRA2C was positively associated with increased tumour size and metastatic relapse. We observed a significant increase in DMFS of patients with high ADRA2A (hazard ratio 0.54, 95% CI 0.45-0.65, P < .001) and ADRB2 (0.77, 0.64-0.93, P = .006) expression and a decrease with ADRA2C high expression (1.45, 1.16-1.81, P = .001). For patients with luminal tumours, ADRA2A was the only factor that retained its significance as an independent predictor of DMFS while ADRA2C expression was an independent predictor for worse prognosis in basal-like tumours. CONCLUSIONS We herein provide new insight for a potential role of ADRA2A and ADRA2C in breast cancer. In low- and medium-income countries, their incorporation to routine immunohistochemistry analysis of biopsies or tumour samples, could provide additional low-cost prognostic factors.
Collapse
Affiliation(s)
- Ezequiel Mariano Rivero
- Laboratory of Hormones and Cancer, Instituto de Biología y Medicina Experimental (IBYME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Carlos David Bruque
- ANLIS, Centro Nacional de Genética Médica, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucia Gargiulo
- Laboratory of Hormones and Cancer, Instituto de Biología y Medicina Experimental (IBYME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas Bahía Blanca INIBIBB-CONICET, Bahía Blanca, Argentina
| | - Isabel Alicia Lüthy
- Laboratory of Hormones and Cancer, Instituto de Biología y Medicina Experimental (IBYME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
32
|
Akinaga J, García‐Sáinz JA, S. Pupo A. Updates in the function and regulation of α 1 -adrenoceptors. Br J Pharmacol 2019; 176:2343-2357. [PMID: 30740663 PMCID: PMC6592863 DOI: 10.1111/bph.14617] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
α1 -Adrenoceptors are seven transmembrane domain GPCRs involved in numerous physiological functions controlled by the endogenous catecholamines, noradrenaline and adrenaline, and targeted by drugs useful in therapeutics. Three separate genes, whose products are named α1A -, α1B -, and α1D - adrenoceptors, encode these receptors. Although the existence of multiple α1 -adrenoceptors has been acknowledged for almost 25 years, the specific functions regulated by each subtype are still largely unknown. Despite the limited comprehension, the identification of a single class of subtype-selective ligands for the α1A - adrenoceptors, the so-called α-blockers for prostate dysfunction, has led to major improvement in therapeutics, demonstrating the need for continued efforts in the field. This review article surveys the tissue distribution of the three α1 -adrenoceptor subtypes in the cardiovascular system, genitourinary system, and CNS, highlighting the functions already identified as mediated by the predominant activation of specific subtypes. In addition, this review covers the recent advances in the understanding of the molecular mechanisms involved in the regulation of each of the α1 -adrenoceptor subtypes by phosphorylation and interaction with proteins involved in their desensitization and internalization. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Juliana Akinaga
- Department of PharmacologyInstituto de Biociências, UNESPBotucatuBrazil
| | - J. Adolfo García‐Sáinz
- Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - André S. Pupo
- Department of PharmacologyInstituto de Biociências, UNESPBotucatuBrazil
| |
Collapse
|
33
|
Jang HS, Kim J, Padanilam BJ. Renal sympathetic nerve activation via α 2-adrenergic receptors in chronic kidney disease progression. Kidney Res Clin Pract 2019; 38:6-14. [PMID: 30831675 PMCID: PMC6481969 DOI: 10.23876/j.krcp.18.0143] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is increasing worldwide without an effective therapeutic strategy. Sympathetic nerve activation is implicated in CKD progression, as well as cardiovascular dysfunction. Renal denervation is beneficial for controlling blood pressure (BP) and improving renal function through reduction of sympathetic nerve activity in patients with resistant hypertension and CKD. Sympathetic neurotransmitter norepinephrine (NE) via adrenergic receptor (AR) signaling has been implicated in tissue homeostasis and various disease progressions, including CKD. Increased plasma NE level is a predictor of survival and the incidence of cardiovascular events in patients with end-stage renal disease, as well as future renal injury in subjects with normal BP and renal function. Our recent data demonstrate that NE derived from renal nerves causes renal inflammation and fibrosis progression through alpha-2 adrenergic receptors (α2-AR) in renal fibrosis models independent of BP. Sympathetic nerve activation-associated molecular mechanisms and signals seem to be critical for the development and progression of CKD, but the exact role of sympathetic nerve activation in CKD progression remains undefined. This review explores the current knowledge of NE-α2-AR signaling in renal diseases and offers prospective views on developing therapeutic strategies targeting NE-AR signaling in CKD progression.
Collapse
Affiliation(s)
- Hee-Seong Jang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea.,Department of Biomedicine and Drug Development, Jeju National University, Jeju, Korea
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
34
|
Kulik G. ADRB2-Targeting Therapies for Prostate Cancer. Cancers (Basel) 2019; 11:E358. [PMID: 30871232 PMCID: PMC6468358 DOI: 10.3390/cancers11030358] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
There is accumulating evidence that β-2 adrenergic receptor (ADRB2) signaling contributes to the progression and therapy resistance of prostate cancer, whereas availability of clinically tested β-blocker propranolol makes this pathway especially attractive as potential therapeutic target. Yet even in tumors with active ADRB2 signaling propranolol may be ineffective. Inhibition of apoptosis is one of the major mechanisms by which activation of ADRB2 contributes to prostate cancer pathophysiology. The signaling network that controls apoptosis in prostate tumors is highly redundant, with several signaling pathways targeting a few critical apoptosis regulatory molecules. Therefore, a comprehensive analysis of ADRB2 signaling in the context of other signaling mechanisms is necessary to identify patients who will benefit from propranolol therapy. This review discusses how information on the antiapoptotic mechanisms activated by ADRB2 can guide clinical trials of ADRB2 antagonist propranolol as potential life-extending therapy for prostate cancer. To select patients for clinical trials of propranolol three classes of biomarkers are proposed. First, biomarkers of ADRB2/cAMP-dependent protein kinase (PKA) pathway activation; second, biomarkers that inform about activation of other signaling pathways unrelated to ADRB2; third, apoptosis regulatory molecules controlled by ADRB2 signaling and other survival signaling pathways.
Collapse
Affiliation(s)
- George Kulik
- Department of Cancer Biology, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, USA.
- Department of Life Sciences, Alfaisal University, Riyadh 11533, Saudi Arabia.
| |
Collapse
|
35
|
The in vivo specificity of synaptic Gβ and Gγ subunits to the α 2a adrenergic receptor at CNS synapses. Sci Rep 2019; 9:1718. [PMID: 30737458 PMCID: PMC6368627 DOI: 10.1038/s41598-018-37222-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/26/2018] [Indexed: 11/21/2022] Open
Abstract
G proteins are major transducers of signals from G-protein coupled receptors (GPCRs). They are made up of α, β, and γ subunits, with 16 Gα, 5 Gβ and 12 Gγ subunits. Though much is known about the specificity of Gα subunits, the specificity of Gβγs activated by a given GPCR and that activate each effector in vivo is not known. Here, we examined the in vivo Gβγ specificity of presynaptic α2a-adrenergic receptors (α2aARs) in both adrenergic (auto-α2aARs) and non-adrenergic neurons (hetero-α2aARs) for the first time. With a quantitative MRM proteomic analysis of neuronal Gβ and Gγ subunits, and co-immunoprecipitation of tagged α2aARs from mouse models including transgenic FLAG-α2aARs and knock-in HA-α2aARs, we investigated the in vivo specificity of Gβ and Gγ subunits to auto-α2aARs and hetero-α2aARs activated with epinephrine to understand the role of Gβγ specificity in diverse physiological functions such as anesthetic sparing, and working memory enhancement. We detected Gβ2, Gγ2, Gγ3, and Gγ4 with activated auto α2aARs, whereas we found Gβ4 and Gγ12 preferentially interacted with activated hetero-α2aARs. Further understanding of in vivo Gβγ specificity to various GPCRs offers new insights into the multiplicity of genes for Gβ and Gγ, and the mechanisms underlying GPCR signaling through Gβγ subunits.
Collapse
|
36
|
Yi B, Jahangir A, Evans AK, Briggs D, Ravina K, Ernest J, Farimani AB, Sun W, Rajadas J, Green M, Feinberg EN, Pande VS, Shamloo M. Discovery of novel brain permeable and G protein-biased beta-1 adrenergic receptor partial agonists for the treatment of neurocognitive disorders. PLoS One 2017; 12:e0180319. [PMID: 28746336 PMCID: PMC5529018 DOI: 10.1371/journal.pone.0180319] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/14/2017] [Indexed: 01/09/2023] Open
Abstract
The beta-1 adrenergic receptor (ADRB1) is a promising therapeutic target intrinsically involved in the cognitive deficits and pathological features associated with Alzheimer's disease (AD). Evidence indicates that ADRB1 plays an important role in regulating neuroinflammatory processes, and activation of ADRB1 may produce neuroprotective effects in neuroinflammatory diseases. Novel small molecule modulators of ADRB1, engineered to be highly brain permeable and functionally selective for the G protein with partial agonistic activity, could have tremendous value both as pharmacological tools and potential lead molecules for further preclinical development. The present study describes our ongoing efforts toward the discovery of functionally selective partial agonists of ADRB1 that have potential therapeutic value for AD and neuroinflammatory disorders, which has led to the identification of the molecule STD-101-D1. As a functionally selective agonist of ADRB1, STD-101-D1 produces partial agonistic activity on G protein signaling with an EC50 value in the low nanomolar range, but engages very little beta-arrestin recruitment compared to the unbiased agonist isoproterenol. STD-101-D1 also inhibits the tumor necrosis factor α (TNFα) response induced by lipopolysaccharide (LPS) both in vitro and in vivo, and shows high brain penetration. Other than the therapeutic role, this newly identified, functionally selective, partial agonist of ADRB1 is an invaluable research tool to study mechanisms of G protein-coupled receptor signal transduction.
Collapse
MESH Headings
- Adrenergic beta-1 Receptor Agonists/chemistry
- Adrenergic beta-1 Receptor Agonists/pharmacokinetics
- Adrenergic beta-1 Receptor Agonists/therapeutic use
- Alzheimer Disease/drug therapy
- Alzheimer Disease/metabolism
- Animals
- Brain/metabolism
- CHO Cells
- Cell Line, Tumor
- Cells, Cultured
- Cricetinae
- Cricetulus
- Crystallography, X-Ray
- Drug Discovery
- GTP-Binding Proteins/metabolism
- Humans
- Magnetic Resonance Spectroscopy
- Male
- Mice, Inbred C57BL
- Models, Chemical
- Models, Molecular
- Molecular Structure
- Neurocognitive Disorders/drug therapy
- Neurocognitive Disorders/metabolism
- Permeability
- Phenyl Ethers/chemistry
- Phenyl Ethers/pharmacokinetics
- Phenyl Ethers/therapeutic use
- Propanolamines/chemistry
- Propanolamines/pharmacokinetics
- Propanolamines/therapeutic use
- Protein Binding
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta-1/chemistry
- Receptors, Adrenergic, beta-1/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Bitna Yi
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Alam Jahangir
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Andrew K. Evans
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Denise Briggs
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Kristine Ravina
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Jacqueline Ernest
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Amir B. Farimani
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Wenchao Sun
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Michael Green
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Evan N. Feinberg
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Vijay S. Pande
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Assays of adrenal GPCR signaling and regulation: Measuring adrenal β-arrestin activity in vivo through plasma membrane recruitment. Methods Cell Biol 2017; 142:79-87. [DOI: 10.1016/bs.mcb.2017.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Effect of ICa,L Blockade on Adrenergic Stimulation in Developing Heart. Bull Exp Biol Med 2016; 161:746-748. [DOI: 10.1007/s10517-016-3500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Indexed: 11/25/2022]
|
39
|
Pardanaud L, Pibouin-Fragner L, Dubrac A, Mathivet T, English I, Brunet I, Simons M, Eichmann A. Sympathetic Innervation Promotes Arterial Fate by Enhancing Endothelial ERK Activity. Circ Res 2016; 119:607-20. [PMID: 27354211 DOI: 10.1161/circresaha.116.308473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/24/2016] [Indexed: 12/31/2022]
Abstract
RATIONALE Arterial endothelial cells are morphologically, functionally, and molecularly distinct from those found in veins and lymphatic vessels. How arterial fate is acquired during development and maintained in adult vessels is incompletely understood. OBJECTIVE We set out to identify factors that promote arterial endothelial cell fate in vivo. METHODS AND RESULTS We developed a functional assay, allowing us to monitor and manipulate arterial fate in vivo, using arteries isolated from quails that are grafted into the coelom of chick embryos. Endothelial cells migrate out from the grafted artery, and their colonization of host arteries and veins is quantified. Here we show that sympathetic innervation promotes arterial endothelial cell fate in vivo. Removal of sympathetic nerves decreases arterial fate and leads to colonization of veins, whereas exposure to sympathetic nerves or norepinephrine imposes arterial fate. Mechanistically, sympathetic nerves increase endothelial ERK (extracellular signal-regulated kinase) activity via adrenergic α1 and α2 receptors. CONCLUSIONS These findings show that sympathetic innervation promotes arterial endothelial fate and may lead to novel approaches to improve arterialization in human disease.
Collapse
Affiliation(s)
- Luc Pardanaud
- From the INSERM U970, Paris Center for Cardiovascular Research (PARCC), Paris, France (L.P., L.P.-F., T.M., A.E.); Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., M.S., A.E.); and INSERM U1050, Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), Paris, France (I.E., I.B.).
| | - Laurence Pibouin-Fragner
- From the INSERM U970, Paris Center for Cardiovascular Research (PARCC), Paris, France (L.P., L.P.-F., T.M., A.E.); Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., M.S., A.E.); and INSERM U1050, Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), Paris, France (I.E., I.B.)
| | - Alexandre Dubrac
- From the INSERM U970, Paris Center for Cardiovascular Research (PARCC), Paris, France (L.P., L.P.-F., T.M., A.E.); Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., M.S., A.E.); and INSERM U1050, Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), Paris, France (I.E., I.B.)
| | - Thomas Mathivet
- From the INSERM U970, Paris Center for Cardiovascular Research (PARCC), Paris, France (L.P., L.P.-F., T.M., A.E.); Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., M.S., A.E.); and INSERM U1050, Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), Paris, France (I.E., I.B.)
| | - Isabel English
- From the INSERM U970, Paris Center for Cardiovascular Research (PARCC), Paris, France (L.P., L.P.-F., T.M., A.E.); Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., M.S., A.E.); and INSERM U1050, Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), Paris, France (I.E., I.B.)
| | - Isabelle Brunet
- From the INSERM U970, Paris Center for Cardiovascular Research (PARCC), Paris, France (L.P., L.P.-F., T.M., A.E.); Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., M.S., A.E.); and INSERM U1050, Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), Paris, France (I.E., I.B.)
| | - Michael Simons
- From the INSERM U970, Paris Center for Cardiovascular Research (PARCC), Paris, France (L.P., L.P.-F., T.M., A.E.); Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., M.S., A.E.); and INSERM U1050, Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), Paris, France (I.E., I.B.)
| | - Anne Eichmann
- From the INSERM U970, Paris Center for Cardiovascular Research (PARCC), Paris, France (L.P., L.P.-F., T.M., A.E.); Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., M.S., A.E.); and INSERM U1050, Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), Paris, France (I.E., I.B.).
| |
Collapse
|
40
|
Lymperopoulos A, Brill A, McCrink KA. GPCRs of adrenal chromaffin cells & catecholamines: The plot thickens. Int J Biochem Cell Biol 2016; 77:213-9. [PMID: 26851510 DOI: 10.1016/j.biocel.2016.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
The circulating catecholamines (CAs) epinephrine (Epi) and norepinephrine (NE) derive from two major sources in the whole organism: the sympathetic nerve endings, which release NE on effector organs, and the chromaffin cells of the adrenal medulla, which are cells that synthesize, store and release Epi (mainly) and NE. All of the Epi in the body and a significant amount of circulating NE derive from the adrenal medulla. The secretion of CAs from adrenal chromaffin cells is regulated in a complex way by a variety of membrane receptors, the vast majority of which are G protein-coupled receptors (GPCRs), including adrenergic receptors (ARs), which act as "presynaptic autoreceptors" in this regard. There is a plethora of CA-secretagogue signals acting on these receptors but some of them, most notably the α2ARs, inhibit CA secretion. Over the past few years, however, a few new proteins present in chromaffin cells have been uncovered to participate in CA secretion regulation. Most prominent among these are GRK2 and β-arrestin1, which are known to interact with GPCRs regulating receptor signaling and function. The present review will discuss the molecular and signaling mechanisms by which adrenal chromaffin cell-residing GPCRs and their regulatory proteins modulate CA synthesis and secretion. Particular emphasis will be given to the newly discovered roles of GRK2 and β-arrestins in these processes and particular points of focus for future research will be highlighted, as well.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, 3200 S. University Dr., Fort Lauderdale, FL 33328-2018, USA.
| | - Ava Brill
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, 3200 S. University Dr., Fort Lauderdale, FL 33328-2018, USA
| | - Katie A McCrink
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, 3200 S. University Dr., Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
41
|
Cruz Grecco Teixeira MB, Martins GM, Miranda-Rodrigues M, De Araújo IF, Oliveira R, Brum PC, Azevedo Gouveia CH. Lack of α2C-Adrenoceptor Results in Contrasting Phenotypes of Long Bones and Vertebra and Prevents the Thyrotoxicosis-Induced Osteopenia. PLoS One 2016; 11:e0146795. [PMID: 26815679 PMCID: PMC4729682 DOI: 10.1371/journal.pone.0146795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/21/2015] [Indexed: 12/26/2022] Open
Abstract
A series of studies have demonstrated that activation of the sympathetic nervous system (SNS) causes osteopenia via β2-adrenoceptor (β2-AR) signaling. However, in a recent study, we found an unexpected and generalized phenotype of high bone mass in female mice with chronic sympathetic hyperactivity, due to double gene inactivation of adrenoceptors that negatively regulate norepinephrine release, α2A-and α2C-AR (α2A/2C-AR-/-). These findings suggest that β2-AR is not the single adrenoceptor involved in bone turnover regulation and show that α2-AR signaling may also mediate the SNS actions in the skeleton. In addition, we found that α2A/2C-AR-/- animals are resistant to the thyrotoxicosis-induced osteopenia, suggesting that thyroid hormone (TH), when in supraphysiological levels, interacts with the SNS to control bone mass and structure, and that this interaction may also involve α2-AR signaling. In the present study, to further investigate these hypotheses and to discriminate the roles of α2-AR subtypes, we have evaluated the bone phenotype of mice with the single gene inactivation of α2C-AR subtype, which mRNA expression was previously shown to be down regulated by triiodothyronine (T3). A cohort of 30 day-old female α2CAR-/- mice and their wild-type (WT) controls were treated with a supraphysiological dose of T3 for 30 or 90 days, which induced a thyrotoxic state in both mouse lineages. The micro-computed tomographic (μCT) analysis showed that α2C-AR-/- mice present lower trabecular bone volume (BV/TV) and number (Tb.N), and increased trabecular separation (Tb.Sp) in the femur compared with WT mice; which was accompanied by decreased bone strength (determined by the three-point bending test) in the femur and tibia. The opposite was observed in the vertebra, where α2C-AR-/- mice show increased BV/TV, Tb.N and trabecular thickness (Tb.Th), and decreased Tb.Sp, compared with WT animals. In spite of the contrasting bone phenotypes of the femur and L5, thyrotoxicosis negatively regulated most of the micro architectural features of the trabecular bone in both skeletal sites of WT, but not of α2C-AR-/- mice. T3 treatment also decreased biomechanical properties (maximum load and ultimate load) in the femur and tibia of WT, but not of knockout mice. The mRNA expression of osteocalcin, a marker of mature osteoblasts, and tartrate-resistant acid phosphatase, which is expressed by osteoclasts and is involved in collagen degradation, was increased by T3 treatment only in WT, and not in α2C-AR-/- mice. Altogether, these findings suggest that α2C-AR subtype mediates the effects of the SNS in the bone in a skeletal site-dependent manner, and that thyrotoxicosis depends on α2C-AR signaling to promote bone loss, which sustains the hypothesis of a TH-SNS interaction to modulate bone remodeling and structure.
Collapse
Affiliation(s)
| | - Gisele Miyamura Martins
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | - Patrícia Chakur Brum
- Departament of Biodinamic of Human Body Moviment, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
42
|
Wei W, Tian Y, Zhao C, Sui Z, Liu C, Wang C, Yang R. Correlation of ADRB1 rs1801253 Polymorphism with Analgesic Effect of Fentanyl After Cancer Surgeries. Med Sci Monit 2015; 21:4000-5. [PMID: 26694722 PMCID: PMC4692569 DOI: 10.12659/msm.894060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Our study aimed to explore the association between β1-adrenoceptor (ADRB1) rs1801253 polymorphism and analgesic effect of fentanyl after cancer surgeries in Chinese Han populations. MATERIAL AND METHODS Postoperative fentanyl consumption of 120 patients for analgesia was recorded. Genotype distributions were detected by allele specific amplification-polymerase chain reaction (ASA-PCR) method. Postoperative pain was measured by visual analogue scale (VAS) method. Differences in postoperative VAS score and postoperative fentanyl consumption for analgesia in different genotype groups were compared by analysis of variance (ANOVA). Preoperative cold pressor-induced pain test was also performed to test the analgesic effect of fentanyl. RESULTS Frequencies of Gly/Gly, Gly/Arg, Arg/Arg genotypes were 45.0%, 38.3%, and 16.7%, respectively, and passed the Hardy-Weinberg Equilibrium (HWE) test. The mean arterial pressure (MAP) and the heart rate (HR) had no significant differences at different times. After surgery, the VAS score and fentanyl consumption in Arg/Arg group were significantly higher than in other groups at the postoperative 2nd hour, but the differences were not obvious at the 4th hour, 24th hour, and the 48th hour. The results suggest that the Arg/Arg homozygote increased susceptibility to postoperative pain. The preoperative cold pressor-induced pain test suggested that individuals with Arg/Arg genotype showed worse analgesic effect of fentanyl compared to other genotypes. CONCLUSIONS In Chinese Han populations, ADRB1 rs1801253 polymorphism might be associated with the analgesic effect of fentanyl after cancer surgery.
Collapse
Affiliation(s)
- Wei Wei
- Department of Dermatology, The General Hospital of Beijing Military Command, Beijing, China (mainland)
| | - Yanli Tian
- Department of Dermatology, The General Hospital of Beijing Military Command, Beijing, China (mainland)
| | - Chunlei Zhao
- Hengshui Cardiovascular Hospital, Hengshui, Hebei, China (mainland)
| | - Zhifu Sui
- Department of Dermatology, The General Hospital of Beijing Military Command, Beijing, China (mainland)
| | - Chang Liu
- Department of Dermatology, The General Hospital of Beijing Military Command, Beijing, China (mainland)
| | - Congmin Wang
- Department of Dermatology, The General Hospital of Beijing Military Command, Beijing, China (mainland)
| | - Rongya Yang
- Department of Dermatology, The General Hospital of Beijing Military Command, Beijing, China (mainland)
| |
Collapse
|
43
|
Peculiar Effects of Selective Blockade of α2-Adrenoceptor Subtypes on Cardiac Chronotropy in Newborn Rats. Bull Exp Biol Med 2015; 160:6-8. [DOI: 10.1007/s10517-015-3084-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Indexed: 10/22/2022]
|
44
|
Effect of Selective Blockade of α2C-Adrenoceptors on Cardiac Activity in Growing Rats. Bull Exp Biol Med 2015; 159:697-9. [PMID: 26519277 DOI: 10.1007/s10517-015-3051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 10/22/2022]
Abstract
Selective blockade of α2C-adrenoceptors had different effects on the cardiovascular system in rats of various age groups. Blockade of α2C-adrenoceptors in adult rats and 3-week-old animals produced the positive and negative chronotropic effects, respectively. HR in 1-week-old and 6-week-old rats did not change during α2C-adrenoceptor blockade. Selective blockade of α2C-adrenoceptors in adult rats and 3-week-old animals was followed by the increase in BP. BP in 6-week-old rats was shown to decrease under these conditions.
Collapse
|
45
|
McCrink KA, Brill A, Lymperopoulos A. Adrenal G protein-coupled receptor kinase-2 in regulation of sympathetic nervous system activity in heart failure. World J Cardiol 2015; 7:539-543. [PMID: 26413230 PMCID: PMC4577680 DOI: 10.4330/wjc.v7.i9.539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/22/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF), the number one cause of death in the western world, is caused by the insufficient performance of the heart leading to tissue underperfusion in response to an injury or insult. It comprises complex interactions between important neurohormonal mechanisms that try but ultimately fail to sustain cardiac output. The most prominent such mechanism is the sympathetic (adrenergic) nervous system (SNS), whose activity and outflow are greatly elevated in HF. SNS hyperactivity confers significant toxicity to the failing heart and markedly increases HF morbidity and mortality via excessive activation of adrenergic receptors, which are G protein-coupled receptors. Thus, ligand binding induces their coupling to heterotrimeric G proteins that transduce intracellular signals. G protein signaling is turned-off by the agonist-bound receptor phosphorylation courtesy of G protein-coupled receptor kinases (GRKs), followed by βarrestin binding, which prevents the GRK-phosphorylated receptor from further interaction with the G proteins and simultaneously leads it inside the cell (receptor sequestration). Recent evidence indicates that adrenal GRK2 and βarrestins can regulate adrenal catecholamine secretion, thereby modulating SNS activity in HF. The present review gives an account of all these studies on adrenal GRKs and βarrestins in HF and discusses the exciting new therapeutic possibilities for chronic HF offered by targeting these proteins pharmacologically.
Collapse
|
46
|
Abstract
Physical challenges, emotional arousal, increased physical activity, or changes in the environment can evoke stress, requiring altered activity of visceral organs, glands, and smooth muscles. These alterations are necessary for the organism to function appropriately under these abnormal conditions and to restore homeostasis. These changes in activity comprise the "fight-or-flight" response and must occur rapidly or the organism may not survive. The rapid responses are mediated primarily via the catecholamines, epinephrine, and norepinephrine, secreted from the adrenal medulla. The catecholamine neurohormones interact with adrenergic receptors present on cell membranes of all visceral organs and smooth muscles, leading to activation of signaling pathways and consequent alterations in organ function and smooth muscle tone. During the "fight-or-flight response," the rise in circulating epinephrine and norepinephrine from the adrenal medulla and norepinephrine secreted from sympathetic nerve terminals cause increased blood pressure and cardiac output, relaxation of bronchial, intestinal and many other smooth muscles, mydriasis, and metabolic changes that increase levels of blood glucose and free fatty acids. Circulating catecholamines can also alter memory via effects on afferent sensory nerves impacting central nervous system function. While these rapid responses may be necessary for survival, sustained elevation of circulating catecholamines for prolonged periods of time can also produce pathological conditions, such as cardiac hypertrophy and heart failure, hypertension, and posttraumatic stress disorder. In this review, we discuss the present knowledge of the effects of circulating catecholamines on peripheral organs and tissues, as well as on memory in the brain.
Collapse
Affiliation(s)
- A William Tank
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Dona Lee Wong
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
47
|
Gannon M, Che P, Chen Y, Jiao K, Roberson ED, Wang Q. Noradrenergic dysfunction in Alzheimer's disease. Front Neurosci 2015; 9:220. [PMID: 26136654 PMCID: PMC4469831 DOI: 10.3389/fnins.2015.00220] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/02/2015] [Indexed: 12/27/2022] Open
Abstract
The brain noradrenergic system supplies the neurotransmitter norepinephrine throughout the brain via widespread efferent projections, and plays a pivotal role in modulating cognitive activities in the cortex. Profound noradrenergic degeneration in Alzheimer's disease (AD) patients has been observed for decades, with recent research suggesting that the locus coeruleus (where noradrenergic neurons are mainly located) is a predominant site where AD-related pathology begins. Mounting evidence indicates that the loss of noradrenergic innervation greatly exacerbates AD pathogenesis and progression, although the precise roles of noradrenergic components in AD pathogenesis remain unclear. The aim of this review is to summarize current findings on noradrenergic dysfunction in AD, as well as to point out deficiencies in our knowledge where more research is needed.
Collapse
Affiliation(s)
- Mary Gannon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Pulin Che
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Yunjia Chen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham Birmingham, AL, USA
| | - Erik D Roberson
- Department of Neurology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
48
|
GPCR signaling and cardiac function. Eur J Pharmacol 2015; 763:143-8. [PMID: 25981298 DOI: 10.1016/j.ejphar.2015.05.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 03/30/2015] [Accepted: 05/11/2015] [Indexed: 12/27/2022]
Abstract
G protein-coupled receptors (GPCRs), such as β-adrenergic and angiotensin II receptors, located in the membranes of all three major cardiac cell types, i.e. myocytes, fibroblasts and endothelial cells, play crucial roles in regulating cardiac function and morphology. Their importance in cardiac physiology and disease is reflected by the fact that, collectively, they represent the direct targets of over a third of the currently approved cardiovascular drugs used in clinical practice. Over the past few decades, advances in elucidation of their structure, function and the signaling pathways they elicit, specifically in the heart, have led to identification of an increasing number of new molecular targets for heart disease therapy. Here, we review these signaling modalities employed by GPCRs known to be expressed in the cardiac myocyte membranes and to directly modulate cardiac contractility. We also highlight drugs and drug classes that directly target these GPCRs to modulate cardiac function, as well as molecules involved in cardiac GPCR signaling that have the potential of becoming novel drug targets for modulation of cardiac function in the future.
Collapse
|
49
|
Zaręba P, Dudek M, Lustyk K, Siwek A, Starowicz G, Bednarski M, Nowiński L, Raźny K, Sapa J, Malawska B, Kulig K. α-Adrenoceptor antagonistic and hypotensive properties of novel arylpiperazine derivatives of pyrrolidin-2-one. Bioorg Med Chem 2015; 23:2104-11. [PMID: 25813897 DOI: 10.1016/j.bmc.2015.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 11/26/2022]
Abstract
This study focused on a series of pyrrolidin-2-one derivatives connected via two or four methylene units to arylpiperazine fragment. The compounds obtained for α₁- and α₂-adrenoceptors were assessed. The compound with highest affinity for the α₁-adrenoceptors was 1-{4-[4-(2-chloro-phenyl)-piperazin-1-yl]-butyl}-pyrrolidin-2-one (10 h) with pKi=7.30. Compound with pKi (α₁) ⩾6.44 were evaluated in functional bioassays for intrinsic activity at α₁A- and α₁B-adrenoceptors. All compounds tested were antagonists of the α₁B-adrenoceptors. Additionally, compounds 10e and 10h were α₁A-adrenoceptors antagonist. The dual α₁A-/α₁B-adrenoceptors antagonists, compounds 10e and 10h were also tested in vivo for their hypotensive activity in rats. These compounds, when dosed of 1.0 mg/kg iv in normotensive, anesthetized rats, significantly decreased systolic and diastolic pressure and their hypotensive effects lasted for longer than one hour.
Collapse
Affiliation(s)
- Paula Zaręba
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Magdalena Dudek
- Department of Pharmacodynamics, Jagiellonian University, Collegium Medicum, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Klaudia Lustyk
- Department of Pharmacological Screening, Jagiellonian University, Medical College, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Jagiellonian University, Collegium Medicum, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Gabriela Starowicz
- Department of Pharmacobiology, Jagiellonian University, Collegium Medicum, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University, Medical College, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Leszek Nowiński
- Department of Pharmacodynamics, Jagiellonian University, Collegium Medicum, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Katarzyna Raźny
- Department of Pharmacological Screening, Jagiellonian University, Medical College, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Jacek Sapa
- Department of Pharmacological Screening, Jagiellonian University, Medical College, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Kulig
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
50
|
β2-Adrenergic receptors in immunity and inflammation: stressing NF-κB. Brain Behav Immun 2015; 45:297-310. [PMID: 25459102 DOI: 10.1016/j.bbi.2014.10.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 01/11/2023] Open
Abstract
β2-Adrenergic receptors (β2-ARs) transduce the effects of (nor)epinephrine on a variety of cell types and act as key mediators of the body's reaction to stress. β2-ARs are also expressed on immune cells and there is ample evidence for their role in immunomodulation. A key regulator of the immune response and a target for regulation by stress-induced signals is the transcription factor Nuclear Factor-kappaB (NF-κB). NF-κB shapes the course of both innate and adaptive immune responses and plays an important role in susceptibility to disease. In this review, we summarise the literature that has been accumulated in the past 20years on adrenergic modulation of NF-κB function. We here focus on the molecular basis of the reported interactions and show that both physiological and pharmacological triggers of β2-ARs intersect with the NF-κB signalling cascade at different levels. Importantly, the action of β2-AR-derived signals on NF-κB activity appears to be highly cell type specific and gene selective, providing opportunities for the development of selective NF-κB modulators.
Collapse
|