1
|
Zheng W, Tian E, Liu Z, Zhou C, Yang P, Tian K, Liao W, Li J, Ren C. Small molecule angiotensin converting enzyme inhibitors: A medicinal chemistry perspective. Front Pharmacol 2022; 13:968104. [PMID: 36386190 PMCID: PMC9664202 DOI: 10.3389/fphar.2022.968104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
Angiotensin-converting enzyme (ACE), a zinc metalloprotein, is a central component of the renin-angiotensin system (RAS). It degrades bradykinin and other vasoactive peptides. Angiotensin-converting-enzyme inhibitors (ACE inhibitors, ACEIs) decrease the formation of angiotensin II and increase the level of bradykinin, thus relaxing blood vessels as well as reducing blood volume, lowering blood pressure and reducing oxygen consumption by the heart, which can be used to prevent and treat cardiovascular diseases and kidney diseases. Nevertheless, ACEIs are associated with a range of adverse effects such as renal insufficiency, which limits their use. In recent years, researchers have attempted to reduce the adverse effects of ACEIs by improving the selectivity of ACEIs for structural domains based on conformational relationships, and have developed a series of novel ACEIs. In this review, we have summarized the research advances of ACE inhibitors, focusing on the development sources, design strategies and analysis of structure-activity relationships and the biological activities of ACE inhibitors.
Collapse
Affiliation(s)
- Wenyue Zheng
- Departments of Obstetrics & Gynecology and Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Health Management Center, West China Second University Hospital, Chengdu, China
| | - Erkang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhen Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changhan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pei Yang
- Departments of Obstetrics & Gynecology and Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Health Management Center, West China Second University Hospital, Chengdu, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Chengdu, China
| |
Collapse
|
2
|
Aprotosoaie AC, Costache AD, Costache II. Therapeutic Strategies and Chemoprevention of Atherosclerosis: What Do We Know and Where Do We Go? Pharmaceutics 2022; 14:722. [PMID: 35456556 PMCID: PMC9025701 DOI: 10.3390/pharmaceutics14040722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/15/2022] Open
Abstract
Despite progress in understanding the pathogenesis of atherosclerosis, the development of effective therapeutic strategies is a challenging task that requires more research to attain its full potential. This review discusses current pharmacotherapy in atherosclerosis and explores the potential of some important emerging therapies (antibody-based therapeutics, cytokine-targeting therapy, antisense oligonucleotides, photodynamic therapy and theranostics) in terms of clinical translation. A chemopreventive approach based on modern research of plant-derived products is also presented. Future perspectives on preventive and therapeutic management of atherosclerosis and the design of tailored treatments are outlined.
Collapse
Affiliation(s)
- Ana Clara Aprotosoaie
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Alexandru-Dan Costache
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Irina-Iuliana Costache
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| |
Collapse
|
3
|
Kurashiki T, Miyake T, Nakagami H, Nishimura M, Morishita R. Prevention of Progression of Aortic Aneurysm by Peptide Vaccine Against Ang II (Angiotensin II) in a Rat Model. Hypertension 2020; 76:1879-1888. [PMID: 33040618 DOI: 10.1161/hypertensionaha.119.14442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is no proven medical therapy to inhibit the progression of abdominal aortic aneurysm (AAA) in the clinical setting. To develop a novel therapeutic approach for the treatment of AAA, we focused on vaccination targeting Ang II (angiotensin II) and assessed the effect of an Ang II peptide vaccine on the progression of AAA using a rat model. Ang II peptide was conjugated with KLH (keyhole limpet hemocyanin) carrier protein to induce a sufficient immune response. Male rats were subcutaneously immunized with Ang II-KLH with an adjuvant on days 0, 14, and 28. Aortic dilatation was induced by intraluminal incubation with elastase on day 35. Treatment with Ang II vaccine successfully induced the production of a high titer of anti-Ang II antibodies. Immunization with Ang II vaccine resulted in a significant reduction in expansion of the aortic diameter compared with control rats, without a blood pressure-lowering effect. Four weeks after operation, the increase in Ang II in the aneurysm wall was significantly inhibited by treatment with Ang II vaccine. Inhibition of Ang II action led to suppression of the inflammatory response in the AAA wall through attenuation of the NFκB (nuclear factor kappa B) and c-jun N-terminal kinase signaling cascades. Treatment with Ang II vaccine inhibited accumulation of macrophages in the AAA wall. In addition, expression of TNF-α (tumor necrosis factor alpha) and activation of MMP (matrix metalloproteinase)-2 and MMP-9 were also inhibited by treatment with Ang II vaccine, resulting in protection against the destruction of elastic fibers. This vaccine therapy could become a potent therapeutic option to treat patients with AAA.
Collapse
Affiliation(s)
- Tomohiro Kurashiki
- From the Department of Clinical Gene Therapy (T.K., T.M., R.M.), Graduate School of Medicine, Osaka University, Japan.,Department of Cardiovascular Surgery, Tottori University Faculty of Medicine, Japan (T.K., M.N.)
| | - Takashi Miyake
- From the Department of Clinical Gene Therapy (T.K., T.M., R.M.), Graduate School of Medicine, Osaka University, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine (H.N.), Graduate School of Medicine, Osaka University, Japan
| | - Motonobu Nishimura
- Department of Cardiovascular Surgery, Tottori University Faculty of Medicine, Japan (T.K., M.N.)
| | - Ryuichi Morishita
- From the Department of Clinical Gene Therapy (T.K., T.M., R.M.), Graduate School of Medicine, Osaka University, Japan
| |
Collapse
|
4
|
Renin angiotensin system inhibitors reduce the incidence of arterial thrombotic events in patients with hypertension and chronic myeloid leukemia treated with second- or third-generation tyrosine kinase inhibitors. Ann Hematol 2020; 99:1525-1530. [DOI: 10.1007/s00277-020-04102-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022]
|
5
|
Ciftciler R, Haznedaroglu IC. Pathobiological Interactions of Local Bone Marrow Renin-Angiotensin System and Central Nervous System in Systemic Arterial Hypertension. Front Endocrinol (Lausanne) 2020; 11:425. [PMID: 32903745 PMCID: PMC7438890 DOI: 10.3389/fendo.2020.00425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/28/2020] [Indexed: 01/16/2023] Open
Abstract
Circulating renin-angiotensin system (RAS) and local paracrin-autocrin-intracrin tissue-based RAS participate in numerous pathobiological events. Pro-inflammatory, pro-fibrotic, and pro-thrombotic consequences associated with local RAS activation have been detected at cellular and molecular level. Regenerative progenitor cell therapy in response to RAS modulating pharmacotherapy has emerged as an adjunct in the context of endothelial cell injury and regeneration to improve regeneration of the vascular endothelium. Local hematopoietic bone marrow (BM) RAS symbolizes the place of cross-interaction between vascular biology and cellular events from embryogenesis to definitive hematopoiesis underlying vascular atherosclerosis. The BM microenvironment also contains Mas receptors, which control the proliferative role of Ang 1-7 on hematopoietic stem cells. Ang 1-7 is produced from Ang-II or Ang-I with the help of ACE2. Various tissues and organs also have an effect on the RAS system. The leukocytes contain and synthesize immunoreactive angiotensinogen species capable of producing angiotensin in the basal state or after incubation with renin. The significance of RAS employment in atherosclerosis and hypertension was indicated by novel bidirectional Central Nervous System (CNS) RAS-BM RAS communications. Myeloid cells generated within the context of hematopoietic BM RAS are considered as the initiators and decision shapers in atherosclerosis. Macrophages in the atherosclerotic lesions contain angiotensin peptides by which RAS blockers inhibit monocyte activation and adherence. Furthermore, vascular biology in relation to inflammation and neoplasia is also affected by local tissue RAS. The purpose of this article is to outline interactions of circulating and local angiotensin systems, especially local bone marrow RAS, in the vascular pathobiological microenvironment of CNS.
Collapse
|
6
|
Chao Y, Zhu L, Qu X, Zhang J, Zhang J, Kong X, Gu Y, Pu J, Wu W, Ye P, Luo J, Yang H, Chen S. Inhibition of angiotension II type 1 receptor reduced human endothelial inflammation induced by low shear stress. Exp Cell Res 2017; 360:94-104. [PMID: 28843962 DOI: 10.1016/j.yexcr.2017.08.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022]
Abstract
Low shear stress (LSS)-induced endothelial inflammation is the basis for the development of atherosclerosis. However, the mechanism underlying LSS-induced inflammation is not well understood. The angiotensin II type 1 receptor (AT1R), a component of the renin-angiotensin system, participates in atherosclerotic plaque progression. The aim of this study was to investigate the role of AT1R in LSS-induced endothelial activation. Using immunohistochemistry, we noted significant increases in AT1R, vascular endothelial adhesion cell-1 (VCAM1), and intercellular adhesion molecule-1 (ICAM1) expression in the inner curvature of the aortic arch in C57BL/6 mice compared to the descending aorta in these mice. Moreover, western blotting revealed that these LSS-induced increases in AT1R, ICAM1 and VCAM1 expression were time dependent. However, the expression of these proteins was significantly abolished by treatment with the AT1R antagonist Losartan (1μM) or AT1R small interfering RNA (siRNA). AT1R inhibition significantly suppressed extracellular signal-regulated kinase 1/2 (ERK) upregulation, which also resulted in decreases in ICAM1 and VCAM1 protein expression. These findings demonstrate that LSS induces endothelial inflammation via AT1R/ERK signaling and that Losartan has beneficial effects on endothelial inflammation.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensin II Type 1 Receptor Blockers/therapeutic use
- Animals
- Cells, Cultured
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/pathology
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/immunology
- Human Umbilical Vein Endothelial Cells/pathology
- Humans
- Inflammation/etiology
- Inflammation/prevention & control
- Losartan/pharmacology
- Losartan/therapeutic use
- Mice
- Mice, Inbred C57BL
- RNA, Small Interfering/pharmacology
- RNA, Small Interfering/therapeutic use
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Shear Strength/drug effects
- Stress, Mechanical
- Vasculitis/pathology
- Vasculitis/prevention & control
Collapse
Affiliation(s)
- Yuelin Chao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Linlin Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xinliang Qu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junxia Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junjie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangquan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiangqin Pu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen Wu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongfeng Yang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Cahill PA, Redmond EM. Vascular endothelium - Gatekeeper of vessel health. Atherosclerosis 2016; 248:97-109. [PMID: 26994427 PMCID: PMC6478391 DOI: 10.1016/j.atherosclerosis.2016.03.007] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 02/08/2023]
Abstract
The vascular endothelium is an interface between the blood stream and the vessel wall. Changes in this single cell layer of the artery wall are believed of primary importance in the pathogenesis of vascular disease/atherosclerosis. The endothelium responds to humoral, neural and especially hemodynamic stimuli and regulates platelet function, inflammatory responses, vascular smooth muscle cell growth and migration, in addition to modulating vascular tone by synthesizing and releasing vasoactive substances. Compromised endothelial function contributes to the pathogenesis of cardiovascular disease; endothelial 'dysfunction' is associated with risk factors, correlates with disease progression, and predicts cardiovascular events. Therapies for atherosclerosis have been developed, therefore, that are directed towards improving endothelial function.
Collapse
Affiliation(s)
- Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, Dublin City University, Dublin, Ireland
| | - Eileen M Redmond
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
8
|
Takai S, Jin D. Improvement of cardiovascular remodelling by chymase inhibitor. Clin Exp Pharmacol Physiol 2016; 43:387-93. [DOI: 10.1111/1440-1681.12549] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Shinji Takai
- Department of Innovative Medicine; Graduate School of Medicine; Osaka Medical College; Takatsuki Japan
| | - Denan Jin
- Department of Pharmacology; Osaka Medical College; Takatsuki Japan
| |
Collapse
|
9
|
Chen S, Grover M, Sibai T, Black J, Rianon N, Rajagopal A, Munivez E, Bertin T, Dawson B, Chen Y, Jiang MM, Lee B, Yang T, Bae Y. Losartan increases bone mass and accelerates chondrocyte hypertrophy in developing skeleton. Mol Genet Metab 2015; 115:53-60. [PMID: 25779879 PMCID: PMC4426054 DOI: 10.1016/j.ymgme.2015.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
Abstract
Angiotensin receptor blockers (ARBs) are a group of anti-hypertensive drugs that are widely used to treat pediatric hypertension. Recent application of ARBs to treat diseases such as Marfan syndrome or Alport syndrome has shown positive outcomes in animal and human studies, suggesting a broader therapeutic potential for this class of drugs. Multiple studies have reported a benefit of ARBs on adult bone homeostasis; however, its effect on the growing skeleton in children is unknown. We investigated the effect of Losartan, an ARB, in regulating bone mass and cartilage during development in mice. Wild type mice were treated with Losartan from birth until 6 weeks of age, after which bones were collected for microCT and histomorphometric analyses. Losartan increased trabecular bone volume vs. tissue volume (a 98% increase) and cortical thickness (a 9% increase) in 6-weeks old wild type mice. The bone changes were attributed to decreased osteoclastogenesis as demonstrated by reduced osteoclast number per bone surface in vivo and suppressed osteoclast differentiation in vitro. At the molecular level, Angiotensin II-induced ERK1/2 phosphorylation in RAW cells was attenuated by Losartan. Similarly, RANKL-induced ERK1/2 phosphorylation was suppressed by Losartan, suggesting a convergence of RANKL and angiotensin signaling at the level of ERK1/2 regulation. To assess the effect of Losartan on cartilage development, we examined the cartilage phenotype of wild type mice treated with Losartan in utero from conception to 1 day of age. Growth plates of these mice showed an elongated hypertrophic chondrocyte zone and increased Col10a1 expression level, with minimal changes in chondrocyte proliferation. Altogether, inhibition of the angiotensin pathway by Losartan increases bone mass and accelerates chondrocyte hypertrophy in growth plate during skeletal development.
Collapse
Affiliation(s)
- Shan Chen
- Department of Biostatistics, University of Texas Health Science Center at Houston School of Public Health
| | - Monica Grover
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tarek Sibai
- Boston University School of Medicine Orthopedic Surgery, Boston University, Boston, MA, USA
| | - Jennifer Black
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Nahid Rianon
- Department of Internal Medicine, University of Texas Medical School at Houston, TX, USA
| | - Abbhirami Rajagopal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Elda Munivez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Terry Bertin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tao Yang
- Laboratory of Skeletal Biology, Center for Skeletal Disease and Tumor Metastasis, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Yangjin Bae
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Zhang Y, Wang K, Song Q, Liu R, Ji W, Ji L, Wang C. Role of the local bone renin‑angiotensin system in steroid‑induced osteonecrosis in rabbits. Mol Med Rep 2014; 9:1128-34. [PMID: 24566768 DOI: 10.3892/mmr.2014.1978] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 02/11/2014] [Indexed: 11/05/2022] Open
Abstract
The specific pathogenesis of steroid‑induced osteonecrosis (ON) is yet to be elucidated and until recently effective prophylactic therapies have not been available. The local renin‑angiotensin system (RAS) exists in the bone and has an important role in local bone regulation. However, to the best of our knowledge, the interrelation between local bone RAS and steroid‑induced ON is yet to be investigated. In the present study, 45 rabbits were injected with a single intramuscular dose of 20 mg/kg methylprednisolone acetate (MPA) and were sacrificed 1 (group A), 2 (group B) and 3 (group C) weeks subsequent to MPA administration (n=15 per group). Ten rabbits were used as a control group (group N). The presence or absence of ON in the bilateral femoral heads was examined histopathologically. The mRNA and protein expression of components of the RAS, including angiotensin II (Ang II), angiotensin converting enzyme (ACE) and Ang II type 1 (AT1) and Ang II type 2 (AT2) receptors, were detected in the bone. Significant changes in Ang II, ACE, and AT1 and AT2 receptor expression were observed in the bone of the rabbits in the different groups. Moreover, the expression of Ang II and ACE was highest one week subsequent to administration of the glucocorticoid methylprednisolone and the expression of the AT1 and AT2 receptors was highest two weeks following methylprednisolone administration. ON occurs most significantly at three weeks following the administration of MPA in this animal model, thus the changes in Ang II, ACE and AT1 and AT2 receptor expression preceded this. The present study found that ON was strongly associated with the activation of the local bone RAS in rabbits.
Collapse
Affiliation(s)
- Yongtao Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Kunzheng Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Qichun Song
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ruiyu Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wenchen Ji
- Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Le Ji
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chunsheng Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
11
|
Karcher JR, Greene AS. Bone marrow mononuclear cell angiogenic competency is suppressed by a high-salt diet. Am J Physiol Cell Physiol 2013; 306:C123-31. [PMID: 24259418 DOI: 10.1152/ajpcell.00164.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autologous bone marrow-derived mononuclear cell (BM-MNC) transplantation is a potential therapy for inducing revascularization in ischemic tissues providing the underlying disease process had not negatively affected BM-MNC function. Previously, we have shown that skeletal muscle angiogenesis induced by electrical stimulation is impaired by a high-salt diet (HSD; 4% NaCl) in Sprague-Dawley (SD) rats. In this study we tested the hypothesis that BM-MNC angiogenic function is impaired by an elevated dietary sodium intake. Following 1 wk on HSD, either vehicle or BM-MNCs derived from SD donor rats on HSD or normal salt diet (NSD; 0.4% NaCl) were injected into male SD rats undergoing hindlimb stimulation. Administration of BM-MNCs (intramuscular or intravenous) from NSD donors, but not HSD donors, restored the angiogenic response in HSD recipients. Angiotensin II (3 ng · kg(-1) · min(-1)) infusion of HSD donor rats restored angiogenic capacity of BM-MNCs, and treatment of NSD donor rats with losartan, an angiotensin II receptor-1 antagonist, inhibited BM-MNC angiogenic competency. HSD BM-MNCs and NSD losartan BM-MNCs exhibited increased apoptosis in vitro following an acute 6-h hypoxic stimulus. HSD BM-MNCs also had increased apoptosis following injection into skeletal muscle. This study suggests that BM-MNC transplantation can restore skeletal muscle angiogenesis and that HSD impairs the angiogenic competency of BM-MNCs due to suppression of the renin-angiotensin system causing increased apoptosis.
Collapse
Affiliation(s)
- Jamie R Karcher
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | | |
Collapse
|
12
|
Local bone marrow renin-angiotensin system in primitive, definitive and neoplastic haematopoiesis. Clin Sci (Lond) 2013; 124:307-23. [PMID: 23157407 DOI: 10.1042/cs20120300] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The locally active ligand peptides, mediators, receptors and signalling pathways of the haematopoietic BM (bone marrow) autocrine/paracrine RAS (renin-angiotensin system) affect the essential steps of definitive blood cell production. Haematopoiesis, erythropoiesis, myelopoiesis, formation of monocytic and lymphocytic lineages, thrombopoiesis and other stromal cellular elements are regulated by the local BM RAS. The local BM RAS is present and active even in primitive embryonic haematopoiesis. ACE (angiotensin-converting enzyme) is expressed on the surface of the first endothelial and haematopoietic cells, forming the marrow cavity in the embryo. ACE marks early haematopoietic precursor cells and long-term blood-forming CD34(+) BM cells. The local autocrine tissue BM RAS may also be active in neoplastic haematopoiesis. Critical RAS mediators such as renin, ACE, AngII (angiotensin II) and angiotensinogen have been identified in leukaemic blast cells. The local tissue RAS influences tumour growth and metastases in an autocrine and paracrine fashion via the modulation of numerous carcinogenic events, such as angiogenesis, apoptosis, cellular proliferation, immune responses, cell signalling and extracellular matrix formation. The aim of the present review is to outline the known functions of the local BM RAS within the context of primitive, definitive and neoplastic haematopoiesis. Targeting the actions of local RAS molecules could represent a valuable therapeutic option for the management of neoplastic disorders.
Collapse
|
13
|
Lu H, Balakrishnan A, Howatt DA, Wu C, Charnigo R, Liau G, Cassis LA, Daugherty A. Comparative effects of different modes of renin angiotensin system inhibition on hypercholesterolaemia-induced atherosclerosis. Br J Pharmacol 2012; 165:2000-2008. [PMID: 22014125 DOI: 10.1111/j.1476-5381.2011.01712.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Inhibition of the renin angiotensin system (RAS) has been consistently demonstrated to reduce atherosclerosis. However, there has been no direct comparison among the three available pharmacological modes of inhibiting the RAS, which are inhibitors of renin, ACE and angiotensin II type 1 receptor. The purpose of this study was to determine the relative effects of these three modes of pharmacological RAS inhibition in reducing atherosclerosis by determining the dose-response relationships. EXPERIMENTAL APPROACH Male LDL receptor -/- mice were administered either vehicle or any of three doses of aliskiren, enalapril or losartan through s.c. infusion for 12 weeks. All mice were fed a saturated fat-enriched diet during drug infusions. Systolic and diastolic BPs were measured during the study using a non-invasive tail-cuff system. Plasma cholesterol and renin concentrations, atherosclerotic lesions, and renal angiotensin II concentrations were determined at the termination of the study. KEY RESULTS Plasma renin concentrations were increased by all three drugs. None of the drugs changed plasma cholesterol concentrations. All drugs produced a dose-related decrease in BP. All three drugs also profoundly reduced atherosclerosis in a dose-dependent manner. The highest dose of each drug markedly attenuated lesion size, with no significant differences between the different drugs. The highest dose of each drug also similarly reduced renal angiotensin II concentrations. CONCLUSION AND IMPLICATIONS Drugs that inhibit the RAS, irrespective of their mode of inhibition, profoundly affect atherosclerotic lesion development in a dose-dependent manner.
Collapse
Affiliation(s)
- Hong Lu
- Saha Cardiovascular Research CenterGraduate Center for Nutritional SciencesDepartment of Statistics, University of Kentucky, Lexington, KY, USANovartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Anju Balakrishnan
- Saha Cardiovascular Research CenterGraduate Center for Nutritional SciencesDepartment of Statistics, University of Kentucky, Lexington, KY, USANovartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Deborah A Howatt
- Saha Cardiovascular Research CenterGraduate Center for Nutritional SciencesDepartment of Statistics, University of Kentucky, Lexington, KY, USANovartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Congqing Wu
- Saha Cardiovascular Research CenterGraduate Center for Nutritional SciencesDepartment of Statistics, University of Kentucky, Lexington, KY, USANovartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Richard Charnigo
- Saha Cardiovascular Research CenterGraduate Center for Nutritional SciencesDepartment of Statistics, University of Kentucky, Lexington, KY, USANovartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Gene Liau
- Saha Cardiovascular Research CenterGraduate Center for Nutritional SciencesDepartment of Statistics, University of Kentucky, Lexington, KY, USANovartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Lisa A Cassis
- Saha Cardiovascular Research CenterGraduate Center for Nutritional SciencesDepartment of Statistics, University of Kentucky, Lexington, KY, USANovartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Alan Daugherty
- Saha Cardiovascular Research CenterGraduate Center for Nutritional SciencesDepartment of Statistics, University of Kentucky, Lexington, KY, USANovartis Institutes for Biomedical Research, Cambridge, MA, USA
| |
Collapse
|
14
|
Iwanami J, Mogi M, Tsukuda K, Min LJ, Sakata A, Jing F, Ohshima K, Horiuchi M. Effect of Angiotensin II Type 2 Receptor Deletion in Hematopoietic Cells on Brain Ischemia-Reperfusion Injury. Hypertension 2011; 58:404-9. [DOI: 10.1161/hypertensionaha.111.177873] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jun Iwanami
- From the Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Masaki Mogi
- From the Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Kana Tsukuda
- From the Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Li-Juan Min
- From the Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Akiko Sakata
- From the Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Fei Jing
- From the Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Kousei Ohshima
- From the Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Masatsugu Horiuchi
- From the Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| |
Collapse
|
15
|
Yagi S, Sata M. Pre-clinical data on the role of mineralocorticoid receptor antagonists in reversing vascular inflammation. Eur Heart J Suppl 2011. [DOI: 10.1093/eurheartj/sur012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Sata M, Fukuda D. Chronic inflammation and atherosclerosis : A critical role for renin angiotensin system that is activated by lifestyle-related diseases. Inflamm Regen 2011. [DOI: 10.2492/inflammregen.31.245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
17
|
Beyazit Y, Purnak T, Guven GS, Haznedaroglu IC. Local bone marrow Renin-Angiotensin system and atherosclerosis. Cardiol Res Pract 2010; 2011:714515. [PMID: 21234405 PMCID: PMC3014698 DOI: 10.4061/2011/714515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 10/14/2010] [Accepted: 10/23/2010] [Indexed: 12/13/2022] Open
Abstract
Local hematopoietic bone marrow (BM) renin-angiotensin system (RAS) affects the growth, production, proliferation differentiation, and function of hematopoietic cells. Angiotensin II (Ang II), the dominant effector peptide of the RAS, regulates cellular growth in a wide variety of tissues in pathobiological states. RAS, especially Ang II and Ang II type 1 receptor (AT1R), has considerable proinflammatory and proatherogenic effects on the vessel wall, causing progression of atherosclerosis. Recent investigations, by analyzing several BM chimeric mice whose BM cells were positive or negative for AT1R, disclosed that AT1R in BM cells participates in the pathogenesis of atherosclerosis. Therefore, AT1R blocking not only in vascular cells but also in the BM could be an important therapeutic approach to prevent atherosclerosis. The aim of this paper is to review the function of local BM RAS in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Yavuz Beyazit
- Department of Gastroenterology, Turkiye Yuksek Ihtisas Teaching and Research Hospital, 06100 Ankara, Turkey
| | | | | | | |
Collapse
|
18
|
Abstract
Cellular senescence is a specialized form of growth arrest, confined to mitotic cells, induced by various stressful stimuli and characterized by a permanent growth arrest, resistance to apoptosis, an altered pattern of gene expression and the expression of some markers that are characteristic, although not exclusive, to the senescent state. Senescent cells profoundly modify neighboring and remote cells through the production of an altered secretome, eventually leading to inflammation, fibrosis and possibly growth of neoplastic cells. Mammalian aging has been defined as a reduction in the capacity to adequately maintain tissue homeostasis or to repair tissues after injury. Tissue homeostasis and regenerative capacity are nowadays considered to be related to the stem cell pool present in every tissue. For this reason, pathological and patho-physiological conditions characterized by altered tissue homeostasis and impaired regenerative capacity can be viewed as a consequence of the reduction in stem cell number and/or function. Last, cellular senescence is a double-edged sword, since it may inhibit the growth of transformed cells, preventing the occurrence of cancer, while it may facilitate growth of preneoplastic lesions in a paracrine fashion; therefore, interventions targeting this cell response to stress may have a profound impact on many age-related pathologies, ranging from cardiovascular disease to oncology. Aim of this review is to discuss both molecular mechanisms associated with stem cell senescence and interventions that may attenuate or reverse this process.
Collapse
|
19
|
Haznedaroglu IC, Beyazit Y. Review: Pathobiological aspects of the local bone marrow renin-angiotensin system: a review. J Renin Angiotensin Aldosterone Syst 2010; 11:205-13. [DOI: 10.1177/1470320310379876] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The local haematopoietic bone marrow (BM) renin—angiotensin system (RAS) mediates pathobiological alterations of haematopoiesis in an autocrine/paracrine/intracrine fashion. Recent data further indicated the existence of angiotensin-converting enzyme (ACE) in human primitive lympho-haematopoietic cells, embryonic, foetal and adult haematopoietic tissues. Human umbilical cord blood cells also express renin, angiotensinogen, and ACE mRNAs. As ACE and other angiotensin peptides function in human haematopoietic stem cells (HSCs) throughout haematopoietic ontogeny and adulthood, local RAS could also have a function in HSC plasticity, and the development of haematological neoplastic disorders. The presence of ACE on leukaemic blast cells within leukaemic BM, on erythroleukaemic cells, ACE-expressing macrophages in lymph nodes of Hodgkin disease, renin activity in leukaemic blasts, angiotensin II as an autocrine growth factor for AML, increased renin gene activity during NUP98-HOXA9 enhanced blast formation, higher levels of BB9/ACE (+) AML isoforms, and altered JAK-STAT pathway as a link between RAS and leukaemia indicated the wide pathobiological aspects of local BM RAS. The comparable biological actions of local RASs throughout the human body (including myocardium, pancreas, pituitary gland, ovary and kidney) represent the true basis for the search of their prominence in tissue functions. Recent data and perspectives of the local BM RAS in health and disease are reviewed in this paper.
Collapse
Affiliation(s)
| | - Yavuz Beyazit
- Turkiye Yuksek Ihtisas Training and Research Hospital, Department of Gastroenterology, Ankara, Turkey,
| |
Collapse
|
20
|
McAllister-Lucas LM, Jin X, Gu S, Siu K, McDonnell S, Ruland J, Delekta PC, Van Beek M, Lucas PC. The CARMA3-Bcl10-MALT1 signalosome promotes angiotensin II-dependent vascular inflammation and atherogenesis. J Biol Chem 2010; 285:25880-4. [PMID: 20605784 DOI: 10.1074/jbc.c110.109421] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The CARMA1, Bcl10, and MALT1 proteins together constitute a signaling complex (CBM signalosome) that mediates antigen-dependent activation of NF-kappaB in lymphocytes, thereby representing a cornerstone of the adaptive immune response. Although CARMA1 is restricted to cells of the immune system, the analogous CARMA3 protein has a much wider expression pattern. Emerging evidence suggests that CARMA3 can substitute for CARMA1 in non-immune cells to assemble a CARMA3-Bcl10-MALT1 signalosome and mediate G protein-coupled receptor activation of NF-kappaB. Here we show that one G protein-coupled receptor, the type 1 receptor for angiotensin II, utilizes this mechanism for activation of NF-kappaB in endothelial and vascular smooth muscle cells, thereby inducing pro-inflammatory signals within the vasculature, a key factor in atherogenesis. Further, we demonstrate that Bcl10-deficient mice are protected from developing angiotensin-dependent atherosclerosis and aortic aneurysms. By uncovering a novel vascular role for the CBM signalosome, these findings illustrate that CBM-dependent signaling has functions outside the realm of adaptive immunity and impacts pathobiology more broadly than previously known.
Collapse
|
21
|
Abd Alla J, Langer A, Elzahwy SS, Arman-Kalcek G, Streichert T, Quitterer U. Angiotensin-converting enzyme inhibition down-regulates the pro-atherogenic chemokine receptor 9 (CCR9)-chemokine ligand 25 (CCL25) axis. J Biol Chem 2010; 285:23496-505. [PMID: 20504763 DOI: 10.1074/jbc.m110.117481] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Many experimental and clinical studies suggest a relationship between enhanced angiotensin II release by the angiotensin-converting enzyme (ACE) and the pathophysiology of atherosclerosis. The atherosclerosis-enhancing effects of angiotensin II are complex and incompletely understood. To identify anti-atherogenic target genes, we performed microarray gene expression profiling of the aorta during atherosclerosis prevention with the ACE inhibitor, captopril. Atherosclerosis-prone apolipoprotein E (apoE)-deficient mice were used as a model to decipher susceptible genes regulated during atherosclerosis prevention with captopril. Microarray gene expression profiling and immunohistology revealed that captopril treatment for 7 months strongly decreased the recruitment of pro-atherogenic immune cells into the aorta. Captopril-mediated inhibition of plaque-infiltrating immune cells involved down-regulation of the C-C chemokine receptor 9 (CCR9). Reduced cell migration correlated with decreased numbers of aorta-resident cells expressing the CCR9-specific chemoattractant factor, chemokine ligand 25 (CCL25). The CCL25-CCR9 axis was pro-atherogenic, because inhibition of CCR9 by RNA interference in hematopoietic progenitors of apoE-deficient mice significantly retarded the development of atherosclerosis. Analysis of coronary artery biopsy specimens of patients with coronary artery atherosclerosis undergoing bypass surgery also showed strong infiltrates of CCR9-positive cells in atherosclerotic lesions. Thus, the C-C chemokine receptor, CCR9, exerts a significant role in atherosclerosis.
Collapse
Affiliation(s)
- Joshua Abd Alla
- Molecular Pharmacology Unit, Swiss Federal Institute of Technology and University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Daugherty A, Poduri A, Chen X, Lu H, Cassis LA. Genetic variants of the Renin Angiotensin system: effects on atherosclerosis in experimental models and humans. Curr Atheroscler Rep 2010; 12:167-73. [PMID: 20425255 PMCID: PMC2857789 DOI: 10.1007/s11883-010-0109-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The renin angiotensin system (RAS) has profound effects on atherosclerosis development in animal models, which is partially complimented by evidence in the human disease. Although angiotensin II was considered to be the principal effector of the RAS, a broader array of bioactive angiotensin peptides have been identified that have increased the scope of enzymes and receptors in the RAS. Genetic interruption of the synthesis of these peptides has not been extensively performed in experimental or human studies. A few studies demonstrate that interruption of a component of the angiotensin peptide synthesis pathway reduces experimental lesion formation. The evidence in human studies has not been consistent. Conversely, genetic manipulation of the RAS receptors has demonstrated that AT1a receptors are profoundly involved in experimental atherosclerosis. Few studies have reported links of genetic variants of angiotensin II receptors to human atherosclerotic diseases. Further genetic studies are needed to define the role of RAS in atherosclerosis.
Collapse
Affiliation(s)
- Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, BBSRB, Room B-243, Lexington, KY 40536-0509, USA.
| | | | | | | | | |
Collapse
|
23
|
Sata M, Fukuda D. Crucial role of renin-angiotensin system in the pathogenesis of atherosclerosis. THE JOURNAL OF MEDICAL INVESTIGATION 2010; 57:12-25. [DOI: 10.2152/jmi.57.12] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Masataka Sata
- Department of Cardiovascular Medicine, Institute of Health Bioscience, the University of Tokushima Graduate School
| | - Daiju Fukuda
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
| |
Collapse
|
24
|
Sayitoglu M, Haznedaroğlu IC, Hatirnaz O, Erbilgin Y, Aksu S, Koca E, Adiguzel C, Bayik M, Akalin I, Gülbas Z, Akay M, Unal A, Kaynar L, Ovali E, Yilmaz M, Yenerel M, Dagdas S, Ozet G, Ar C, Aydin Y, Soysal T, Durgun B, Ozcebe O, Tukun A, Ilhan O, Ozbek U. Effects of Imatinib Mesylate on Renin–Angiotensin System (RAS) Activity during the Clinical Course of Chronic Myeloid Leukaemia. J Int Med Res 2009; 37:1018-28. [DOI: 10.1177/147323000903700406] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The renin–angiotensin system (RAS) is involved in cell growth, proliferation and differentiation in bone marrow in an autocrine–paracrine manner, and it modulates normal and neoplastic haematopoietic cell proliferation. This study aimed to assess expressions of the RAS components, renin, angiotensinogen and angiotensin-converting enzyme (ACE), during imatinib mesylate treatment of patients with chronic myeloid leukaemia (CML). Expressions of RAS components were studied in patients with CML at the time of diagnosis ( n = 83) and at 3, 6 and 12 months after diagnosis ( n = 35) by quantitative real-time polymerase chain reaction. De novo CML patients had increased ACE, angiotensinogen and renin mRNA levels and these expression levels decreased following administration of imatinib. The RAS activities were significantly different among Sokal risk groups of CML, highlighting the altered biological activity of RAS in neoplastic disorders. The results of this study confirm that haematopoietic RAS affects neoplastic cell production, which may be altered via administration of tyrosine kinase inhibitors such as imatinib mesylate.
Collapse
Affiliation(s)
- M Sayitoglu
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - IC Haznedaroğlu
- Department of Internal Medicine, Haematology Division, Hacettepe University Medical Faculty, Ankara, Turkey
| | - O Hatirnaz
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Y Erbilgin
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - S Aksu
- Department of Internal Medicine, Haematology Division, Hacettepe University Medical Faculty, Ankara, Turkey
| | - E Koca
- Department of Internal Medicine, Haematology Division, Hacettepe University Medical Faculty, Ankara, Turkey
| | - C Adiguzel
- Department of Internal Medicine, Haematology Division, Marmara University Medical Faculty, Istanbul, Turkey
| | - M Bayik
- Department of Internal Medicine, Haematology Division, Marmara School of Medicine Hospital, Istanbul, Turkey
| | - I Akalin
- Department of Internal Medicine, Haematology Division, Marmara University Medical Faculty, Istanbul, Turkey
| | | | | | - A Unal
- Department of Internal Medicine, Haematology Division, Osmangazi University Medical Faculty, Eskisehir, Turkey
| | - L Kaynar
- Department of Internal Medicine, Haematology Division, Osmangazi University Medical Faculty, Eskisehir, Turkey
| | - E Ovali
- Department of Internal Medicine, Haematology Division, Erciyes University Medical Faculty, Kayseri, Turkey
| | - M Yilmaz
- Department of Internal Medicine, Haematology Division, Erciyes University Medical Faculty, Kayseri, Turkey
| | - M Yenerel
- Department of Internal Medicine, Haematology Division, Karadeniz Technical University Medical Faculty, Trabzon, Turkey
| | - S Dagdas
- Department of Internal Medicine, Haematology Division, Istanbul University Medical Faculty, Istanbul, Turkey
| | - G Ozet
- Department of Internal Medicine, Haematology Division, Istanbul University Medical Faculty, Istanbul, Turkey
| | - C Ar
- Department of Internal Medicine, Haematology Division, Ankara Numune Hospital, Ankara, Turkey
| | - Y Aydin
- Department of Internal Medicine, Haematology Division, Ankara Numune Hospital, Ankara, Turkey
| | - T Soysal
- Department of Internal Medicine, Haematology Division, Ankara Numune Hospital, Ankara, Turkey
| | - B Durgun
- Department of Internal Medicine, Haematology Division, Istanbul University Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - O Ozcebe
- Department of Internal Medicine, Haematology Division, Hacettepe University Medical Faculty, Ankara, Turkey
| | - A Tukun
- Medical Department, Novartis Oncology Turkey, Istanbul, Turkey
| | - O Ilhan
- Department of Internal Medicine, Genetics Division, Ankara University Medical Faculty, Ankara, Turkey
| | - U Ozbek
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The renin-angiotensin system (RAS) has undergone continuous advancement since the initial identification of renin as a pressor agent. Traditionally considered a circulatory system, the RAS is now known to exist as a tissue system as well. Recently, the tissue RAS has been further categorized as intracellular and extracellular. Owing to the unique location, the intracellular RAS encompasses new components, such as cathepsin D and chymase, which participate in intracellular angiotensin (Ang) II synthesis. In this review, evidence of the intracellular RAS and the mechanism of Ang II synthesis in various cell types will be discussed. RECENT FINDINGS A physiological role for intracellular Ang II in vascular and cardiac cells has recently been demonstrated. Evidence of intracellular Ang II generation has been shown in several cell types, particularly cardiac, renal, and vascular. Importantly, intracellular synthesis of Ang II is more prominent in hyperglycemic conditions and generally involves angiotensin-converting enzyme-dependent and angiotensin-converting enzyme-independent mechanisms. SUMMARY There is significant diversity in the mechanism of intracellular synthesis of Ang II in various cell types and pathological conditions. These observations suggest that a therapeutic intervention to block the RAS should take into consideration the nature of the disorder and the cell type involved.
Collapse
|