1
|
Sorg O, Saurat JH. Development of skin diseases following systemic exposure: example of dioxins. FRONTIERS IN TOXICOLOGY 2023; 5:1243192. [PMID: 37711212 PMCID: PMC10498119 DOI: 10.3389/ftox.2023.1243192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
Most skin manifestations of exposure to toxic compounds are a consequence of a direct contact with the toxicants. However, some toxicants may reach the skin following systemic exposure, and promote skin diseases. Good examples of such chemicals are dioxin-like compounds. This family of lipophilic molecules comprises polychlorinated (dibenzodioxins, dibenzofurans and biphenyls). The most potent member of this family is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Following oral ingestion of as little as a few mg TCDD, skin lesions appear in a couple of weeks, starting from the face and diffuse then on the trunk and limbs. This syndrome was historically called "chloracne" and the skin lesions have now been shown to be skin hamartoma induced by TCDD. Sweat glands release their lipid content on the surface of the skin by a holocrine secretion, and so any lost sebocyte should be transmitted to progenitor cells to differentiate and migrate to the sebaceous gland to replace the lost sebocyte. TCDD acts by inducing a switch in this signal and skin hamartoma develop in place of new sebocytes.
Collapse
Affiliation(s)
- Olivier Sorg
- Clinical Pharmacology and Toxicology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
2
|
Polycyclic Aromatic Hydrocarbons from Fine Particulate Matter Induce Oxidative Stress and the Inflammatory Response in Human Vocal Fold Fibroblast Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5530390. [PMID: 34394826 PMCID: PMC8357466 DOI: 10.1155/2021/5530390] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxicants in particulate matter (PM). The vocal fold, part of the larynx and a key structure for voicing, is always in contact with air. In recent epidemic studies, PM was shown to cause laryngitis; however, the basic mechanism has not been evaluated. In the present study, intracellular reactive oxygen species (ROS) and proinflammatory cytokine levels were analyzed after exposing human vocal fold fibroblasts (hVFFs) to PM standard reference material (SRM 2786). Expression levels of the aryl hydrocarbon receptor (AhR) and Cytochrome P450 Family 1 Subfamily A Member 1 (CYP1A1) were also evaluated. PM induced ROS formation and proinflammatory cytokines via the AhR CYP1A1 pathway and caused lipid peroxidation and DNA damage. Blocking AhR or CYP1A1 production using siRNAs significantly decreased ROS production and IL-6 and IL-9 expression in PM-exposed hVFFs, thus protecting the cells against oxidative stress. These results confirm that PAHs in PM play an important role in cell damage and inflammation, confirming a basic pathophysiologic relationship between PM exposure and laryngitis.
Collapse
|
3
|
Network mapping of primary CD34+ cells by Ampliseq based whole transcriptome targeted resequencing identifies unexplored differentiation regulatory relationships. PLoS One 2021; 16:e0246107. [PMID: 33544756 PMCID: PMC7864404 DOI: 10.1371/journal.pone.0246107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/13/2021] [Indexed: 12/04/2022] Open
Abstract
With the exception of a few master transcription factors, regulators of neutrophil maturation are poorly annotated in the intermediate phenotypes between the granulocyte-macrophage progenitor (GMP) and the mature neutrophil phenotype. Additional challenges in identifying gene expression regulators in differentiation pathways relate to challenges wherein starting cell populations are heterogeneous in lineage potential and development, are spread across various states of quiescence, as well as sample quality and input limitations. These factors contribute to data variability make it difficult to draw simple regulatory inferences. In response we have applied a multi-omics approach using primary blood progenitor cells primed for homogeneous proliferation and granulocyte differentiation states which combines whole transcriptome resequencing (Ampliseq RNA) supported by droplet digital PCR (ddPCR) validation and mass spectrometry-based proteomics in a hypothesis-generation study of neutrophil differentiation pathways. Primary CD34+ cells isolated from human cord blood were first precultured in non-lineage driving medium to achieve an active, proliferating phenotype from which a neutrophil primed progenitor was isolated and cultured in neutrophil lineage supportive medium. Samples were then taken at 24-hour intervals over 9 days and analysed by Ampliseq RNA and mass spectrometry. The Ampliseq dataset depth, breadth and quality allowed for several unexplored transcriptional regulators and ncRNAs to be identified using a combinatorial approach of hierarchical clustering, enriched transcription factor binding motifs, and network mapping. Network mapping in particular increased comprehension of neutrophil differentiation regulatory relationships by implicating ARNT, NHLH1, PLAG1, and 6 non-coding RNAs associated with PU.1 regulation as cell-engineering targets with the potential to increase total neutrophil culture output. Overall, this study develops and demonstrates an effective new hypothesis generation methodology for transcriptome profiling during differentiation, thereby enabling identification of novel gene targets for editing interventions.
Collapse
|
4
|
Zhang N, Wang J, Sheng A, Huang S, Tang Y, Ma S, Hong G. Emodin Inhibits the Proliferation of MCF-7 Human Breast Cancer Cells Through Activation of Aryl Hydrocarbon Receptor (AhR). Front Pharmacol 2021; 11:622046. [PMID: 33542691 PMCID: PMC7850984 DOI: 10.3389/fphar.2020.622046] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Natural products have proved to be a promising source for the development of potential anticancer drugs. Emodin, a natural compound from Rheum palmatum, is used to treat several types of cancers, including lung, liver, and pancreatic. However, there are few reports regarding its use in the treatment of breast cancer. Thus, the therapeutic effect and mechanism of emodin on MCF-7 human breast cancer cells were investigated in this study. Morphological observations and cell viability were evaluated to determine the anti-proliferation activity of emodin. Network pharmacology and molecular docking were performed to screen the potential targets. Western blot analysis was used to explore a potential antitumor mechanism. The results showed that emodin (50–100 μmol/L) could significantly inhibit the proliferation of MCF-7 cells in a time and dose-dependent manner. Furthermore, virtual screening studies indicated that emodin was a potent aryl hydrocarbon receptor (AhR) agonist in chemotherapy for breast cancer. Finally, when MCF-7 cells were treated with emodin (100 μmol/L) for 24 h, the AhR and cytochrome P450 1A1 (CYP1A1) protein expression levels were significantly upregulated compared with the control group. Our study indicated that emodin exhibited promising antitumor activity in MCF-7 cells, likely through activation of the AhR-CYP1A1 signaling pathway. These findings lay a foundation for the application of emodin in breast cancer treatment.
Collapse
Affiliation(s)
- Ning Zhang
- Life and Health College, Anhui Science and Technology University, Fengyang, China.,School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China.,Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Jiawen Wang
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Aimin Sheng
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
| | - Shuo Huang
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin Hospital, Tianjin, China
| | - Yanyan Tang
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin Hospital, Tianjin, China
| | - Shitang Ma
- Life and Health College, Anhui Science and Technology University, Fengyang, China
| | - Ge Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| |
Collapse
|
5
|
Ma D, Xie HQ, Zhang W, Xue Q, Liu X, Xu L, Ma Y, Bonefeld-Jørgensen EC, Long M, Zhang A, Zhao B. Aryl hydrocarbon receptor activity of polyhalogenated carbazoles and the molecular mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:516-526. [PMID: 31216508 DOI: 10.1016/j.scitotenv.2019.05.406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Polyhalogenated carbazoles (PHCZs) are a class of contaminants identified with persistence and bioaccumulation property from previous studies. However, the toxic effect and mechanism of PHCZs are not fully understood. In this study, eleven PHCZs, including four chlorocarbazoles, four bromocarbazoles and two bromo/chlorocarbazoles were screened for their potential aryl hydrocarbon receptor (AhR) activity by using a dioxin responsive element-driven luciferase reporter assay. We found that nine PHCZs significantly activated AhR in a concentration-dependent manner. Their potencies of AhR activation were 1000 to 100,000 folds less than that of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent AhR ligand. The relative AhR activation potency of the nine PHCZs followed the order 2,3,6,7-tetrachloro-9H-carbazole >2,7-dibromo-9H-carbazole >1,3,6-tribromo-9H-carbazole >1,3,6,8-tetrachloro-9H-carbazole >1,3,6,8-tetrabromo-9H-carbazole >1-bromo-3,6-dichloro-9H-carbazole >3,6-dibromo-9H-carbazole >3-bromo-9H-carbazole >1,8-dibromo-3,6-dichloro-9H-carbazole, which was partly in line with the induction of AhR-mediated CYP1A1 expression. In silico analysis indicated that the nine PHCZs could be docked into the same pocket as TCDD due to their high structural similarity. However, the shrunk size of the heterocyclic moieties in PHCZs relative to that in TCDD dramatically decreased the complex stability provided by inter-molecular interactions. Moreover, two distinguished docking poses adopted by the nine PHCZs were found, in which one was illustrated by 2367-CCZ and 27-BCZ while the other symbolized by TCDD and the left seven agonists. The differential antagonizing effects of CH223191 on PHCZ-induced AhR activity supported such pose differentiation. The present experimental and in silico data provide new direct evidence of PHCZ-AhR interaction which sheds light on AhR-associated toxicological study and risk assessment of PHCZs.
Collapse
Affiliation(s)
- Dan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanglong Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuchang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongchao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus DK-8000, Denmark
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus DK-8000, Denmark
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Alpha-naphthoflavone induces apoptosis through endoplasmic reticulum stress via c-Src-, ROS-, MAPKs-, and arylhydrocarbon receptor-dependent pathways in HT22 hippocampal neuronal cells. Neurotoxicology 2018; 71:39-51. [PMID: 30508555 DOI: 10.1016/j.neuro.2018.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 01/16/2023]
Abstract
α-Naphthoflavone (αNF) is a prototype flavone, also known as a modulator of aryl hydrocarbon receptor (AhR). In the present study, we investigated the molecular mechanisms of αNF-induced cytotoxic effects in HT22 mouse hippocampal neuronal cells. αNF induced apoptotic cell death via activation of caspase-12 and -3 and increased expression of endoplasmic reticulum (ER) stress-associated proteins, including C/EBP homologous protein (CHOP). Inhibition of ER stress by treatment with the ER stress inhibitor, salubrinal, or by CHOP siRNA transfection reduced αNF-induced cell death. αNF activated mitogen-activated protein kinases (MAPKs), such as p38, JNK, and ERK, and inhibition of MAPKs reduced αNF-induced CHOP expression and cell death. αNF also induced accumulation of reactive oxygen species (ROS) and an antioxidant, N-acetylcysteine, reduced αNF-induced MAPK phosphorylation, CHOP expression, and cell death. Furthermore, αNF activated c-Src kinase, and inhibition of c-Src by a kinase inhibitor, SU6656, or siRNA transfection reduced αNF-induced ROS accumulation, MAPK activation, CHOP expression, and cell death. Inhibition of AhR by an AhR antagonist, CH223191, and siRNA transfection of AhR and AhR nuclear translocator reduced αNF-induced AhR-responsive luciferase activity, CHOP expression, and cell death. Finally, we found that inhibition of c-Src and MAPKs reduced αNF-induced transcriptional activity of AhR. Taken together, these findings suggest that αNF induces apoptosis through ER stress via c-Src-, ROS-, MAPKs-, and AhR-dependent pathways in HT22 cells.
Collapse
|
7
|
Woo H, Lee J, Park D, Jung E. Protective Effect of Mulberry (Morus alba L.) Extract against Benzo[a]pyrene Induced Skin Damage through Inhibition of Aryl Hydrocarbon Receptor Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10925-10932. [PMID: 29231728 DOI: 10.1021/acs.jafc.7b04044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Benzo[a]pyrene (B[a]P), a type of polycyclic aromatic hydrocarbon, is present in the atmosphere surrounding our environment. Although B[a]P is a procarcinogen, enzymatically metabolized benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) could intercalate into DNA to form bulky BPDE-DNA adducts as an ultimate carcinogenic product in human keratinocytes. The aim of this study was to evaluate the protective effect of mulberry extract, purified from the fruit of Morus Alba L., on B[a]P-induced cytotoxicity in human keratinocytes and its mechanisms of action. In this study, we confirmed that B[a]P induced nuclear translocation and the activation of aryl hydrocarbon receptor (AhR) were decreased by pretreatment of mulberry extract. Mulberry extract could decrease DNA damage through the suppression of B[a]P derived DNA adduct formation and restoration of cell cycle retardation at S phase in a dose-dependent manner. Additionally, cyanidin-3-glucoside (C3G), a major active compound of mulberry extract, showed biological activities to protect the cells from B[a]P exposure, similar to the effectivity of the mulberry extract. These results indicated that the inhibitory effect of C3G against B[a]P inducing skin cancer is attributable to repress the AhR signaling pathway.
Collapse
Affiliation(s)
- Hyunju Woo
- Biospectrum Life Science Institute , A-1805, U-Tower, 767, Sinsu-ro, Suji-gu, Yongin-si, Gyeonggi-do Republic of Korea
| | - JungA Lee
- Biospectrum Life Science Institute , A-1805, U-Tower, 767, Sinsu-ro, Suji-gu, Yongin-si, Gyeonggi-do Republic of Korea
| | - Deokhoon Park
- Biospectrum Life Science Institute , A-1805, U-Tower, 767, Sinsu-ro, Suji-gu, Yongin-si, Gyeonggi-do Republic of Korea
| | - Eunsun Jung
- Biospectrum Life Science Institute , A-1805, U-Tower, 767, Sinsu-ro, Suji-gu, Yongin-si, Gyeonggi-do Republic of Korea
| |
Collapse
|
8
|
Kimura E, Tohyama C. Embryonic and Postnatal Expression of Aryl Hydrocarbon Receptor mRNA in Mouse Brain. Front Neuroanat 2017; 11:4. [PMID: 28223923 PMCID: PMC5293765 DOI: 10.3389/fnana.2017.00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/17/2017] [Indexed: 12/21/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix-Per-Arnt-Sim transcription factor family, plays a critical role in the developing nervous system of invertebrates and vertebrates. Dioxin, a ubiquitous environmental pollutant, avidly binds to this receptor, and maternal exposure to dioxin has been shown to impair higher brain functions and dendritic morphogenesis, possibly via an AhR-dependent mechanism. However, there is little information on AhR expression in the developing mammalian brain. To address this issue, the present study analyzed AhR mRNA expression in the brains of embryonic, juvenile, and adult mice by reverse transcription (RT)-PCR and in situ hybridization. In early brain development (embryonic day 12.5), AhR transcript was detected in the innermost cortical layer. The mRNA was also expressed in the hippocampus, cerebral cortex, cerebellum, olfactory bulb, and rostral migratory stream on embryonic day 18.5, postnatal days 3, 7, and 14, and in 12-week-old (adult) mice. Hippocampal expression was abundant in the CA1 and CA3 pyramidal and dentate gyrus granule cell layers, where expression level of AhR mRNA in 12-week old is higher than that in 7-day old. These results reveal temporal and spatial patterns of AhR mRNA expression in the mouse brain, providing the information that may contribute to the elucidation of the physiologic and toxicologic significance of AhR in the developing brain.
Collapse
Affiliation(s)
- Eiki Kimura
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of TokyoTokyo, Japan; Environmental Biology Laboratory, Faculty of Medicine, University of TsukubaTsukuba, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of TokyoTokyo, Japan; Environmental Biology Laboratory, Faculty of Medicine, University of TsukubaTsukuba, Japan
| |
Collapse
|
9
|
Cuartero MI, de la Parra J, García-Culebras A, Ballesteros I, Lizasoain I, Moro MÁ. The Kynurenine Pathway in the Acute and Chronic Phases of Cerebral Ischemia. Curr Pharm Des 2016; 22:1060-73. [PMID: 25248805 DOI: 10.2174/1381612822666151214125950] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/11/2015] [Indexed: 12/12/2022]
Abstract
Kynurenines are a wide range of catabolites which derive from tryptophan through the "Kynurenine Pathway" (KP). In addition to its peripheral role, increasing evidence shows a role of the KP in the central nervous system (CNS), mediating both physiological and pathological functions. Indeed, an imbalance in this route has been associated with several neurodegenerative disorders such as Alzheimer´s and Huntington´s diseases. Altered KP catabolism has also been described during both acute and chronic phases of stroke; however the contribution of the KP to the pathophysiology of acute ischemic damage and of post-stroke disorders during the chronic phase including depression and vascular dementia, and the exact mechanisms implicated in the regulation of the KP after stroke are not well established yet. A better understanding of the regulation and activity of the KP after stroke could provide new pharmacological tools in both acute and chronic phases of stroke. In this review, we will make an overview of CNS modulation by the KP. We will detail the KP contribution in the ischemic damage, how the unbalance of the KP might trigger an alteration of the cognitive function after stroke as well as potential targets for the development of new drugs.
Collapse
Affiliation(s)
- María Isabel Cuartero
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
10
|
Stanford EA, Ramirez-Cardenas A, Wang Z, Novikov O, Alamoud K, Koutrakis P, Mizgerd JP, Genco CA, Kukuruzinska M, Monti S, Bais MV, Sherr DH. Role for the Aryl Hydrocarbon Receptor and Diverse Ligands in Oral Squamous Cell Carcinoma Migration and Tumorigenesis. Mol Cancer Res 2016; 14:696-706. [PMID: 27130942 PMCID: PMC4987205 DOI: 10.1158/1541-7786.mcr-16-0069] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Abstract
UNLABELLED Over 45,000 new cases of oral and pharyngeal cancers are diagnosed and account for over 8,000 deaths a year in the United States. An environmental chemical receptor, the aryl hydrocarbon receptor (AhR), has previously been implicated in oral squamous cell carcinoma (OSCC) initiation as well as in normal tissue-specific stem cell self-renewal. These previous studies inspired the hypothesis that the AhR plays a role in both the acquisition and progression of OSCC, as well as in the formation and maintenance of cancer stem-like cells. To test this hypothesis, AhR activity in two oral squamous cell lines was modulated with AhR prototypic, environmental and bacterial AhR ligands, AhR-specific inhibitors, and phenotypic, genomic and functional characteristics were evaluated. The data demonstrate that: (i) primary OSCC tissue expresses elevated levels of nuclear AhR as compared with normal tissue, (ii) AhR mRNA expression is upregulated in 320 primary OSCCs, (iii) AhR hyperactivation with several ligands, including environmental and bacterial ligands, significantly increases AhR activity, ALDH1 activity, and accelerates cell migration, (iv) AhR inhibition blocks the rapid migration of OSCC cells and reduces cell chemoresistance, (v) AhR knockdown inhibits tumorsphere formation in low adherence conditions, and (vi) AhR knockdown inhibits tumor growth and increases overall survival in vivo These data demonstrate that the AhR plays an important role in development and progression of OSCC, and specifically cancer stem-like cells. Prototypic, environmental, and bacterial AhR ligands may exacerbate OSCC by enhancing expression of these properties. IMPLICATIONS This study, for the first time, demonstrates the ability of diverse AhR ligands to regulate AhR activity in oral squamous cell carcinoma cells, as well as regulate several important characteristics of oral cancer stem cells, in vivo and in vitro Mol Cancer Res; 14(8); 696-706. ©2016 AACR.
Collapse
Affiliation(s)
- Elizabeth A Stanford
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | | | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Olga Novikov
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts. Boston University Molecular and Translational Medicine Program, Boston, Massachusetts
| | - Khalid Alamoud
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, Massachusetts
| | - Petros Koutrakis
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Caroline A Genco
- Integrative Physiology and Integrative Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - Maria Kukuruzinska
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, Massachusetts
| | - Stefano Monti
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston Massachusetts
| | - Manish V Bais
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, Massachusetts
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts.
| |
Collapse
|
11
|
Corrada D, Soshilov AA, Denison MS, Bonati L. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation. PLoS Comput Biol 2016; 12:e1004981. [PMID: 27295348 PMCID: PMC4905635 DOI: 10.1371/journal.pcbi.1004981] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 05/12/2016] [Indexed: 01/15/2023] Open
Abstract
The Aryl hydrocarbon Receptor (AhR) is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT) protein, occurring through the Helix-Loop-Helix (HLH) and PER-ARNT-SIM (PAS) domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms underlying the functional activity of the AhR. Computational modeling combined with experimental validation may give insight into structural and functional properties of protein systems. The basic Helix-Loop-Helix PER-ARNT-SIM (bHLH-PAS) proteins show conserved functional domains despite the broad range of functions exerted by the different systems. Within this protein family, the Aryl hydrocarbon Receptor (AhR) is known to mediate the toxic effects of a number of environmental contaminants, including dioxins and dioxin-like chemicals, and it also exerts other biochemical and physiological effects. Despite the absence of experimentally determined structures, theoretical models of the AhR PAS domains developed on the basis of homologous systems have allowed understanding of some aspects of the molecular mechanisms underlying its function. In this work we present alternative structural models of the transcriptionally active complex of AhR with the AhR Nuclear Translocator (ARNT) protein. Computational characterization of the modeled protein-protein interaction interfaces guided the design of mutagenesis experiments, and evaluation of the DNA binding ability of the resulting AhR:ARNT dimer mutants allowed validation of the models and selection of the most reliable one. These findings open new research directions for understanding the molecular mechanisms underlying the functional activity of the AhR.
Collapse
Affiliation(s)
- Dario Corrada
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Anatoly A. Soshilov
- Department of Environmental Toxicology, University of California, Davis, Davis, California, United States of America
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California, Davis, Davis, California, United States of America
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
- * E-mail:
| |
Collapse
|
12
|
AhR signaling activation disrupts migration and dendritic growth of olfactory interneurons in the developing mouse. Sci Rep 2016; 6:26386. [PMID: 27197834 PMCID: PMC4873754 DOI: 10.1038/srep26386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022] Open
Abstract
Perinatal exposure to a low level of dioxin, a ubiquitous environmental pollutant, has been shown to induce abnormalities in learning and memory, emotion, and sociality in laboratory animals later in adulthood. However, how aryl hydrocarbon receptor (AhR) signaling activation disrupts the higher brain function remains unclear. Therefore, we studied the possible effects of excessive activation of AhR signaling on neurodevelopmental processes, such as cellular migration and neurite growth, in mice. To this end, we transfected a constitutively active-AhR plasmid into stem cells in the lateral ventricle by in vivo electroporation on postnatal day 1. Transfection was found to induce tangential migration delay and morphological abnormalities in neuronal precursors in the rostral migratory stream at 6 days post-electroporation (dpe) as well as disrupt radial migration in the olfactory bulb and apical and basal dendritic growth of the olfactory interneurons in the granule cell layer at 13 and 20 dpe. These results suggest that the retarded development of interneurons by the excessive AhR signaling may at least in part explain the dioxin-induced abnormal behavioral alterations previously reported in laboratory animals.
Collapse
|
13
|
Stanford EA, Wang Z, Novikov O, Mulas F, Landesman-Bollag E, Monti S, Smith BW, Seldin DC, Murphy GJ, Sherr DH. The role of the aryl hydrocarbon receptor in the development of cells with the molecular and functional characteristics of cancer stem-like cells. BMC Biol 2016; 14:20. [PMID: 26984638 PMCID: PMC4794823 DOI: 10.1186/s12915-016-0240-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Self-renewing, chemoresistant breast cancer stem cells are believed to contribute significantly to cancer invasion, migration and patient relapse. Therefore, the identification of signaling pathways that regulate the acquisition of stem-like qualities is an important step towards understanding why patients relapse and towards development of novel therapeutics that specifically target cancer stem cell vulnerabilities. Recent studies identified a role for the aryl hydrocarbon receptor (AHR), an environmental carcinogen receptor implicated in cancer initiation, in normal tissue-specific stem cell self-renewal. These studies inspired the hypothesis that the AHR plays a role in the acquisition of cancer stem cell-like qualities. RESULTS To test this hypothesis, AHR activity in Hs578T triple negative and SUM149 inflammatory breast cancer cells were modulated with AHR ligands, shRNA or AHR-specific inhibitors, and phenotypic, genomic and functional stem cell-associated characteristics were evaluated. The data demonstrate that (1) ALDH(high) cells express elevated levels of Ahr and Cyp1b1 and Cyp1a1, AHR-driven genes, (2) AHR knockdown reduces ALDH activity by 80%, (3) AHR hyper-activation with several ligands, including environmental ligands, significantly increases ALDH1 activity, expression of stem cell- and invasion/migration-associated genes, and accelerates cell migration, (4) a significant correlation between Ahr or Cyp1b1 expression (as a surrogate marker for AHR activity) and expression of stem cell- and invasion/migration-associated gene sets is seen with genomic data obtained from 79 human breast cancer cell lines and over 1,850 primary human breast cancers, (5) the AHR interacts directly with Sox2, a master regulator of self-renewal; AHR ligands increase this interaction and nuclear SOX2 translocation, (6) AHR knockdown inhibits tumorsphere formation in low adherence conditions, (7) AHR inhibition blocks the rapid migration of ALDH(high) cells and reduces ALDH(high) cell chemoresistance, (8) ALDH(high) cells are highly efficient at initiating tumors in orthotopic xenografts, and (9) AHR knockdown inhibits tumor initiation and reduces tumor Aldh1a1, Sox2, and Cyp1b1 expression in vivo. CONCLUSIONS These data suggest that the AHR plays an important role in development of cells with cancer stem cell-like qualities and that environmental AHR ligands may exacerbate breast cancer by enhancing expression of these properties.
Collapse
Affiliation(s)
- Elizabeth A. Stanford
- />Department of Environmental Health, Boston University School of Public Health, 72 East Concord Street (R-408), Boston, Massachusetts 02118 USA
- />Boston University Molecular and Translational Medicine Program, 72 E. Concord Street, Boston, MA 02118 USA
| | - Zhongyan Wang
- />Department of Environmental Health, Boston University School of Public Health, 72 East Concord Street (R-408), Boston, Massachusetts 02118 USA
| | - Olga Novikov
- />Department of Environmental Health, Boston University School of Public Health, 72 East Concord Street (R-408), Boston, Massachusetts 02118 USA
- />Boston University Molecular and Translational Medicine Program, 72 E. Concord Street, Boston, MA 02118 USA
| | - Francesca Mulas
- />Department of Medicine, Boston University School of Medicine, Section of Computational Biomedicine, Boston, MA 02118 USA
| | - Esther Landesman-Bollag
- />Department of Medicine, Boston University School of Medicine, Section of Hematology and Oncology, 650 Albany Street, Boston, MA 02118 USA
| | - Stefano Monti
- />Department of Medicine, Boston University School of Medicine, Section of Computational Biomedicine, Boston, MA 02118 USA
| | - Brenden W. Smith
- />Boston University Molecular and Translational Medicine Program, 72 E. Concord Street, Boston, MA 02118 USA
- />Department of Medicine, Boston University School of Medicine, Section of Hematology and Oncology, 650 Albany Street, Boston, MA 02118 USA
- />Boston University and Boston Medical Center, Center for Regenerative Medicine (CReM), 710 Albany Street, Boston, MA 02118 USA
| | - David C. Seldin
- />Department of Medicine, Boston University School of Medicine, Section of Hematology and Oncology, 650 Albany Street, Boston, MA 02118 USA
| | - George J. Murphy
- />Department of Medicine, Boston University School of Medicine, Section of Hematology and Oncology, 650 Albany Street, Boston, MA 02118 USA
- />Boston University and Boston Medical Center, Center for Regenerative Medicine (CReM), 710 Albany Street, Boston, MA 02118 USA
| | - David H. Sherr
- />Department of Environmental Health, Boston University School of Public Health, 72 East Concord Street (R-408), Boston, Massachusetts 02118 USA
| |
Collapse
|
14
|
Zeng F, Sherry JP, Bols NC. Use of the rainbow trout cell lines, RTgill-W1 and RTL-W1 to evaluate the toxic potential of benzotriazoles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 124:315-323. [PMID: 26584462 DOI: 10.1016/j.ecoenv.2015.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Epithelial cell lines, RTgill-W1 and RTL-W1 from respectively gill and liver of rainbow trout, Onchorhynchus mykiss (Walbaum), were used to evaluate the toxic potential of six benzotriazoles (BTRs) and tolytriazole (TT), which is a commercial mixture of 4-methyl-1H-benzotriazole (4MBTR) and 5-methyl-1H-benzotriazole (5MBTR). The other BTRs were 1H-benzotriazole (1H-BTR), 5-chlorobenzotriazole (5CBTR), 1-hydroxybenzotriazole (1OHBTR) and 5,6-dimethyl-1H-benzotriazole monohydrate (DM). Except for DM, all BTRs were cytotoxic at concentrations above 15mg/L and transitorily elevated reactive oxygen species (ROS) levels. Neither N-acetyl cysteine (NAC) nor IM-54 inhibited cytotoxicity, suggesting that ROS were not the major cause of the cell death. Cell death was not blocked by Necrostatin nor accompanied by DNA laddering, suggesting that the cell death mechanism was neither necroptosis nor apoptosis. As judged by the comet assay, DNA strand breaks were detected with three BTRs: 4MBTR, 5MBTR and 5CBTR. In RTL-W1, the BTRs weakly induced cytochrome P4501A, suggesting that they have the potential to alter xenobiotic metabolism and activate the aryl hydrocarbon receptor. In summary, the toxic potential of BTRs appears to be limited to only high concentrations, which are higher than have been measured in the environment to date.
Collapse
Affiliation(s)
- Fanxing Zeng
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - James P Sherry
- Aquatic Contaminants Research Division, Environment Canada, Burlington, Ontario, Canada L7R 4A6
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| |
Collapse
|
15
|
Sarill M, Zago M, Sheridan JA, Nair P, Matthews J, Gomez A, Roussel L, Rousseau S, Hamid Q, Eidelman DH, Baglole CJ. The aryl hydrocarbon receptor suppresses cigarette-smoke-induced oxidative stress in association with dioxin response element (DRE)-independent regulation of sulfiredoxin 1. Free Radic Biol Med 2015; 89:342-57. [PMID: 26408075 DOI: 10.1016/j.freeradbiomed.2015.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 01/13/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ubiquitously expressed receptor/transcription factor that mediates toxicological responses of environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Emerging evidence indicates that the AhR suppresses apoptosis and proliferation independent of exogenous ligands, including suppression of apoptosis by cigarette smoke, a key risk factor for chronic obstructive pulmonary disease (COPD). As cigarette smoke is a potent inducer of oxidative stress, a feature that may contribute to the development of COPD, we hypothesized that the AhR prevents smoke-induced apoptosis by regulating oxidative stress. Utilizing primary lung fibroblasts derived from AhR(+/+) and AhR(-/-) mice as well as A549 human lung adenocarcinoma cells deficient in AhR expression (A549-AhR(ko)), we first show that AhR(-/-) fibroblasts and A549-AhR(ko) epithelial cells have a significant increase in cigarette smoke extract (CSE)-induced oxidative stress compared to wild type. CSE induced a significant increase in the mRNA expression of key antioxidant genes, including Nqo1 and Srxn1, predominantly in AhR(+/+) fibroblasts, with significantly less induction in AhR(-/-) cells. The induction of Srxn1, but not Nqo1, was independent of dioxin-response element (DRE) binding as AhR(DBD/DBD) lung fibroblasts, which express an AhR incapable of binding the DRE, increased Srxn1 to a degree similar to wild-type cells in response to CSE. There was no difference in Nrf2 expression or activation based on AhR expression. Lung fibroblasts derived from COPD subjects have significantly less AhR protein expression compared with both never-smokers (Normal) and smokers (At Risk). Consequently, COPD-derived fibroblasts were less robust in their induction of both Nqo1 and Srxn1 mRNA after exposure to CSE, which also failed to activate the AhR in the COPD fibroblasts. Taken together, these results support a new role for the AhR in regulating antioxidant defense in lung structural cells, such that low AhR expression may facilitate the development or progression of COPD.
Collapse
Affiliation(s)
- Miles Sarill
- Department of Medicine, Division of Experimental Medicine
| | - Michela Zago
- Research Institute of the McGill University Health Centre, McGill University, Centre for Translational Biology (CTB), Block E, 1001 Decarie Blvd., Montreal, QC H4A 3J1, Canada
| | | | | | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Alvin Gomez
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Lucie Roussel
- Research Institute of the McGill University Health Centre, McGill University, Centre for Translational Biology (CTB), Block E, 1001 Decarie Blvd., Montreal, QC H4A 3J1, Canada
| | - Simon Rousseau
- Research Institute of the McGill University Health Centre, McGill University, Centre for Translational Biology (CTB), Block E, 1001 Decarie Blvd., Montreal, QC H4A 3J1, Canada
| | - Qutayba Hamid
- Department of Medicine, Division of Experimental Medicine; Research Institute of the McGill University Health Centre, McGill University, Centre for Translational Biology (CTB), Block E, 1001 Decarie Blvd., Montreal, QC H4A 3J1, Canada
| | - David H Eidelman
- Department of Medicine, Division of Experimental Medicine; Research Institute of the McGill University Health Centre, McGill University, Centre for Translational Biology (CTB), Block E, 1001 Decarie Blvd., Montreal, QC H4A 3J1, Canada
| | - Carolyn J Baglole
- Department of Medicine, Division of Experimental Medicine; Research Institute of the McGill University Health Centre, McGill University, Centre for Translational Biology (CTB), Block E, 1001 Decarie Blvd., Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
16
|
Carreira VS, Fan Y, Kurita H, Wang Q, Ko CI, Naticchioni M, Jiang M, Koch S, Zhang X, Biesiada J, Medvedovic M, Xia Y, Rubinstein J, Puga A. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult. PLoS One 2015; 10:e0142440. [PMID: 26555816 PMCID: PMC4640841 DOI: 10.1371/journal.pone.0142440] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/21/2015] [Indexed: 12/11/2022] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.
Collapse
Affiliation(s)
- Vinicius S. Carreira
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Yunxia Fan
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Hisaka Kurita
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Qin Wang
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Chia-I Ko
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Mindi Naticchioni
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Min Jiang
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Sheryl Koch
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Xiang Zhang
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Jacek Biesiada
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Mario Medvedovic
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Ying Xia
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
| | - Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States of America
- * E-mail:
| |
Collapse
|
17
|
Taylor SJ, Demont EH, Gray J, Deeks N, Patel A, Nguyen D, Taylor M, Hood S, Watson RJ, Bit RA, McClure F, Ashall H, Witherington J. Navigating CYP1A Induction and Arylhydrocarbon Receptor Agonism in Drug Discovery. A Case History with S1P1 Agonists. J Med Chem 2015; 58:8236-56. [DOI: 10.1021/acs.jmedchem.5b01102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Simon J. Taylor
- Immuno-Inflammation
Therapy Area Unit, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Emmanuel H. Demont
- Immuno-Inflammation
Therapy Area Unit, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - James Gray
- Immuno-Inflammation
Therapy Area Unit, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Nigel Deeks
- Immuno-Inflammation
Therapy Area Unit, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Aarti Patel
- PTS
DMPK, GlaxoSmithKline, Park Road, Ware, SG12 0DP, U.K
| | - Dung Nguyen
- PTS
DMPK, GlaxoSmithKline, Upper Merion, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Maxine Taylor
- PTS
DMPK, GlaxoSmithKline, Park Road, Ware, SG12 0DP, U.K
| | - Steve Hood
- PTS
DMPK, GlaxoSmithKline, Park Road, Ware, SG12 0DP, U.K
| | - Robert J. Watson
- Immuno-Inflammation
Therapy Area Unit, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Rino A. Bit
- Immuno-Inflammation
Therapy Area Unit, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Fiona McClure
- Safety
Assessment, GlaxoSmithKline, Park Road, Ware, SG12 0DP, U.K
| | - Holly Ashall
- Safety
Assessment, GlaxoSmithKline, Park Road, Ware, SG12 0DP, U.K
| | - Jason Witherington
- Immuno-Inflammation
Therapy Area Unit, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| |
Collapse
|
18
|
Shivanna B, Zhang S, Patel A, Jiang W, Wang L, Welty SE, Moorthy B. Omeprazole Attenuates Pulmonary Aryl Hydrocarbon Receptor Activation and Potentiates Hyperoxia-Induced Developmental Lung Injury in Newborn Mice. Toxicol Sci 2015; 148:276-87. [PMID: 26272953 DOI: 10.1093/toxsci/kfv183] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in human preterm infants and a similar lung phenotype characterized by alveolar simplification in newborn mice. Omeprazole (OM) is a proton pump inhibitor that is used to treat humans with gastric acid related disorders. OM-mediated aryl hydrocarbon receptor (AhR) activation attenuates acute hyperoxic lung injury (HLI) in adult mice. Whether OM activates pulmonary AhR and protects C57BL/6J newborn mice against hyperoxia-induced developmental lung (alveolar and pulmonary vascular simplification, inflammation, and oxidative stress) injury (HDLI) is unknown. Therefore, we tested the hypothesis that OM will activate pulmonary AhR and mitigate HDLI in newborn mice. Newborn mice were treated daily with i.p. injections of OM at doses of 10 (OM10) or 25 (OM25) mg/kg while being exposed to air or hyperoxia (FiO2 of 85%) for 14 days, following which their lungs were harvested to determine alveolarization, pulmonary vascularization, inflammation, oxidative stress, vascular injury, and AhR activation. To our surprise, hyperoxia-induced alveolar and pulmonary vascular simplification, inflammation, oxidative stress, and vascular injury were augmented in OM25-treated animals. These findings were associated with attenuated pulmonary vascular endothelial growth factor receptor 2 expression and decreased pulmonary AhR activation in the OM25 group. We conclude that contrary to our hypothesis, OM decreases functional activation of pulmonary AhR and potentiates HDLI in newborn mice. These observations are consistent with our previous findings, which suggest that AhR activation plays a protective role in HDLI in newborn mice.
Collapse
Affiliation(s)
- Binoy Shivanna
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030
| | - Shaojie Zhang
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030
| | - Ananddeep Patel
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030
| | - Weiwu Jiang
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030
| | - Lihua Wang
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030
| | - Stephen E Welty
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030
| | - Bhagavatula Moorthy
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
19
|
Becker RA, Patlewicz G, Simon TW, Rowlands JC, Budinsky RA. The adverse outcome pathway for rodent liver tumor promotion by sustained activation of the aryl hydrocarbon receptor. Regul Toxicol Pharmacol 2015; 73:172-90. [PMID: 26145830 DOI: 10.1016/j.yrtph.2015.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022]
Abstract
An Adverse Outcome Pathway (AOP) represents the existing knowledge of a biological pathway leading from initial molecular interactions of a toxicant and progressing through a series of key events (KEs), culminating with an apical adverse outcome (AO) that has to be of regulatory relevance. An AOP based on the mode of action (MOA) of rodent liver tumor promotion by dioxin-like compounds (DLCs) has been developed and the weight of evidence (WoE) of key event relationships (KERs) evaluated using evolved Bradford Hill considerations. Dioxins and DLCs are potent aryl hydrocarbon receptor (AHR) ligands that cause a range of species-specific adverse outcomes. The occurrence of KEs is necessary for inducing downstream biological responses and KEs may occur at the molecular, cellular, tissue and organ levels. The common convention is that an AOP begins with the toxicant interaction with a biological response element; for this AOP, this initial event is binding of a DLC ligand to the AHR. Data from mechanistic studies, lifetime bioassays and approximately thirty initiation-promotion studies have established dioxin and DLCs as rat liver tumor promoters. Such studies clearly show that sustained AHR activation, weeks or months in duration, is necessary to induce rodent liver tumor promotion--hence, sustained AHR activation is deemed the molecular initiating event (MIE). After this MIE, subsequent KEs are 1) changes in cellular growth homeostasis likely associated with expression changes in a number of genes and observed as development of hepatic foci and decreases in apoptosis within foci; 2) extensive liver toxicity observed as the constellation of effects called toxic hepatopathy; 3) cellular proliferation and hyperplasia in several hepatic cell types. This progression of KEs culminates in the AO, the development of hepatocellular adenomas and carcinomas and cholangiolar carcinomas. A rich data set provides both qualitative and quantitative knowledge of the progression of this AOP through KEs and the KERs. Thus, the WoE for this AOP is judged to be strong. Species-specific effects of dioxins and DLCs are well known--humans are less responsive than rodents and rodent species differ in sensitivity between strains. Consequently, application of this AOP to evaluate potential human health risks must take these differences into account.
Collapse
Affiliation(s)
- Richard A Becker
- Regulatory and Technical Affairs Department, American Chemistry Council (ACC), Washington, DC 20002, USA.
| | - Grace Patlewicz
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, DE 19711, USA
| | - Ted W Simon
- Ted Simon LLC, 4184 Johnston Road, Winston, GA 30187, USA
| | - J Craig Rowlands
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| | - Robert A Budinsky
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| |
Collapse
|
20
|
Carreira VS, Fan Y, Wang Q, Zhang X, Kurita H, Ko CI, Naticchioni M, Jiang M, Koch S, Medvedovic M, Xia Y, Rubinstein J, Puga A. Ah Receptor Signaling Controls the Expression of Cardiac Development and Homeostasis Genes. Toxicol Sci 2015; 147:425-35. [PMID: 26139165 DOI: 10.1093/toxsci/kfv138] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Congenital heart disease (CHD) is the most common congenital abnormality and one of the leading causes of newborn death throughout the world. Despite much emerging scientific information, the precise etiology of this disease remains elusive. Here, we show that the aryl hydrocarbon receptor (AHR) regulates the expression of crucial cardiogenesis genes and that interference with endogenous AHR functions, either by gene ablation or by agonist exposure during early development, causes overlapping structural and functional cardiac abnormalities that lead to altered fetal heart physiology, including higher heart rates, right and left ventricle dilation, higher stroke volume, and reduced ejection fraction. With striking similarity between AHR knockout (Ahr(-/-)) and agonist-exposed wild type (Ahr(+/+)) embryos, in utero disruption of endogenous AHR functions converge into dysregulation of molecular mechanisms needed for attainment and maintenance of cardiac differentiation, including the pivotal signals regulated by the cardiogenic transcription factor NKH2.5, energy balance via oxidative phosphorylation and TCA cycle and global mitochondrial function and homeostasis. Our findings suggest that AHR signaling in the developing mammalian heart is central to the regulation of pathways crucial for cellular metabolism, cardiogenesis, and cardiac function, which are potential targets of environmental factors associated with CHD.
Collapse
Affiliation(s)
- Vinicius S Carreira
- *Department of Environmental Health and Center for Environmental Genetics and
| | - Yunxia Fan
- *Department of Environmental Health and Center for Environmental Genetics and
| | - Qing Wang
- *Department of Environmental Health and Center for Environmental Genetics and
| | - Xiang Zhang
- *Department of Environmental Health and Center for Environmental Genetics and
| | - Hisaka Kurita
- *Department of Environmental Health and Center for Environmental Genetics and
| | - Chia-I Ko
- *Department of Environmental Health and Center for Environmental Genetics and
| | - Mindi Naticchioni
- Department of Internal Medicine, Cardiology Division, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Min Jiang
- Department of Internal Medicine, Cardiology Division, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Sheryl Koch
- Department of Internal Medicine, Cardiology Division, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Mario Medvedovic
- *Department of Environmental Health and Center for Environmental Genetics and
| | - Ying Xia
- *Department of Environmental Health and Center for Environmental Genetics and
| | - Jack Rubinstein
- Department of Internal Medicine, Cardiology Division, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Alvaro Puga
- *Department of Environmental Health and Center for Environmental Genetics and
| |
Collapse
|
21
|
DeGroot DE, Franks DG, Higa T, Tanaka J, Hahn ME, Denison MS. Naturally occurring marine brominated indoles are aryl hydrocarbon receptor ligands/agonists. Chem Res Toxicol 2015; 28:1176-85. [PMID: 26001051 PMCID: PMC4469569 DOI: 10.1021/acs.chemrestox.5b00003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the toxic and biological effects of structurally diverse chemicals, including the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). As part of a larger effort to identify the full spectrum of chemicals that can bind to and activate the AhR, we have examined the ability of several naturally occurring marine-derived brominated indoles and brominated (methylthio)indoles (collectively referred to as brominated indoles) to bind to the AhR and stimulate AhR-dependent gene expression. Incubation of mouse, rat, and guinea pig recombinant cell lines containing a stably transfected AhR-responsive luciferase reporter gene with eight brominated indoles revealed that all compounds stimulated luciferase reporter gene activity, although some species-specific differences were observed. All compounds induced significantly more luciferase activity when incubated with cells for 4 h as compared to 24 h, demonstrating that these compounds are transient activators of the AhR signaling pathway. Three of the brominated indoles induced CYP1A1 mRNA in human HepG2 cells in vitro and Cyp1a mRNA in zebrafish embryos in vivo. The identification of the brominated indoles as direct ligands and activators/agonists of the AhR was confirmed by their ability to compete with [(3)H]TCDD for binding to the AhR and to stimulate AhR transformation and DNA binding in vitro. Taken together, these results indicate that marine-derived brominated indoles are members of a new class of naturally occurring AhR agonists.
Collapse
Affiliation(s)
- Danica E. DeGroot
- Department of Environmental Toxicology, University of California, Davis, CA USA
| | - Diana G. Franks
- Department of Biology and the Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Tatsuo Higa
- Department of Chemistry, Biology and Marine Sciences, University of the Ryukyus, Nishihara, Okinawa, JAPAN
| | - Junichi Tanaka
- Department of Chemistry, Biology and Marine Sciences, University of the Ryukyus, Nishihara, Okinawa, JAPAN
| | - Mark E. Hahn
- Department of Biology and the Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California, Davis, CA USA
| |
Collapse
|
22
|
|
23
|
Darakhshan S, Pour AB. Tranilast: a review of its therapeutic applications. Pharmacol Res 2014; 91:15-28. [PMID: 25447595 DOI: 10.1016/j.phrs.2014.10.009] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 12/14/2022]
Abstract
Tranilast (N-[3',4'-dimethoxycinnamoyl]-anthranilic acid) is an analog of a tryptophan metabolite. Initially, tranilast was identified as an anti-allergic agent, and used in the treatment of inflammatory diseases, such as bronchial asthma, atypical dermatitis, allergic conjunctivitis, keloids and hypertrophic scars. Subsequently, the results showed that it could be also effective in the management of a wide range of conditions. The beneficial effects of tranilast have also been seen in a variety of disease states, such as fibrosis, proliferative disorders, cancer, cardiovascular problems, autoimmune disorders, ocular diseases, diabetes and renal diseases. Moreover, several trials have shown that it has very low adverse effects and it is generally well tolerated by patients. In this review, we have attempted to accurately summarize previously published studies relating to the use of tranilast for a range of disorders and discuss the drug's possible mode of action. The major mode of the drug's efficacy appears to be the suppression of the expression and/or action of the TGF-β pathway, but the drug affects other factors as well. The findings presented in this review demonstrate the potential of tranilast for the control of a vast array of pathological situations, furthermore, it is a prescribed drug without severe side effects.
Collapse
Affiliation(s)
- Sara Darakhshan
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Ali Bidmeshki Pour
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| |
Collapse
|
24
|
Basham KJ, Bhonde VR, Kieffer C, Mack JBC, Hess M, Welm BE, Looper RE. Bis-aryloxadiazoles as effective activators of the aryl hydrocarbon receptor. Bioorg Med Chem Lett 2014; 24:2473-6. [PMID: 24767852 DOI: 10.1016/j.bmcl.2014.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 12/19/2022]
Abstract
Bis-aryloxadiazoles are common scaffolds in medicinal chemistry due to their wide range of biological activities. Previously, we identified a 1,2,4-bis-aryloxadiazole that blocks mammary branching morphogenesis through activation of the aryl hydrocarbon receptor (AHR). In addition to defects in mammary differentiation, AHR stimulation induces toxicity in many other tissues. We performed a structure activity relationship (SAR) study of 1,2,4-bis-aryloxadiazole to determine which moieties of the molecule are critical for AHR activation. We validated our results with a functional biological assay, using desmosome formation during mammary morphogenesis to indicate AHR activity. These findings will aid the design of oxadiazole derivative therapeutics with reduced off-target toxicity profiles.
Collapse
Affiliation(s)
- Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Vasudev R Bhonde
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Collin Kieffer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - James B C Mack
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew Hess
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Bryan E Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan E Looper
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
25
|
DeGroot DE, Hayashi A, Denison MS. Lack of ligand-selective binding of the aryl hydrocarbon receptor to putative DNA binding sites regulating expression of Bax and paraoxonase 1 genes. Arch Biochem Biophys 2014; 541:13-20. [PMID: 24200861 PMCID: PMC3875388 DOI: 10.1016/j.abb.2013.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 12/29/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the biological and toxicological effects of structurally diverse chemicals through its ability to bind specific DNA recognition sites (dioxin responsive elements (DREs)), and activate transcription of adjacent genes. While the DRE has a highly conserved consensus sequence, it has been suggested that the nucleotide specificity of AhR DNA binding may be ligand-dependent. The upstream regulatory regions of the murine Bax and human paraoxonase 1 (PON1) genes reportedly contain unique DRE-like sequences that respond to AhRs activated by some ligands but not others. Given the significant implications of this observation to understanding the diversity in AhR responses and that of other ligand-dependent nuclear receptors, a combination of DNA binding, nuclear translocation and gene expression analysis was used to investigate the molecular mechanisms underlying these ligand-selective responses. Although known AhR agonists stimulated AhR nuclear translocation, DRE binding and gene expression, the ligand-selective DRE-like DNA elements identified in the Bax and PON1 upstream regulatory regions failed to bind ligand-activated AhR or confer AhR-responsiveness upon a reporter gene. These results argue against the reported ligand-selectivity of AhR DNA binding and suggest DNA binding by ligand activated AhR involves DRE-containing DNA.
Collapse
Affiliation(s)
- Danica E DeGroot
- Department of Environmental Toxicology, University of California, Davis, CA 95616, United States
| | - Ai Hayashi
- Department of Environmental Toxicology, University of California, Davis, CA 95616, United States
| | - Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
26
|
Budinsky RA, Schrenk D, Simon T, Van den Berg M, Reichard JF, Silkworth JB, Aylward LL, Brix A, Gasiewicz T, Kaminski N, Perdew G, Starr TB, Walker NJ, Rowlands JC. Mode of action and dose–response framework analysis for receptor-mediated toxicity: The aryl hydrocarbon receptor as a case study. Crit Rev Toxicol 2013; 44:83-119. [DOI: 10.3109/10408444.2013.835787] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Yin Y, Jiang L, Fang D, Jiang L, Zhou J. Differentially expressed genes of human microvascular endothelial cells in response to anti-dengue virus NS1 antibodies by suppression subtractive hybridization. Viral Immunol 2013; 26:185-91. [PMID: 23697814 DOI: 10.1089/vim.2012.0063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been previously shown that anti-dengue virus (DENV) nonstructural protein NS1 antibodies could act as autoantibodies that direct against one or more of the host's own proteins, which has potential implications for dengue hemorrhagic fever pathogenesis. In the present study, we have employed suppression subtractive hybridization (SSH) to identify the differentially expressed genes from human microvascular endothelial cells (HMEC-1) in response to anti-dengue virus type 2 NS1 antibodies (anti-DENV2 NS1 Abs). A total of 35 clones from the SSH cDNA library were randomly selected for further analysis using bioinformatics tools after vector screening. After searching for sequence homology in NCBI GenBank database with BLASTN and BLASTX programs, 23 obtained sequences with significant matches (E-values <1×10(-4)) in the SSH library. The predicted genes in the subtracted library include immune response molecules (CD59 antigen preproprotein preproprotein, MURR1), signal transduction molecules (Nuclear casein kinase and cyclin-dependent kinase substrate 1), calcium-binding proteins (S100A6, Annexin A2 isoform 1/2), and cell-membrane component (Yip1 domain family). From these clones, 5 upregulated genes were selected for differential expression profiling by real-time RT-PCR to confirm their upregulated status. The results confirmed their differential upregulation, and thus verified the success of SSHs and the likely involvement of these genes in dengue pathogenesis.
Collapse
Affiliation(s)
- Yue Yin
- Department of Microbiology, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | | | | | | | | |
Collapse
|
28
|
Zhao B, Bohonowych JES, Timme-Laragy A, Jung D, Affatato AA, Rice RH, Di Giulio RT, Denison MS. Common commercial and consumer products contain activators of the aryl hydrocarbon (dioxin) receptor. PLoS One 2013; 8:e56860. [PMID: 23441220 PMCID: PMC3575475 DOI: 10.1371/journal.pone.0056860] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/15/2013] [Indexed: 01/27/2023] Open
Abstract
Activation of the Ah receptor (AhR) by halogenated aromatic hydrocarbons (HAHs), such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin), can produce a wide variety of toxic and biological effects. While recent studies have shown that the AhR can bind and be activated by structurally diverse chemicals, how widespread of these AhR agonists are in environmental, biological and synthetic materials remains to be determined. Using AhR-based assays, we demonstrate the presence of potent AhR agonists in a variety of common commercial and consumer items. Solvent extracts of paper, rubber and plastic products contain chemicals that can bind to and stimulate AhR DNA binding and/or AhR-dependent gene expression in hepatic cytosol, cultured cell lines, human epidermis and zebrafish embryos. In contrast to TCDD and other persistent dioxin-like HAHs, activation of AhR-dependent gene expression by these extracts was transient, suggesting that the agonists are metabolically labile. Solvent extracts of rubber products produce AhR-dependent developmental toxicity in zebrafish in vivo, and inhibition of expression of the metabolic enzyme CYP1A, significantly increased their toxic potency. Although the identity of the responsible AhR-active chemicals and their toxicological impact remain to be determined, our data demonstrate that AhR active chemicals are widely distributed in everyday products.
Collapse
Affiliation(s)
- Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Department of Environmental Toxicology, University of California Davis, Davis, California, United States of America
| | - Jessica E. S. Bohonowych
- Department of Environmental Toxicology, University of California Davis, Davis, California, United States of America
| | - Alicia Timme-Laragy
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Dawoon Jung
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Alessandra A. Affatato
- Department of Environmental Toxicology, University of California Davis, Davis, California, United States of America
| | - Robert H. Rice
- Department of Environmental Toxicology, University of California Davis, Davis, California, United States of America
| | - Richard T. Di Giulio
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
29
|
Fraccalvieri D, Soshilov AA, Karchner SI, Franks DG, Pandini A, Bonati L, Hahn ME, Denison MS. Comparative analysis of homology models of the AH receptor ligand binding domain: verification of structure-function predictions by site-directed mutagenesis of a nonfunctional receptor. Biochemistry 2013; 52:714-25. [PMID: 23286227 DOI: 10.1021/bi301457f] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates the biological and toxic effects of a wide variety of structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While significant interspecies differences in AHR ligand binding specificity, selectivity, and response have been observed, the structural determinants responsible for those differences have not been determined, and homology models of the AHR ligand-binding domain (LBD) are available for only a few species. Here we describe the development and comparative analysis of homology models of the LBD of 16 AHRs from 12 mammalian and nonmammalian species and identify the specific residues contained within their ligand binding cavities. The ligand-binding cavity of the fish AHR exhibits differences from those of mammalian and avian AHRs, suggesting a slightly different TCDD binding mode. Comparison of the internal cavity in the LBD model of zebrafish (zf) AHR2, which binds TCDD with high affinity, to that of zfAHR1a, which does not bind TCDD, revealed that the latter has a dramatically shortened binding cavity due to the side chains of three residues (Tyr296, Thr386, and His388) that reduce the amount of internal space available to TCDD. Mutagenesis of two of these residues in zfAHR1a to those present in zfAHR2 (Y296H and T386A) restored the ability of zfAHR1a to bind TCDD and to exhibit TCDD-dependent binding to DNA. These results demonstrate the importance of these two amino acids and highlight the predictive potential of comparative analysis of homology models from diverse species. The availability of these AHR LBD homology models will facilitate in-depth comparative studies of AHR ligand binding and ligand-dependent AHR activation and provide a novel avenue for examining species-specific differences in AHR responsiveness.
Collapse
Affiliation(s)
- Domenico Fraccalvieri
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Basham KJ, Kieffer C, Shelton DN, Leonard CJ, Bhonde VR, Vankayalapati H, Milash B, Bearss DJ, Looper RE, Welm BE. Chemical genetic screen reveals a role for desmosomal adhesion in mammary branching morphogenesis. J Biol Chem 2012; 288:2261-70. [PMID: 23212921 PMCID: PMC3554898 DOI: 10.1074/jbc.m112.411033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
During the process of branching morphogenesis, the mammary gland undergoes distinct phases of remodeling to form an elaborate ductal network that ultimately produces and delivers milk to newborn animals. These developmental events rely on tight regulation of critical cellular pathways, many of which are probably disrupted during initiation and progression of breast cancer. Transgenic mouse and in vitro organoid models previously identified growth factor signaling as a key regulator of mammary branching, but the functional downstream targets of these pathways remain unclear. Here, we used purified primary mammary epithelial cells stimulated with fibroblast growth factor-2 (FGF2) to model mammary branching morphogenesis in vitro. We employed a forward chemical genetic approach to identify modulators of this process and describe a potent compound, 1023, that blocks FGF2-induced branching. In primary mammary epithelial cells, we used lentivirus-mediated knockdown of the aryl hydrocarbon receptor (AHR) to demonstrate that 1023 acts through AHR to block branching. Using 1023 as a tool, we identified desmosomal adhesion as a novel target of AHR signaling and show that desmosomes are critical for AHR agonists to block branching. Our findings support a functional role for desmosomes during mammary morphogenesis and also in blocking FGF-induced invasion.
Collapse
Affiliation(s)
- Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hao N, Lee KL, Furness SGB, Bosdotter C, Poellinger L, Whitelaw ML. Xenobiotics and loss of cell adhesion drive distinct transcriptional outcomes by aryl hydrocarbon receptor signaling. Mol Pharmacol 2012; 82:1082-93. [PMID: 22936816 DOI: 10.1124/mol.112.078873] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a signal-regulated transcription factor, which is canonically activated by the direct binding of xenobiotics. In addition, switching cells from adherent to suspension culture also activates the AhR, representing a nonxenobiotic, physiological activation of AhR signaling. Here, we show that the AhR is recruited to target gene enhancers in both ligand [isopropyl-2-(1,3-dithietane-2-ylidene)-2-[N-(4-methylthiazol-2-yl)carbamoyl]acetate (YH439)]-treated and suspension cells, suggesting a common mechanism of target gene induction between these two routes of AhR activation. However, gene expression profiles critically differ between xenobiotic- and suspension-activated AhR signaling. Por and Cldnd1 were regulated predominantly by ligand treatments, whereas, in contrast, ApoER2 and Ganc were regulated predominantly by the suspension condition. Classic xenobiotic-metabolizing AhR targets such as Cyp1a1, Cyp1b1, and Nqo1 were regulated by both ligand and suspension conditions. Temporal expression patterns of AhR target genes were also found to vary, with examples of transient activation, transient repression, or sustained alterations in expression. Furthermore, sequence analysis coupled with chromatin immunoprecipitation assays and reporter gene analysis identified a functional xenobiotic response element (XRE) in the intron 1 of the mouse Tiparp gene, which was also bound by hypoxia-inducible factor-1α during hypoxia and features a concatemer of four XRE cores (GCGTG). Our data suggest that this XRE concatemer site concurrently regulates the expression of both the Tiparp gene and its cis antisense noncoding RNA after ligand- or suspension-induced AhR activation. This work provides novel insights into how AhR signaling drives different transcriptional programs via the ligand versus suspension modes of activation.
Collapse
Affiliation(s)
- Nan Hao
- School of Molecular and Biomedical Science (Biochemistry) and Australian Research Council Special Research Centre for the Molecular Genetics of Development, the University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Lensu S, Tiittanen P, Pohjanvirta R. Circadian differences between two rat strains in their feeding and drinking micro- and macrostructures. BIOL RHYTHM RES 2011. [DOI: 10.1080/09291016.2010.525381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Denison MS, Soshilov AA, He G, DeGroot DE, Zhao B. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci 2011; 124:1-22. [PMID: 21908767 DOI: 10.1093/toxsci/kfr218] [Citation(s) in RCA: 573] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Ah receptor (AhR) is a ligand-dependent transcription factor that mediates a wide range of biological and toxicological effects that result from exposure to a structurally diverse variety of synthetic and naturally occurring chemicals. Although the overall mechanism of action of the AhR has been extensively studied and involves a classical nuclear receptor mechanism of action (i.e., ligand-dependent nuclear localization, protein heterodimerization, binding of liganded receptor as a protein complex to its specific DNA recognition sequence and activation of gene expression), details of the exact molecular events that result in most AhR-dependent biochemical, physiological, and toxicological effects are generally lacking. Ongoing research efforts continue to describe an ever-expanding list of ligand-, species-, and tissue-specific spectrum of AhR-dependent biological and toxicological effects that seemingly add even more complexity to the mechanism. However, at the same time, these studies are also identifying and characterizing new pathways and molecular mechanisms by which the AhR exerts its actions and plays key modulatory roles in both endogenous developmental and physiological pathways and response to exogenous chemicals. Here we provide an overview of the classical and nonclassical mechanisms that can contribute to the differential sensitivity and diversity in responses observed in humans and other species following ligand-dependent activation of the AhR signal transduction pathway.
Collapse
Affiliation(s)
- Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|
34
|
Furumatsu K, Nishiumi S, Kawano Y, Ooi M, Yoshie T, Shiomi Y, Kutsumi H, Ashida H, Fujii-Kuriyama Y, Azuma T, Yoshida M. A role of the aryl hydrocarbon receptor in attenuation of colitis. Dig Dis Sci 2011; 56:2532-44. [PMID: 21374063 DOI: 10.1007/s10620-011-1643-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 02/14/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS The aryl hydrocarbon receptor (AhR), which is a member of the basic helix-loop-helix/Per-Arnt-Sim homology superfamily, plays an important role in multiple biological functions, and AhR knockout (AhR KO) animals suffer from a variety of organ disorders including a decline in the efficacy of their immune system. In addition, AhR activation is known to aid the maintenance of homeostasis in vivo. In this study, we investigated whether AhR is functionally associated with intestinal immunity. METHODS AND RESULTS In in vivo experiments, it was found that dextran sodium sulfate (DSS)-evoked colitis was more severe in AhR KO mice than in C57BL/6J wild type mice. It was also revealed that the administration of DSS increased the expression levels of AhR and CYP1A1 mRNA in the colon epithelium. In addition, oral administration of β-naphthoflavone (βNF), a non-toxic agonist of AhR, suppressed the pathogenesis of DSS-induced colitis. βNF also attenuated DSS-induced colitis. In cell culture experiments, downregulation of AhR in human colon carcinoma SW480 cells enhanced the inflammatory responses evoked by lipopolysaccharide (LPS), and furthermore, AhR activation attenuated LPS-induced inflammatory responses, suggesting that AhR expressing intestinal epithelial cells are involved in the prevention of colitis. CONCLUSIONS Our findings about the potential role of AhR activators in epithelial immune regulation aid our understanding of mucosal homeostasis and inflammatory bowl disease (IBD) and suggest that AhR activation has therapeutic value for the treatment of IBD.
Collapse
Affiliation(s)
- Keisuke Furumatsu
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1, Chuo-ku, Kusunoki-cho, Kobe, Hyogo 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lensu S, Tiittanen P, Lindén J, Tuomisto J, Pohjanvirta R. Effects of a single exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on macro- and microstructures of feeding and drinking in two differently TCDD-sensitive rat strains. Pharmacol Biochem Behav 2011; 99:487-99. [DOI: 10.1016/j.pbb.2011.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/19/2011] [Accepted: 04/27/2011] [Indexed: 11/25/2022]
|
36
|
He G, Tsutsumi T, Zhao B, Baston DS, Zhao J, Heath-Pagliuso S, Denison MS. Third-generation Ah receptor-responsive luciferase reporter plasmids: amplification of dioxin-responsive elements dramatically increases CALUX bioassay sensitivity and responsiveness. Toxicol Sci 2011; 123:511-22. [PMID: 21775728 DOI: 10.1093/toxsci/kfr189] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and related dioxin-like chemicals are widespread and persistent environmental contaminants that produce diverse toxic and biological effects through their ability to bind to and activate the Ah receptor (AhR) and AhR-dependent gene expression. The chemically activated luciferase expression (CALUX) system is an AhR-responsive recombinant luciferase reporter gene-based cell bioassay that has been used in combination with chemical extraction and cleanup methods for the relatively rapid and inexpensive detection and relative quantitation of dioxin and dioxin-like chemicals in a wide variety of sample matrices. Although the CALUX bioassay has been validated and used extensively for screening purposes, it has some limitations when screening samples with very low levels of dioxin-like chemicals or when there is only a small amount of sample matrix for analysis. Here, we describe the development of third-generation (G3) CALUX plasmids with increased numbers of dioxin-responsive elements, and stable transfection of these new plasmids into mouse hepatoma (Hepa1c1c7) cells has produced novel amplified G3 CALUX cell bioassays that respond to TCDD with a dramatically increased magnitude of luciferase induction and significantly lower minimal detection limit than existing CALUX-type cell lines. The new G3 CALUX cell lines provide a highly responsive and sensitive bioassay system for the detection and relative quantitation of very low levels of dioxin-like chemicals in sample extracts.
Collapse
Affiliation(s)
- Guochun He
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Baston DS, Denison MS. Considerations for potency equivalent calculations in the Ah receptor-based CALUX bioassay: normalization of superinduction results for improved sample potency estimation. Talanta 2011; 83:1415-21. [PMID: 21238730 PMCID: PMC3036574 DOI: 10.1016/j.talanta.2010.11.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 10/18/2022]
Abstract
The chemically activated luciferase expression (CALUX) system is a mechanistically based recombinant luciferase reporter gene cell bioassay used in combination with chemical extraction and clean-up methods for the detection and relative quantitation of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related dioxin-like halogenated aromatic hydrocarbons in a wide variety of sample matrices. While sample extracts containing complex mixtures of chemicals can produce a variety of distinct concentration-dependent luciferase induction responses in CALUX cells, these effects are produced through a common mechanism of action (i.e. the Ah receptor (AhR)) allowing normalization of results and sample potency determination. Here we describe the diversity in CALUX response to PCDD/Fs from sediment and soil extracts and not only report the occurrence of superinduction of the CALUX bioassay, but we describe a mechanistically based approach for normalization of superinduction data that results in a more accurate estimation of the relative potency of such sample extracts.
Collapse
Affiliation(s)
- David S. Baston
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| |
Collapse
|
38
|
DiNatale BC, Schroeder JC, Perdew GH. Ah receptor antagonism inhibits constitutive and cytokine inducible IL6 production in head and neck tumor cell lines. Mol Carcinog 2010; 50:173-83. [PMID: 21104991 DOI: 10.1002/mc.20702] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/24/2010] [Accepted: 10/13/2010] [Indexed: 12/22/2022]
Abstract
There is increasing evidence that the aryl hydrocarbon receptor (AHR) plays a role in tumor progression through numerous mechanisms. We have previously shown that, in certain cancer cell lines that are typically nonresponsive to cytokine-mediated IL6 induction, activation of the AHR with the agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin derepresses the IL6 promoter and allows for synergistic induction following IL1β treatment. The mechanism by which this occurs involves liganded AHR binding upstream from the transcription start site and dismissing HDAC-containing corepressor complexes, giving rise to a promoter structure that is more amenable to NF-κB activation. This fact, combined with observations of multiple endogenously produced chemicals activating the AHR, led us to study its role in basal expression among high cytokine-producing cancer cell lines. The current study provides evidence that several head and neck squamous cell carcinoma cell lines have a level of constitutively bound AHR at the IL6 promoter, allowing for higher basal and readily inducible IL6 transcription. Treatment of these cell lines with an AHR antagonist led to dismissal of the AHR from the IL6 promoter and recruitment of corepressor complexes, thus diminishing cytokine expression. Head and neck squamous cell carcinoma is typically a high cytokine-producing tumor type, with IL6 expression levels correlating with disease aggressiveness. For this reason, AHR antagonist treatment could represent a novel adjuvant therapy for patients, lowering pro-growth and antiapoptotic signaling with minimal systemic side effects.
Collapse
Affiliation(s)
- Brett C DiNatale
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
39
|
Prud'homme GJ, Glinka Y, Toulina A, Ace O, Subramaniam V, Jothy S. Breast cancer stem-like cells are inhibited by a non-toxic aryl hydrocarbon receptor agonist. PLoS One 2010; 5:e13831. [PMID: 21072210 PMCID: PMC2972222 DOI: 10.1371/journal.pone.0013831] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 10/18/2010] [Indexed: 01/18/2023] Open
Abstract
Background Cancer stem cells (CSCs) have increased resistance to cancer chemotherapy. They can be enriched as drug-surviving CSCs (D-CSCs) by growth with chemotherapeutic drugs, and/or by sorting of cells expressing CSC markers such as aldehyde dehydrogenase-1 (ALDH). CSCs form colonies in agar, mammospheres in low-adherence cultures, and tumors following xenotransplantation in Scid mice. We hypothesized that tranilast, a non-toxic orally active drug with anti-cancer activities, would inhibit breast CSCs. Methodology/Findings We examined breast cancer cell lines or D-CSCs generated by growth of these cells with mitoxantrone. Tranilast inhibited colony formation, mammosphere formation and stem cell marker expression. Mitoxantrone-selected cells were enriched for CSCs expressing stem cell markers ALDH, c-kit, Oct-4, and ABCG2, and efficient at forming mammospheres. Tranilast markedly inhibited mammosphere formation by D-CSCs and dissociated formed mammospheres, at pharmacologically relevant concentrations. It was effective against D-CSCs of both HER-2+ and triple-negative cell lines. Tranilast was also effective in vivo, since it prevented lung metastasis in mice injected i.v. with triple-negative (MDA-MB-231) mitoxantrone-selected cells. The molecular targets of tranilast in cancer have been unknown, but here we demonstrate it is an aryl hydrocarbon receptor (AHR) agonist and this plays a key role. AHR is a transcription factor activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polycyclic aromatic hydrocarbons and other ligands. Tranilast induced translocation of the AHR to the nucleus and stimulated CYP1A1 expression (a marker of AHR activation). It inhibited binding of the AHR to CDK4, which has been linked to cell-cycle arrest. D-CSCs expressed higher levels of the AHR than other cells. Knockdown of the AHR with siRNA, or blockade with an AHR antagonist, entirely abrogated the anti-proliferative and anti-mammosphere activity of tranilast. Thus, the anti-cancer effects of tranilast are AHR dependent. Conclusion/Significance We show that tranilast is an AHR agonist with inhibitory effects on breast CSCs. It is effective against CSCs of triple-negative breast cancer cells selected for anti-cancer drug resistance. These results suggest it might find applications in the treatment of breast cancer.
Collapse
MESH Headings
- Aldehyde Dehydrogenase/metabolism
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Blotting, Western
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Breast Neoplasms/prevention & control
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cytochrome P-450 CYP1A1/metabolism
- Dose-Response Relationship, Drug
- Female
- Flow Cytometry
- Humans
- Lung Neoplasms/metabolism
- Lung Neoplasms/prevention & control
- Lung Neoplasms/secondary
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Octamer Transcription Factor-3/metabolism
- RNA Interference
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Transplantation, Heterologous
- ortho-Aminobenzoates/pharmacology
Collapse
Affiliation(s)
- Gérald J Prud'homme
- Department of Laboratory Medicine and Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada.
| | | | | | | | | | | |
Collapse
|
40
|
Dioxins, the aryl hydrocarbon receptor and the central regulation of energy balance. Front Neuroendocrinol 2010; 31:452-78. [PMID: 20624415 DOI: 10.1016/j.yfrne.2010.07.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/15/2010] [Accepted: 07/05/2010] [Indexed: 01/03/2023]
Abstract
Dioxins are ubiquitous environmental contaminants that have attracted toxicological interest not only for the potential risk they pose to human health but also because of their unique mechanism of action. This mechanism involves a specific, phylogenetically old intracellular receptor (the aryl hydrocarbon receptor, AHR) which has recently proven to have an integral regulatory role in a number of physiological processes, but whose endogenous ligand is still elusive. A major acute impact of dioxins in laboratory animals is the wasting syndrome, which represents a puzzling and dramatic perturbation of the regulatory systems for energy balance. A single dose of the most potent dioxin, TCDD, can permanently readjust the defended body weight set-point level thus providing a potentially useful tool and model for physiological research. Recent evidence of response-selective modulation of AHR action by alternative ligands suggests further that even therapeutic implications might be possible in the future.
Collapse
|
41
|
Zhao B, DeGroot DE, Hayashi A, He G, Denison MS. CH223191 is a ligand-selective antagonist of the Ah (Dioxin) receptor. Toxicol Sci 2010; 117:393-403. [PMID: 20634293 PMCID: PMC2940411 DOI: 10.1093/toxsci/kfq217] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 07/08/2010] [Indexed: 01/17/2023] Open
Abstract
The aryl hydrocarbon (dioxin) receptor (AhR) is a ligand-dependent transcription factor that produces a wide range of biological and toxic effects in many species and tissues. Whereas the best-characterized high-affinity ligands include structurally related halogenated aromatic hydrocarbons (HAHs) and polycyclic aromatic hydrocarbons (PAHs), the AhR is promiscuous and can also be activated by structurally diverse exogenous and endogenous chemicals. However, little is known about how these diverse ligands actually bind to and activate the AhR. Utilizing AhR ligand binding, DNA binding, and reporter gene expression assays, we have identified a novel ligand-selective antagonist (CH223191) that preferentially inhibits the ability of some classes of AhR agonists (2,3,7,8-tetrachlorodibenzo-p-dioxin and related HAHs), but not others (PAHs, flavonoids, or indirubin), to bind to and/or activate the AhR and AhR signal transduction. HAH-specific antagonism of AhR-dependent reporter gene expression by CH223191 was observed with mouse, rat, human, and guinea pig cell lines. Ligand- and species-selective antagonism was also observed with the AhR antagonists 3'-methoxy-4'-nitroflavone and 6,2',4',-trimethoxyflavone. Our results suggest that the differences in the binding by various ligands to the AhR contribute to the observed structural diversity of AhR ligands and could contribute in ligand-specific variation in AhR functionality and the toxic and biological effects of various classes of AhR agonists.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Environmental Toxicology, University of California, Davis, California 95616
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Danica E. DeGroot
- Department of Environmental Toxicology, University of California, Davis, California 95616
| | - Ai Hayashi
- Department of Environmental Toxicology, University of California, Davis, California 95616
| | - Guochun He
- Department of Environmental Toxicology, University of California, Davis, California 95616
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California, Davis, California 95616
| |
Collapse
|
42
|
DiNatale BC, Schroeder JC, Francey LJ, Kusnadi A, Perdew GH. Mechanistic insights into the events that lead to synergistic induction of interleukin 6 transcription upon activation of the aryl hydrocarbon receptor and inflammatory signaling. J Biol Chem 2010; 285:24388-97. [PMID: 20511231 DOI: 10.1074/jbc.m110.118570] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is the ligand-activated transcription factor responsible for mediating the toxicological effects of dioxin and xenobiotic metabolism. However, recent evidence has implicated the AHR in additional, nonmetabolic physiological processes, including immune regulation. Certain tumor cells are largely nonresponsive to cytokine-mediated induction of the pro-survival cytokine interleukin (IL) 6. We have demonstrated that multiple nonresponsive tumor lines are able to undergo synergistic induction of IL6 following combinatorial treatment with IL1beta and the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin. Such data implicate the AHR in tumor expansion, although the mechanistic basis for the AHR-dependent synergistic induction of IL6 has not been determined. Here, we demonstrate that ligand-activated AHR is involved in priming the IL6 promoter through binding to nonconsensus dioxin response elements located upstream of the IL6 start site. Such binding appears to render the promoter more permissive to IL1beta-induced binding of NF-kappaB components. The nature of the AHR-dependent increases in IL6 promoter transcriptional potential has been shown to involve a reorganization of repressive complexes as exemplified by the presence of HDAC1 and HDAC3. Dismissal of these HDACs correlates with post-translational modifications of promoter-bound NF-kappaB components in a time-dependent manner. Thus the AHR plays a role in derepressing the IL6 promoter, leading to synergistic IL6 expression in the presence of inflammatory signals. These observations may explain the association between enhanced expression of AHR and tumor aggressiveness. It is likely that AHR-mediated priming is not restricted to the IL6 promoter and may contribute to the expression of a variety of genes, which do not have consensus dioxin response elements.
Collapse
Affiliation(s)
- Brett C DiNatale
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, Center for Molecular Toxicology and Carcinogenesis, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
43
|
Whelan F, Hao N, Furness SGB, Whitelaw ML, Chapman-Smith A. Amino acid substitutions in the aryl hydrocarbon receptor ligand binding domain reveal YH439 as an atypical AhR activator. Mol Pharmacol 2010; 77:1037-46. [PMID: 20231332 DOI: 10.1124/mol.109.062927] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is traditionally defined as a transcription factor activated by exogenous polyaromatic and halogenated aromatic hydrocarbon (PAH/HAH) ligands. Active AhR induces genes involved in xenobiotic metabolism, including cytochrome P4501A1, which function to metabolize activating ligands. However, recent studies implicate AhR in biological events that are apparently unrelated to the xenobiotic response, implying that endogenous activation mechanisms exist. Three AhR genes in zebrafish (Danio rerio) encode proteins that demonstrate differential activation in response to PAH/HAHs, with the nonresponsive drAhR1a having some sequence divergence from the PAH/HAH-responsive AhRs in the ligand binding domain (LBD). We used these differences to guide the mutagenesis of mouse AhR (mAhR), aiming to generate variants that functionally discriminate between activation mechanisms. We found substitution of histidine 285 in the LBD with tyrosine gave a receptor that could be activated by isopropyl-2-(1,3-dithietane-2-ylidene)-2-[N-(4-methylthiazol-2-yl)carbamoyl]acetate (YH439), a potential AhR ligand chemically distinct from classic PAH/HAH-type ligands, but prevented activation by both exogenous PAH/HAH ligands and the endogenous activation mimics of suspension culture and application of shear-stressed serum. The differential response of H285Y mAhR to YH439 suggests that this activator has a novel mode of interaction that tolerates tyrosine at position 285 in the LBD and is distinct from the binding mode of the well characterized PAH/HAH ligands. In support of this, the PAH-type antagonist 3',4'-dimethoxyflavone blocked mAhR activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin but not YH439. Furthermore, the strict correlation between response to exogenous PAH/HAH ligands and mimics of endogenous activation suggests that a PAH-type ligand may underpin endogenous mechanisms of activation.
Collapse
Affiliation(s)
- Fiona Whelan
- Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, North Tce, Adelaide, SA 5005, Australia
| | | | | | | | | |
Collapse
|
44
|
The aryl hydrocarbon receptor: regulation of hematopoiesis and involvement in the progression of blood diseases. Blood Cells Mol Dis 2010; 44:199-206. [PMID: 20171126 DOI: 10.1016/j.bcmd.2010.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 01/08/2010] [Indexed: 12/17/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a basic helix-loop-helix protein that belongs to the superfamily of environment-sensing PAS (Per-ARNT-Sim) proteins. A large number of ligands have been described to bind AhR and promote its nuclear translocation. In the nucleus, the AhR and its dimerization partner the AhR nuclear translocator (ARNT) form a DNA-binding complex that acts as a transcriptional regulator. Animal and human data suggest that, beyond its mediating responses to xenobiotic and/or unknown endogenous ligands, the AhR has a role, although as yet undefined, in the regulation of cell cycle and inflammation. The AhR also appears to regulate the hematopoietic and immune systems during development and adult life in a cell-specific manner. While accidental exposure to xenobiotic AhR ligands has been associated with leukemia in humans, the specific mechanisms of AhR involvement are still not completely understood. However, recent data are consistent with a functional role of the AhR in the maintenance of hematopoietic stem and/or progenitor cells (HSCs/HPCs). Studies highlighting AhR regulation of HSCs/HPCs provide a rational framework to understand their biology, a role of the AhR in hematopoietic diseases, and a means to develop interventions for these diseases.
Collapse
|