1
|
Liang R, Zhu L, Huang Y, Chen J, Tang Q. Mitochondria: fundamental characteristics, challenges, and impact on aging. Biogerontology 2024; 25:923-941. [PMID: 39196438 DOI: 10.1007/s10522-024-10132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
As one of the most vital organelles within biological cells, mitochondria hold an irreplaceable status and play crucial roles in various diseases. Research and therapies targeting mitochondria have achieved significant progress in numerous conditions. Throughout an organism's lifespan, mitochondrial dynamics persist continuously, and due to their inherent characteristics and various external factors, mitochondria are highly susceptible to damage. This susceptibility is particularly evident during aging, where the decline in biological function is closely intertwined with mitochondrial dysfunction. Despite being an ancient and enigmatic organelle, much remains unknown about mitochondria. Here, we will explore the past and present knowledge of mitochondria, providing a comprehensive review of their intrinsic properties and interactions with nuclear DNA, as well as the challenges and impacts they face during the aging process.
Collapse
Affiliation(s)
- Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Luwen Zhu
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
2
|
Costa Miranda Pires D, da Silva Moraes A. Long-term food supplementation with sweet basil ( Ocimum basilicum L.) prevents age-associated cognitive decline in female mice. Nutr Health 2024:2601060241281765. [PMID: 39340486 DOI: 10.1177/02601060241281765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Background: Mild cognitive decline, a common issue in aging, affects memory, learning, and attention. Nutrition can influence cognition, and research indicates that Ocimum sp. (holy basil and sweet basil) leaf extracts may enhance cognition in rodents and humans. However, these studies do not address whether these benefits extend to fresh or dry leaves consumed in typical human diets, along with physiological aging. Aim: To investigate the effects of sweet basil supplementation on cognition in mature and aged female mice. Methods: Female C57bl mice were divided into four groups: 8-month-old mature adults and 18-month-old aged adults, each receiving either a control or supplemented diet. The supplemented diet included a mix of standard chow and fresh basil leaves, administered for 2-8 months. Cognitive and behavioral assessments were conducted using the novel object recognition (NOR), Morris water maze (MWM), and elevated plus maze (EPM) tasks, focusing on memory, learning, and anxiety. Results: No cognitive improvement was observed in mature mice. However, aged mice receiving long-term basil supplementation showed enhanced discrimination in NOR and stayed closer to the absent platform in MWM compared to nonsupplemented controls. While aging mice exhibited reduced anxiety-like behavior in EPM, basil supplementation prevented this reduction. Conclusion: Basil supplementation appears beneficial in elderly mice, potentially preventing age-related cognitive decline and behavioral changes. These findings support the benefits of basil consumption in cognition and underscore its potential role in promoting healthy aging. Incorporating basil into the diet at a younger age may preserve memory and mitigate behavioral changes as individuals age.
Collapse
Affiliation(s)
- Dâmaris Costa Miranda Pires
- Department of Cell Biology, Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlandia, Brazil
| | - Alberto da Silva Moraes
- Department of Cell Biology, Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlandia, Brazil
| |
Collapse
|
3
|
Wang X, Chen X, Sun X, Ao J. Comparative analysis of miRNAs and mRNAs in large yellow croaker head kidney cells (LYCK) provided novel insights into the redox regulation of fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170503. [PMID: 38301776 DOI: 10.1016/j.scitotenv.2024.170503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Reactive oxygen species (ROS) over-production and oxidative stress resulted from climate change and environmental pollution seriously endangered global fish populations and healthy development of marine aquaculture. Peroxiredoxins (Prxs), a highly conserved family of thiol-specific antioxidants, can mitigate ROS and protect cells from oxidative stress. We previously demonstrated that large yellow croaker PrxIV (LcPrxIV) could not only regulate the pro-inflammatory responses, but also scavenge ROS. However, the underlying mechanism how LcPrxIV regulated immune response and redox homeostasis remains unknown. MicroRNAs (miRNAs) are non-coding RNAs that play important roles in the regulation of various biological processes. In this study, mRNA and miRNA expression profiles from LYCK-pcDNA3.1 and LYCK-PrxIV cells, with or without oxidative stress stimulated by H2O2 were evaluated using high-throughput sequencing. A series of differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs), as well as DEM-DEG pairs were identified from each two-group comparison, respectively. GO and KEGG functional analyses indicated that most significant DEGs were associated with signaling pathways related to oxidative stress and immune response. Subsequent DEM-DEG interaction analysis revealed that miR-731 and miR-1388 may be involved in both redox regulation and immune response via synergistic effect with LcPrxIV. Interestingly, miR-731 could regulate the expression of different down-stream DEGs under different stimulations of LcPrxIV over-expression, H2O2, or both. Moreover, miR-731 could cause the DEG, γ-glutamyl hydrolase (GGH), to be expressed in opposite ways under different stimulations. On the other hand, the expression of miR-1388 could be negatively or positively regulated under the stimulation of LcPrxIV over-expression with or without oxidative stress, thus regulating gene expression of different mRNAs. Based on these results, we speculate that LcPrxIV may participate in immune response or redox regulation by regulating the expression of different down-stream genes through controlling the expression level of a certain miRNA or by regulating the varieties of expressed miRNAs.
Collapse
Affiliation(s)
- Xianhui Wang
- Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoming Sun
- Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China.
| | - Jingqun Ao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Üremiş MM, Üremiş N, Gül M, Gül S, Çiğremiş Y, Durhan M, Türköz Y. Acrylamide, Applied During Pregnancy and Postpartum Period in Offspring Rats, Significantly Disrupted Myelination by Decreasing the Levels of Myelin-Related Proteins: MBP, MAG, and MOG. Neurochem Res 2024; 49:617-635. [PMID: 37989894 DOI: 10.1007/s11064-023-04053-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/06/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023]
Abstract
Acrylamide (ACR) is a colorless, odorless, and water-soluble solid molecule. In addition to being an important industrial material, ACR is found in fried and baked carbohydrate-rich foods. ACR is regarded as a typical axonal neurotoxin that induces neuropathy. The brain is protected from oxidative damage by vitamin E, which is regarded as the most powerful fat-soluble antioxidant vitamin. This study aimed to reveal the toxic effect of ACR on the development of myelin in the brain at the molecular level and to examine whether Vitamin E has a neuroprotective effect on the harmful effect of ACR. The study was started by dividing 40 pregnant rats into 4 groups and after lactation, the study was continued with offspring rats (females and males offspring rats) from each group. Offspring rats were equally divided into Control, Vitamin E, ACR, ACR + Vitamin E groups. Following the ACR administration, the Water Maze test was applied to evaluate cognitive function. To evaluate the level of demyelination and remyelination, MBP, MAG, and MOG proteins and mRNA levels were performed. In addition, the degeneration of myelin and glial cells was examined by immunohistochemistry and electron microscopic analysis. Analysis results showed that ACR administration decreased gene and protein levels of myelin-related proteins MBP, MAG, and MOG. The findings were confirmed by histopathological, immunohistochemical, and microscopic examinations. The application of vitamin E improved this negative effect of ACR. It has been observed that ACR may play a role in the pathogenesis of myelin-related neurodegenerative diseases by causing demyelination during gestation, lactation, and post-lactation. In addition, it has been understood that vitamin E supports myelination as a strong neuroprotective vitamin against the toxicity caused by ACR. Our research results suggest that acrylamide may play a role in the etiopathogenesis of demyelinating diseases such as multiple sclerosis in humans since fast-food-type nutrition is very common today and people are chronically exposed to acrylamide.
Collapse
Affiliation(s)
- Muhammed Mehdi Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Nuray Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Mehmet Gül
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Semir Gül
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Yılmaz Çiğremiş
- Department of Medical Biology and Genetics, Medical Faculty, Inonu University, Malatya, Turkey
| | - Merve Durhan
- Department of Medical Biology and Genetics, Medical Faculty, Inonu University, Malatya, Turkey
| | - Yusuf Türköz
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey.
| |
Collapse
|
5
|
Lankin VZ, Sharapov MG, Tikhaze AK, Goncharov RG, Antonova OA, Konovalova GG, Novoselov VI. Dicarbonyl-Modified Low-Density Lipoproteins Are Key Inducers of LOX-1 and NOX1 Gene Expression in the Cultured Human Umbilical Vein Endotheliocytes. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2125-2136. [PMID: 38462455 DOI: 10.1134/s0006297923120143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 03/12/2024]
Abstract
Expression of LOX-1 and NOX1 genes in the human umbilical vein endotheliocytes (HUVECs) cultured in the presence of low-density lipoproteins (LDL) modified with various natural dicarbonyls was investigated for the first time. It was found that among the investigated dicarbonyl-modified LDLs (malondialdehyde (MDA)-modified LDLs, glyoxal-modified LDLs, and methylglyoxal-modified LDLs), the MDA-modified LDLs caused the greatest induction of the LOX-1 and NOX1 genes, as well as of the genes of antioxidant enzymes and genes of proapoptotic factors in HUVECs. Key role of the dicarbonyl-modified LDLs in the molecular mechanisms of vascular wall damage and endothelial dysfunction is discussed.
Collapse
Affiliation(s)
- Vadim Z Lankin
- Chazov National Medical Research Center for Cardiology, Moscow, 121552, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Alla K Tikhaze
- Chazov National Medical Research Center for Cardiology, Moscow, 121552, Russia
| | - Ruslan G Goncharov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Olga A Antonova
- Chazov National Medical Research Center for Cardiology, Moscow, 121552, Russia
| | - Galina G Konovalova
- Chazov National Medical Research Center for Cardiology, Moscow, 121552, Russia
| | - Vladimir I Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
6
|
Cao Z, Liu G, Zhang H, Wang M, Xu Y. Nox4 promotes osteoblast differentiation through TGF-beta signal pathway. Free Radic Biol Med 2022; 193:595-609. [PMID: 36372285 DOI: 10.1016/j.freeradbiomed.2022.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022]
Abstract
NADPH oxidase 4 (Nox4) is the main source of reactive oxygen species, which promote osteoclast formation and lead to bone loss, thereby causing osteoporosis. However, the role of Nox4 in osteoblasts during early development remains unclear. We used zebrafish to study the effect of Nox4 deletion on bone mineralization in early development. nox4-/- zebrafish showed decreased bone mineralization during early development and significantly reduced numbers of osteoblasts, osteoclasts, and chondrocytes. Transcriptome sequencing showed that the TGF-β signaling pathway was significantly disrupted in nox4-/- zebrafish. Inhibiting TGF-β signaling rescued the abnormal bone development caused by nox4 deletion and increased the number of osteoblasts. We used Saos-2 human osteosarcoma cells to confirm our results, which clarified the role of Nox4 in human osteoblasts. Our results demonstrate the mechanism of reduced bone mineralization in early development and provide a basis for the clinical treatment of osteoporosis.
Collapse
Affiliation(s)
- Zihou Cao
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Gongwen Liu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Hui Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Mingyong Wang
- Murui Biological Technology Co., Ltd., Suzhou Industrial Park, No.11 Jinpu Road, Suzhou, China.
| | - Youjia Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Sharapov MG, Goncharov RG, Parfenyuk SB, Glushkova OV. Effect of Peroxiredoxin 6 on p53 Transcription Factor Level. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:839-849. [PMID: 36171649 DOI: 10.1134/s0006297922080156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 06/16/2023]
Abstract
Peroxiredoxin 6 (Prdx6) is an important antioxidant enzyme with multiple functions in the cell. Prdx6 neutralizes a wide range of hydroperoxides, participates in phospholipid metabolism and cell membrane repair, and in transmission of intracellular and intercellular signals. Disruption of normal Prdx6 expression in the cell leads to the development of pathological conditions. Decrease in the Prdx6 concentration leads to increase in oxidative damage to the cell. At the same time, hyperproduction of Prdx6 is associated with increase in antioxidant status, suppression of apoptosis, and carcinogenesis. Currently, mechanisms of carcinogenic action of peroxiredoxins are poorly understood. In this work we established that the 3-4-fold increase in Prdx6 production in mouse embryonic fibroblast 3T3 cells leads to the 4-5-fold decrease in the level of oncosuppressor p53. At the same time, hyperproduction of Prdx6 leads to the increased expression of RELA and HIF1A, which have oncogenic effects. The 3-4-fold increase in intracellular Prdx6 increases intensity of cell proliferation by 20-30%, promotes increase in antioxidant activity by 30-50%, and increases radioresistance of the transfected 3T3 cells by 30-40%. Increase of the level of intranuclear Prdx6 leads to the decrease in expression of the DNA repair genes in response to radiation, indicating decrease in the genomic DNA damage. This work discusses possible molecular mechanisms of p53 suppression during Prdx6 hyperproduction, which could be used in the development of new approaches in cancer therapy.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Ruslan G Goncharov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Svetlana B Parfenyuk
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Olga V Glushkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
8
|
Li Y, Nguepi Tsopmejio IS, Diao Z, Xiao H, Wang X, Jin Z, Song H. Aronia melanocarpa (Michx.) Elliott. attenuates dextran sulfate sodium-induced Inflammatory Bowel Disease via regulation of inflammation-related signaling pathways and modulation of the gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115190. [PMID: 35306040 DOI: 10.1016/j.jep.2022.115190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aronia melanocarpa (Michx.) Elliott. Is one of the most functional berries usually used in the preparation of juice and jams, but it has revealed its ethnopharmacological properties due to their richness in biologically active molecules with pharmaceutical and physiological effects. AIMS OF THE STUDY The aim of this study was to assess the antioxidant and anti-inflammatory effects of Aronia melanocarpa ethanol-extract as well as the possible mechanisms of action involved and the modulation of gut microbiota in Dextran Sulfate Sodium (DSS)-induced Inflammatory bowel disease in mice. MATERIALS AND METHODS Inflammatory bowel disease (IBD) were induced by DSS in drinking water for 7 days to evaluate the properties of A. melanocarpa ethanol-extract (AME) on the intestinal microflora. AME was administered orally to DSS-induced IBD mice for 21 days. Clinical, inflammatory, histopathological parameters, and different mRNA and proteins involved in its possible mechanism of action were determined as well as gut microbiota analysis via 16S high throughput sequencing. RESULTS AME improved clinical symptoms and regulated histopathological parameters, pro- and anti-inflammatory cytokines and oxidative stress factors as well as mRNA and protein expressions of transcription factors involved in maintaining the intestinal barrier integrity. In addition, AME also reversed the DSS-induced intestinal dysbiosis effects promoting the production of cecal short chain fatty acids linked to signaling pathways inhibiting IBD. CONCLUSION AME improved intestinal lesions induced by DSS suggesting that A. melanocarpa berries could have significant therapeutic potential against IBD due to their antioxidant and anti-inflammatory capacities as well as their ability to restore the gut microbiota balance.
Collapse
Affiliation(s)
- Yuting Li
- School of Life Science, Jilin Agricultural University, Jilin, PR China
| | - Ivan Stève Nguepi Tsopmejio
- School of Life Science, Jilin Agricultural University, Jilin, PR China; Department of Animal Biology and Physiology, University of Yaoundé I, Cameroon
| | - Zipeng Diao
- School of Life Science, Jilin Agricultural University, Jilin, PR China
| | - Huanwei Xiao
- School of Life Science, Jilin Agricultural University, Jilin, PR China
| | - Xueqi Wang
- School of Life Science, Jilin Agricultural University, Jilin, PR China
| | - Zhouyu Jin
- School of Life Science, Jilin Agricultural University, Jilin, PR China
| | - Hui Song
- School of Life Science, Jilin Agricultural University, Jilin, PR China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Changchun, PR China.
| |
Collapse
|
9
|
Nguepi Tsopmejio IS, Ding M, Wei J, Zhao C, Jiang Y, Li Y, Song H. Auricularia polytricha and Flammulina velutipes ameliorate inflammation and modulate the gut microbiota via regulation of NF-κB and Keap1/Nrf2 signaling pathways on DSS-induced inflammatory bowel disease. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Amini MR, Sheikhhossein F, Talebyan A, Bazshahi E, Djafari F, Hekmatdoost A. Effects of Artichoke Supplementation on Liver Enzymes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin Nutr Res 2022; 11:228-239. [PMID: 35949559 PMCID: PMC9348909 DOI: 10.7762/cnr.2022.11.3.228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Studies examining the effect of artichoke on liver enzymes have reported inconsistent results. This systematic review and meta-analysis aimed to assess the effects of artichoke administration on the liver enzymes. PubMed, Embase, the Cochrane Library, and Scopus databases were searched for articles published up to January 2022. Standardized mean difference (Hedges’ g) were analyzed using a random-effects model. Heterogeneity, publication bias, and sensitivity analysis were assessed for the liver enzymes. Pooled analysis of seven randomized controlled trials (RCTs) suggested that the artichoke administration has an effect on both alanine aminotransferase (ALT) (Hedges’ g, −1.08; 95% confidence interval [CI], −1.76 to −0.40; p = 0.002), and aspartate aminotransferase (AST) (Hedges’ g, −1.02; 95% CI, −1.76 to −0.28; p = 0.007). Greater effects on ALT were detected in trials that lasted ≤8 weeks. Also, greater effects on AST were detected in trials using > 500 mg artichoke. Overall, this meta-analysis demonstrated artichoke supplementation decreased ALT and AST.
Collapse
Affiliation(s)
- Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| | - Fatemeh Sheikhhossein
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Alireza Talebyan
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Elham Bazshahi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Farhang Djafari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition & Dietetics, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| |
Collapse
|
11
|
Dental resin monomers induce early and potent oxidative damage on human odontoblast-like cells. Chem Biol Interact 2020; 333:109336. [PMID: 33248029 DOI: 10.1016/j.cbi.2020.109336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 01/10/2023]
Abstract
Resin-based dental materials consist of filler particles and different monomers that are light cured in situ to re-establish dental function and aesthetics. Due to the degree of conversion of adhesive polymers, the monomers triethyleneglycol dimethacrylate (TEGDMA) and 2-hydroxyethyl methacrylate (HEMA) are released in relatively high amounts and are susceptible to degradation, acting as bioactive compounds and affecting cell and tissues. This study aimed to assess the effect of HEMA and TEGDMA exposure on metabolic activity, membrane integrity, and cell survival of human odontoblast-like cell (hOLCs). Exposure to resin monomers for 24 h induced major changes in cell membrane integrity, metabolic activity, and survival, which were measured by the calcein method and lactate dehydrogenase release. Increased and early reactive oxygen species (ROS) production was observed leading to degradative oxidation of membrane lipids identified as malondialdehyde production. Severe alteration in mitochondria occurred due to transmembrane mitochondrial potential collapse, possibly inducing activation of apoptotic cell death. hOLCs exposure to resin monomers modified the cell redox potential, with consequences on membrane permeability and integrity, including mitochondrial function. Lipid peroxidation appears to be a key phenomenon for the membrane structures oxidation after HEMA and TEGDMA exposure, leading to cell death and cytotoxicity. hOLCs respond early by differential induction of adaptive mechanisms to maintain cell homeostasis. Modulation of oxidative stress-induced response involves the regulation of genes that encode for antioxidant proteins such as catalase and heme oxygenase-1; regulation that functions as a critical protection mechanism against oxidative cell damage induced by HEMA and TEGDMA. Ascorbic acid as an antioxidant substance mitigates the oxidative damage associated with exposure to monomers.
Collapse
|
12
|
Abstract
Vitamin C (Vit C) is an ideal antioxidant as it is easily available, water soluble, very potent, least toxic, regenerates other antioxidants particularly Vit E, and acts as a cofactor for different enzymes. It has received much attention due to its ability in limiting reactive oxygen species, oxidative stress, and nitrosative stress, as well as it helps to maintain some of the normal metabolic functions of the cell. However, over 140 clinical trials using Vit C in different pathological conditions such as myocardial infarction, gastritis, diabetes, hypertension, stroke, and cancer have yielded inconsistent results. Such a divergence calls for new strategies to establish practical significance of Vit C in heart failure or even in its prevention. For a better understanding of Vit C functioning, it is important to revisit its transport across the cell membrane and subcellular interactions. In this review, we have highlighted some historical details of Vit C and its transporters in the heart with a particular focus on heart failure in cancer chemotherapy.
Collapse
|
13
|
Rezazadeh K, Ebrahimi-Mameghani M. Artichoke leaf extract and use in metabolic syndrome as an antioxidant. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Soltani A, Kahkhaie KR, Haftcheshmeh SM, Jalali Nezhad AA, Akbar Boojar MM. The comparative study of the effects of Fe 2 O 3 and TiO 2 micro- and nanoparticles on oxidative states of lung and bone marrow tissues and colony stimulating factor secretion. J Cell Biochem 2019; 120:7573-7580. [PMID: 30485510 DOI: 10.1002/jcb.28031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Nowadays, increased use of nanomaterials in industry and biomedicine poses potential risks to human health and the environment. Studying their possible toxicological effects is therefore of great significance. The present investigation was designed to examine the status of oxidative stress induced by nanoparticles (NPs) of ferric oxide (Fe2 O 3 ) and titanium oxide (TiO 2 ) with their micro-sized counterpart on mouse lung and bone marrow-derived normal tissue cells. We assessed the induction of oxidative stress by measuring its indicators such as antioxidant scavenging activity of superoxide dismutase and catalase as well as malondialdehyde concentration. Moreover, colony formation of bone marrow cells was assayed following induction with colony stimulating factor (CSF) from lung cells. NPs had a more potent stimulatory effect on the oxidative stress status than their micron-sized counterparts. In addition, the highest level of oxidative stress derived from TiO 2 NPs was observed in both tissue types. Cotreatment with NPs and the antioxidant α-tocopherol reduced antioxidant activities and membrane lipid peroxidation (LPO) in the lung cells, but increased CSF-induced colony formation activity of bone marrow cells, suggesting that oxidative stress may be the cause of the cytotoxic effects of NPs. It is concluded that free radicals generated following exposure to NPs resulted in significant oxidative stress in mouse cells, indicated by increased LPO and antioxidant enzyme activity and decreased colony formation.
Collapse
Affiliation(s)
- Arash Soltani
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Kolsoum Rezaie Kahkhaie
- Department of Medical Biochemistry, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran.,Medicinal Plants Research Center, Zabol University of Medical Sciences (ZBUMS), Zabol, Iran
| | - Saeed Mohammadian Haftcheshmeh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ali Jalali Nezhad
- Department of Physiology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | | |
Collapse
|
15
|
Salekzamani S, Ebrahimi-Mameghani M, Rezazadeh K. The antioxidant activity of artichoke (Cynara scolymus): A systematic review and meta-analysis of animal studies. Phytother Res 2018; 33:55-71. [PMID: 30345589 DOI: 10.1002/ptr.6213] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/06/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022]
Abstract
Current evidence has shown antioxidant activity of artichoke as a potent source of antioxidant compounds. However, it seems that the antioxidant activity of artichoke has not yet been reviewed. Therefore, the present study was designed to perform a systematic review of human studies, animal models, and in vitro systems and to conduct a meta-analysis of animal studies on the antioxidant effects of artichoke. We searched four electronic databases till April 2018 using relevant keywords. All English language articles were assessed. For animal studies, standardized mean difference was pooled using a random effects model. The included studies were evaluated for eligibility and risk of bias. Thirty-nine articles (two human, 23 animal, and 14 in vitro studies) were reviewed. The results of in vitro systems supported the antioxidant effect of artichoke, whereas limited clinical trials indicated no change or a slight improvement of antioxidant status. Finding of animal studies indicated that artichoke extract supplementation increased superoxide dismutase, catalase, glutathione, and glutathione peroxidase level in liver, as well as, decreased malondialdehyde level in liver and plasma of animals with induced disease significantly compared with comparison group. This meta-analysis provided convincing evidence for antioxidant activity of artichoke in animals.
Collapse
Affiliation(s)
- Shabnam Salekzamani
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khatereh Rezazadeh
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Melo da Cunha JDS, Alfredo TM, dos Santos JM, Alves Junior VV, Rabelo LA, Lima ES, Boleti APDA, Carollo CA, dos Santos EL, de Picoli Souza K. Antioxidant, antihyperglycemic, and antidiabetic activity of Apis mellifera bee tea. PLoS One 2018; 13:e0197071. [PMID: 29870561 PMCID: PMC5988306 DOI: 10.1371/journal.pone.0197071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/25/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetes has emerged as one of the largest global epidemics; it is estimated that by 2035, there will be 592 million diabetic people in the world. Brazilian biodiversity and the knowledge of traditional peoples have contributed to the treatment of several diseases, including diabetes. Apis mellifera bee tea is used by indigenous Brazilians to treat diabetes, and this traditional knowledge needs to be recorded and studied.The objective of this study was to record the use and to evaluate the antioxidant, antihyperglycemic, and antidiabetic activity of Apis mellifera bee tea, which is used by the Guarani and Kaiowá indigenous people for the treatment of diabetes. Semi-structured interviews were performed with Guarani and Kaiowá ethnic indigenous people from the State of Mato Grosso do Sul, Brazil, seeking to identify the animal species used for medicinal purposes. For the experimental procedures, tea prepared with macerated Apis mellifera bees was used. In vitro assays were performed to evaluate antioxidant activity; direct free radical scavenging, protection against oxidative hemolysis, lipid peroxidation were evaluated in human erythrocytes and potential in inhibiting the formation of advanced glycation end products (AGEs). In vivo, normoglycemic Swiss male mice treated with Apis mellifera tea (AmT) were subjected to the oral glucose tolerance test and compared with control and metformin-treated groups. Diet-induced diabetic mice were treated for 21 days with AmT and evaluated for glycemia and malondialdehyde levels in the blood, liver, nervous system, and eyes. During interviews, the indigenous people described the use of Apis mellifera bee tea for the treatment of diabetes. In in vitro assays, AmT showed direct antioxidant activity and reduced oxidative hemolysis and malondialdehyde generation in human erythrocytes. The AmT inhibited the formation of AGEs by albumin-fructose pathways and methylglyoxal products. In vivo, after oral glucose overload, normoglycemic mice treated with AmT had reduced hyperglycemia at all times evaluated up to 180 min. AmT also reduced hyperglycemia and malondialdehyde levels in the blood, liver, nervous system, and eyes of diabetic mice to similar levels as those in metformin-treated mice and normoglycemic controls. In summary, Apis mellifera bee tea showed antioxidant, antihyperglycemic, and antidiabetic activity, which provides support for the therapeutic application of Guarani and Kaiowá indigenous knowledge.
Collapse
Affiliation(s)
- Janielle da Silva Melo da Cunha
- Binational Campus Oiapoque, Federal University of Amapá—UNIFAP, Amapá, Brazil
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados–UFGD, Dourados, Brazil
| | - Tamaeh Monteiro Alfredo
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados–UFGD, Dourados, Brazil
| | - Jéssica Maurino dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados–UFGD, Dourados, Brazil
| | - Valter Vieira Alves Junior
- School of Environmental and Biological Science, Federal University of Grande Dourados–UFGD, Dourados, Brazil
| | - Luiza Antas Rabelo
- Laboratory of Cardiovascular Reactivity–LRC, Nucleus of Metabolic Syndrome, Biological Sciences and Health Institute—ICBS, Federal University of Alagoas–UFAL, Alagoas, Brazil
| | - Emerson Silva Lima
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus, Brazil
| | - Ana Paula de Araújo Boleti
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados–UFGD, Dourados, Brazil
| | - Carlos Alexandre Carollo
- Laboratory of Natural Products am Mass Spectrometry, Federal University of Mato Grosso do Sul–UFMS, Mato Grosso do Sul, Brazil
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados–UFGD, Dourados, Brazil
- School of Environmental and Biological Science, Federal University of Grande Dourados–UFGD, Dourados, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados–UFGD, Dourados, Brazil
- School of Environmental and Biological Science, Federal University of Grande Dourados–UFGD, Dourados, Brazil
- * E-mail:
| |
Collapse
|
17
|
S. Isgor B, G. Isgor Y, Geven F. Cellular Defense Enzyme Profile for Non-cytotoxic and Phenol Enriched Extracts of Heliotropium europaeum, Carlina oligocephala and Echinops ritro. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.224.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Kandeil MAM, Hassanin KMAA, Mohammed ET, Safwat GM, Mohamed DS. Pumpkin and Vitamin E as Potent Modulators of Apoptosis in Gentamicin-induced Rat Nephrotoxicity. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/ajb.2018.1.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Cen J, Zheng B, Bai R, Zhang L, Zhang F, Zhang X. Triterpenoids from Aglaia abbreviata exert cytotoxicity and multidrug resistant reversal effect in MCF-7/ADM cells via reactive oxygen species induction and P-glycoprotein inhibition. Oncotarget 2017; 8:69465-69476. [PMID: 29050217 PMCID: PMC5642492 DOI: 10.18632/oncotarget.17287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/11/2017] [Indexed: 02/05/2023] Open
Abstract
Triterpenoids from the Aglaia have been shown cytotoxicity on a broad spectrum of human tumor cells. In the present study, we extracted triterpenoids AA-5 (1) and AA-6 (2) from stems of Aglaia abbreviata, and studied their cytotoxicity in multidrug resistant (MDR) MCF-7/ADM cells. After 48 h treatment, AA-5 (1) and AA-6 (2) significantly increased mitochondrial-mediated apoptosis by enhancing reactive oxygen species (ROS) with depressed mitochondrial membrane potential and caspase-9 activities. The drug efflux transporter P-glycoprotein (P-gp) and the intracellular antioxidant systems, involving Glutathione S-Transferase π, Glutathione and heme oxygenase-1, were also inhibited via the ROS-depressed Akt/NF-E2-related factor 2 pathway. Furthermore, 2 h-treatment of AA-6 (2) at non-toxic concentrations exhibited MDR reversal effects with no alteration on P-gp expression but increased drug accumulation ability. AA-6 alos demonstrated synergetic effects with classic anti-tumor agents. Moreover, computational modeling studies showed that AA-6 (2) might bind to the modulator site on P-gp and act as an inhibitor, not a substrate of P-gp. Therefore, AA-5 (1) and AA-6 (2) may be effective anti-tumor and reversal agents for the further development of therapeutics against MDR breast cancer.
Collapse
Affiliation(s)
- Juan Cen
- College of Pharmacy, Henan University, Kaifeng, People's Republic of China.,Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, People's Republic of China
| | - Beibei Zheng
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, People's Republic of China
| | - Rubing Bai
- College of Pharmacy, Henan University, Kaifeng, People's Republic of China
| | - Li Zhang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, People's Republic of China
| | - Feng Zhang
- College of Pharmacy, Henan University, Kaifeng, People's Republic of China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| |
Collapse
|
20
|
Bayir E, Bilgi E, Urkmez AS. Implementation of Nanoparticles in Cancer Therapy. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cancer is a wide group of diseases and generally characterized by uncontrolled proliferation of cells whose metabolic activities are disrupted. Conventionally, chemotherapy, radiotherapy, and surgery are used in the treatment of cancer. However, in theory, even a single cancer cell may trigger recurrence. Therefore, these treatments cannot provide high survival rate for deadly types. Identification of alternative methods in treatment of cancers is inevitable because of adverse effects of conventional methods. In the last few decades, nanotechnology developed by scientists working in different disciplines—physics, chemistry, and biology—offers great opportunities. It is providing elimination of both circulating tumor cells and solid cancer cells by targeting cancer cells. In this chapter, inadequate parts of conventional treatment methods, nanoparticle types used in new treatment methods of cancer, and targeting methods of nanoparticles are summarized; furthermore, recommendations of future are provided.
Collapse
|
21
|
Fontaine V, Monteiro E, Brazhnikova E, Lesage L, Balducci C, Guibout L, Feraille L, Elena PP, Sahel JA, Veillet S, Lafont R. Norbixin Protects Retinal Pigmented Epithelium Cells and Photoreceptors against A2E-Mediated Phototoxicity In Vitro and In Vivo. PLoS One 2016; 11:e0167793. [PMID: 27992460 PMCID: PMC5161507 DOI: 10.1371/journal.pone.0167793] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/20/2016] [Indexed: 12/31/2022] Open
Abstract
The accumulation of N-retinylidene-N-retinylethanolamine (A2E, a toxic by-product of the visual pigment cycle) in the retinal pigment epithelium (RPE) is a major cause of visual impairment in the elderly. Photooxidation of A2E results in retinal pigment epithelium degeneration followed by that of associated photoreceptors. Present treatments rely on nutrient supplementation with antioxidants. 9’-cis-Norbixin (a natural diapocarotenoid, 97% purity) was prepared from Bixa orellana seeds. It was first evaluated in primary cultures of porcine retinal pigment epithelium cells challenged with A2E and illuminated with blue light, and it provided an improved photo-protection as compared with lutein or zeaxanthin. In Abca4-/-Rdh8-/- mice (a model of dry AMD), intravitreally-injected norbixin maintained the electroretinogram and protected photoreceptors against light damage. In a standard rat blue-light model of photodamage, norbixin was at least equally as active as phenyl-N-tert-butylnitrone, a free radical spin-trap. Chronic experiments performed with Abca4-/-Rdh8-/- mice treated orally for 3 months with norbixin showed a reduced A2E accumulation in the retina. Norbixin appears promising for developing an oral treatment of macular degeneration. A drug candidate (BIO201) with 9’-cis-norbixin as the active principle ingredient is under development, and its potential will be assessed in a forthcoming clinical trial.
Collapse
Affiliation(s)
- Valérie Fontaine
- Sorbonne Universités, UPMC Univ Paris, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, France
- * E-mail:
| | - Elodie Monteiro
- Sorbonne Universités, UPMC Univ Paris, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, France
| | - Elena Brazhnikova
- Sorbonne Universités, UPMC Univ Paris, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, France
| | - Laëtitia Lesage
- Sorbonne Universités, UPMC Univ Paris, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, France
| | - Christine Balducci
- Biophytis, Parc BIOCITECH, 102 Avenue Gaston Roussel, Romainville, France
| | - Louis Guibout
- Biophytis, Parc BIOCITECH, 102 Avenue Gaston Roussel, Romainville, France
| | | | | | - José-Alain Sahel
- Sorbonne Universités, UPMC Univ Paris, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, France
| | - Stanislas Veillet
- Biophytis, Parc BIOCITECH, 102 Avenue Gaston Roussel, Romainville, France
| | - René Lafont
- Biophytis, Parc BIOCITECH, 102 Avenue Gaston Roussel, Romainville, France
| |
Collapse
|
22
|
Banerjee S, Aykin-Burns N, Krager KJ, Shah SK, Melnyk SB, Hauer-Jensen M, Pawar SA. Loss of C/EBPδ enhances IR-induced cell death by promoting oxidative stress and mitochondrial dysfunction. Free Radic Biol Med 2016; 99:296-307. [PMID: 27554969 PMCID: PMC5673253 DOI: 10.1016/j.freeradbiomed.2016.08.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/26/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023]
Abstract
Exposure of cells to ionizing radiation (IR) generates reactive oxygen species (ROS). This results in increased oxidative stress and DNA double strand breaks (DSBs) which are the two underlying mechanisms by which IR causes cell/tissue injury. Cells that are deficient or impaired in the cellular antioxidant response are susceptible to IR-induced apoptosis. The transcription factor CCAAT enhancer binding protein delta (Cebpd, C/EBPδ) has been implicated in the regulation of oxidative stress, DNA damage response, genomic stability and inflammation. We previously reported that Cebpd-deficient mice are sensitive to IR and display intestinal and hematopoietic injury, however the underlying mechanism is not known. In this study, we investigated whether an impaired ability to detoxify IR-induced ROS was the underlying cause of the increased radiosensitivity of Cebpd-deficient cells. We found that Cebpd-knockout (KO) mouse embryonic fibroblasts (MEFs) expressed elevated levels of ROS, both at basal levels and after exposure to gamma radiation which correlated with increased apoptosis, and decreased clonogenic survival. Pre-treatment of wild type (WT) and KO MEFs with polyethylene glycol-conjugated Cu-Zn superoxide dismutase (PEG-SOD) and catalase (PEG-CAT) combination prior to irradiation showed a partial rescue of clonogenic survival, thus demonstrating a role for increased intracellular oxidants in promoting IR-induced cell death. Analysis of mitochondrial bioenergetics revealed that irradiated KO MEFs showed significant reductions in basal, adenosine triphosphate (ATP)-linked, maximal respiration and reserved respiratory capacity and decrease in intracellular ATP levels compared to WT MEFs indicating they display mitochondrial dysfunction. KO MEFs expressed significantly lower levels of the cellular antioxidant glutathione (GSH) and its precursor- cysteine as well as methionine. In addition to its antioxidant function, GSH plays an important role in detoxification of lipid peroxidation products such as 4-hydroxynonenal (4-HNE). The reduced GSH levels observed in KO MEFs correlated with elevated levels of 4-HNE protein adducts in irradiated KO MEFs compared to respective WT MEFs. We further showed that pre-treatment with the GSH precursor, N-acetyl L-cysteine (NAC) prior to irradiation showed a significant reduction of IR-induced cell death and increases in GSH levels, which contributed to the overall increase in clonogenic survival of KO MEFs. In contrast, pre-treatment with the GSH synthesis inhibitor- buthionine sulfoximine (BSO) further reduced the clonogenic survival of irradiated KO MEFs. This study demonstrates a novel role for C/EBPδ in protection from basal as well as IR-induced oxidative stress and mitochondrial dysfunction thus promoting post-radiation survival.
Collapse
Affiliation(s)
- Sudip Banerjee
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Kimberly J Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Sumit K Shah
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Stepan B Melnyk
- Arkansas Children's Hospital Research Institute, Little Rock, AR 72205, United States
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Surgical Services, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, United States
| | - Snehalata A Pawar
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
23
|
Akbarian A, Michiels J, Degroote J, Majdeddin M, Golian A, De Smet S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J Anim Sci Biotechnol 2016; 7:37. [PMID: 27354915 PMCID: PMC4924307 DOI: 10.1186/s40104-016-0097-5] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 06/15/2016] [Indexed: 11/10/2022] Open
Abstract
Heat as a stressor of poultry has been studied extensively for many decades; it affects poultry production on a worldwide basis and has significant impact on well-being and production. More recently, the involvement of heat stress in inducing oxidative stress has received much interest. Oxidative stress is defined as the presence of reactive species in excess of the available antioxidant capacity of animal cells. Reactive species can modify several biologically cellular macromolecules and can interfere with cell signaling pathways. Furthermore, during the last decade, there has been an ever-increasing interest in the use of a wide array of natural feed-delivered phytochemicals that have potential antioxidant properties for poultry. In light of this, the current review aims to (1) summarize the mechanisms through which heat stress triggers excessive superoxide radical production in the mitochondrion and progresses into oxidative stress, (2) illustrate that this pathophysiology is dependent on the intensity and duration of heat stress, (3) present different nutritional strategies for mitigation of mitochondrial dysfunction, with particular focus on antioxidant phytochemicals. Oxidative stress that occurs with heat exposure can be manifest in all parts of the body; however, mitochondrial dysfunction underlies oxidative stress. In the initial phase of acute heat stress, mitochondrial substrate oxidation and electron transport chain activity are increased resulting in excessive superoxide production. During the later stage of acute heat stress, down-regulation of avian uncoupling protein worsens the oxidative stress situation causing mitochondrial dysfunction and tissue damage. Typically, antioxidant enzyme activities are upregulated. Chronic heat stress, however, leads to downsizing of mitochondrial metabolic oxidative capacity, up-regulation of avian uncoupling protein, a clear alteration in the pattern of antioxidant enzyme activities, and depletion of antioxidant reserves. Some phytochemicals, such as various types of flavonoids and related compounds, were shown to be beneficial in chronic heat-stressed poultry, but were less or not effective in non-heat-stressed counterparts. This supports the contention that antioxidant phytochemicals have potential under challenging conditions. Though substantial progress has been made in our understanding of the association between heat stress and oxidative stress, the means by which phytochemicals can alleviate oxidative stress have been sparsely explored.
Collapse
Affiliation(s)
- Abdollah Akbarian
- />Department of Animal Production, Laboratory for Animal Nutrition and Animal Product Quality, Ghent University, Proefhoevestraat 10, Melle, 9090 Belgium
- />Centre of Excellence in the Animal Science Department, Ferdowsi University of Mashhad, P.O. Box: 91775–1163, Mashhad, Iran
| | - Joris Michiels
- />Department of Applied Biosciences, Ghent University, Valentin Vaerwyckweg 1, Ghent, 9000 Belgium
| | - Jeroen Degroote
- />Department of Applied Biosciences, Ghent University, Valentin Vaerwyckweg 1, Ghent, 9000 Belgium
| | - Maryam Majdeddin
- />Department of Animal Production, Laboratory for Animal Nutrition and Animal Product Quality, Ghent University, Proefhoevestraat 10, Melle, 9090 Belgium
- />Centre of Excellence in the Animal Science Department, Ferdowsi University of Mashhad, P.O. Box: 91775–1163, Mashhad, Iran
- />Department of Applied Biosciences, Ghent University, Valentin Vaerwyckweg 1, Ghent, 9000 Belgium
| | - Abolghasem Golian
- />Centre of Excellence in the Animal Science Department, Ferdowsi University of Mashhad, P.O. Box: 91775–1163, Mashhad, Iran
| | - Stefaan De Smet
- />Department of Animal Production, Laboratory for Animal Nutrition and Animal Product Quality, Ghent University, Proefhoevestraat 10, Melle, 9090 Belgium
| |
Collapse
|
24
|
Zhou LF, He FG, Lu BZ, Chen FY. A Traditional Chinese Medicine Shaoyao Ruangan Heji
Ameliorates Carbon Tetrachloride-induced Liver Injury Through
Multiple Stress and Toxicity Pathways. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.317.328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Dietary indicaxanthin from cactus pear (Opuntia ficus-indicaL. Mill) fruit prevents eryptosis induced by oxysterols in a hypercholesterolaemia-relevant proportion and adhesion of human erythrocytes to endothelial cell layers. Br J Nutr 2015; 114:368-75. [DOI: 10.1017/s0007114515002111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Toxic oxysterols in a hypercholesterolaemia-relevant proportion cause suicidal death of human erythrocytes or eryptosis. This process proceeds through early production of reactive oxygen species (ROS), release of prostaglandin (PGE2) and opening of PGE2-dependent Ca channels, membrane phosphatidylserine (PS) externalisation, and cell shrinkage. The present study was the first to reveal that a bioavailable phytochemical, indicaxanthin (Ind) from cactus pear fruit, in a concentration range (1·0–5·0 μM) consistent with its plasma level after a fruit meal, prevents PS externalisation and cell shrinkage in a dose-dependent manner when incubated with isolated healthy human erythrocytes exposed to an oxysterol mixture for 48 h. Dietary Ind inhibited ROS production, glutathione (GSH) depletion, PGE2 release and Ca2+entry. Ind alone did not modify the erythrocyte redox environment or affect other parameters.Ex vivospiking of normal human blood with the oxysterol mixture for 48 h induced eryptosis, resulting in the production of ROS and decreased levels of GSH, which was prevented by concurrent exposure to 5 μm-Ind. The adherence of eryptotic erythrocytes to the endothelium causes vascular tissue injury. Erythrocytes isolated from blood incubated with the oxysterol mixture plus 5 μm-Ind did not adhere to endothelial cell monolayers. Eryptotic erythrocytes may contribute to thrombotic complications in hypercholesterolaemia. Our findings suggest the positive effects of diets containing Ind on erythrocytes in hypercholesterolaemic subjects.
Collapse
|
26
|
Abstract
The Mediterranean diet (MD) emerged as a healthy food regimen long before it could be recognised which nutrients or foods were responsible for its observed benefits, and it was only in the middle of the last century that the first scientific approach ‘The Seven Countries Study’ appeared. Epidemiological and anthropological studies of the MD converged, first by investigating at single nutrients or foods, then by adopting the more holistic approach of dietary patterns (DP), and now with a molecular approach. These studies resulted in convincing evidence that a MD decreases the risk of all-cause mortality and cardiovascular mortality and incidence. A risk reduction of developing type 2 diabetes is probable. Evidence is less stringent for other metabolic diseases and all cancers but from possible to probable for some cancer sites. Although DP showed that the MD has to be considered in its totality, olive oil could have a specific role. Lifestyle factors such as physical activity for energy balance, outdoor life for vitamin D synthesis and conviviality are also probably partly responsible for the health benefits. The MD is a lifestyle well suited for coping not only with personal health but also with wider societal concerns in relation to environment, public health and economy.
Collapse
|
27
|
Lau YS, Ling WC, Murugan D, Mustafa MR. Boldine Ameliorates Vascular Oxidative Stress and Endothelial Dysfunction: Therapeutic Implication for Hypertension and Diabetes. J Cardiovasc Pharmacol 2015; 65:522-31. [PMID: 25469805 PMCID: PMC4461386 DOI: 10.1097/fjc.0000000000000185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/27/2014] [Indexed: 02/07/2023]
Abstract
Epidemiological and clinical studies have demonstrated that a growing list of natural products, as components of the daily diet or phytomedical preparations, are a rich source of antioxidants. Boldine [(S)-2,9-dihydroxy-1,10-dimethoxy-aporphine], an aporphine alkaloid, is a potent antioxidant found in the leaves and bark of the Chilean boldo tree. Boldine has been extensively reported as a potent "natural" antioxidant and possesses several health-promoting properties like anti-inflammatory, antitumor promoting, antidiabetic, and cytoprotective. Boldine exhibited significant endothelial protective effect in animal models of hypertension and diabetes mellitus. In isolated thoracic aorta of spontaneously hypertensive rats, streptozotocin-induced diabetic rats, and db/db mice, repeated treatment of boldine significantly improved the attenuated acetylcholine-induced endothelium-dependent relaxations. The endothelial protective role of boldine correlated with increased nitric oxide levels and reduction of vascular reactive oxygen species via inhibition of the nicotinamide adenine dinucleotide phosphate oxidase subunits, p47 and nicotinamide adenine dinucleotide phosphate oxidase 2, and angiotensin II-induced bone morphogenetic protein-4 oxidative stress cascade with downregulation of angiotensin II type 1 receptor and bone morphogenetic protein-4 expression. Taken together, it seems that boldine may exert protective effects on the endothelium via several mechanisms, including protecting nitric oxide from degradation by reactive oxygen species as in oxidative stress-related diseases. The present review supports a complimentary therapeutic role of the phytochemical, boldine, against endothelial dysfunctions associated with hypertension and diabetes mellitus by interfering with the oxidative stress-mediated signaling pathway.
Collapse
Affiliation(s)
- Yeh Siiang Lau
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
28
|
Vochyánová Z, Bartošová L, Bujdáková V, Fictum P, Husník R, Suchý P, Šmejkal K, Hošek J. Diplacone and mimulone ameliorate dextran sulfate sodium-induced colitis in rats. Fitoterapia 2015; 101:201-7. [PMID: 25623260 DOI: 10.1016/j.fitote.2015.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/14/2015] [Accepted: 01/18/2015] [Indexed: 11/25/2022]
Abstract
Diplacone (1) and mimulone (2), two geranylated flavanones, have previously shown anti-inflammatory and antiradical activity in vitro. The present study aimed to evaluate their activity in vivo on a model of colitis induced in Wistar rats by an oral administration of dextran sulfate sodium (DSS). Diplacone (1) and mimulone (2) were administered at a bolus dose of 25mg/kg by gastric gavage 48 and 24h prior to the induction of colitis by DSS and every 24h on the following days of the experiment. The effect of the treatment was assessed by monitoring the disease activity index (DAI), histopathological examination, evaluation of the weight and length of the colon and by analysis of the levels and activities of cyclooxygenase-2 (COX-2), matrix metalloproteinase-2 (MMP2), superoxide dismutase-2 (SOD2), and catalase (CAT) in the inflamed tissue. Administration of the test compounds prior and after induction of colitis ameliorated the symptoms of colitis (diarrhea, presence of the blood in the stool) and delayed their onset. The ability of compounds 1 and 2 to reduce the levels of COX-2 and to increase the ratio of pro-MMP2/MMP2 activity correlates with the values of the DAI. The lowering of the levels of the antioxidant enzymes SOD2 and CAT reflects the ability of the test compounds to scavenge reactive oxygen species.
Collapse
Affiliation(s)
- Zora Vochyánová
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - Ladislava Bartošová
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - Veronika Bujdáková
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - Petr Fictum
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - Roman Husník
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70808, USA; International Clinical Research Center (ICRC), St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
| | - Pavel Suchý
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - Jan Hošek
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic.
| |
Collapse
|
29
|
Galal MK, Khalaf AAA, Ogaly HA, Ibrahim MA. Vitamin E attenuates neurotoxicity induced by deltamethrin in rats. Altern Ther Health Med 2014; 14:458. [PMID: 25439240 PMCID: PMC4265463 DOI: 10.1186/1472-6882-14-458] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/26/2014] [Indexed: 12/31/2022]
Abstract
Background The safety of Deltamethrin (DM) has been raised as a point of concern. The current investigation was envisaged to explore the responsiveness of oxidative stress parameters, DNA fragmentation and expression levels of TP53, cycloxygenase 2 (COX2) and cytochrome p4502E1 (CYP2E1) as toxicological endpoint in rats treated with DM. as well as attention was provided to the neuroprotective effect of vitamin E (VE). Methods Four different groups of rats were used in this study, group I served as control, group II received DM (0.6 mg/kg BW), group III received both DM plus VE and finally group IV received VE only (200 mg/kg BW). The treatment regimen was extending for one month for all groups and the brain tissues were collected for further analysis. Results The obtained results showed a highly statistically significant increase in lipid peroxidation (LPO) content, nitric oxide concentration, and DNA fragmentation percentage and expression level of CYP2E1, TP53 and COX2 genes, in addition statistical significant reduction in total antioxidant capacity in DM treated group as compared to control were detected. Oral administration of VE attenuated the neurotoxic effects of DM through improvement of oxidative status, DNA fragmentation percentage and suppressing the expression level of CYP2E1, TP53 and COX2 genes. Conclusion From this study we concluded that VE supplementation has beneficial impacts on DM neurotoxicity in rats through its antioxidant and antiapoptotic properties.
Collapse
|
30
|
Ooi TC, Mohammad NH, Sharif R. Zinc carnosine protects against hydrogen peroxide-induced DNA damage in WIL2-NS lymphoblastoid cell line independent of poly (ADP-Ribose) polymerase expression. Biol Trace Elem Res 2014; 162:8-17. [PMID: 25326781 DOI: 10.1007/s12011-014-0153-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/07/2014] [Indexed: 12/13/2022]
Abstract
The aim of this study is to investigate the ability of zinc carnosine to protect the human lymphoblastoid (WIL2-NS) cell line from hydrogen peroxide-induced DNA damage. Cells were cultured with medium containing zinc carnosine at the concentrations of 0.4, 4, 16 and 32 μM for 9 days prior to treatment with 30 μM of hydrogen peroxide (30 min). Zinc carnosine at the concentration 16 μM was optimal in protecting cells from hydrogen peroxide-induced cytotoxicity and gave the lowest percentage of apoptotic and necrotic cells. Results showed that zinc carnosine was able to induce glutathione production and protect cells from hydrogen peroxide-induced oxidative stress at all concentration and the highest protection was observed at 32-μM zinc carnosine culture. Cytokinesis-block micronucleus cytome assay showed that cells cultured with 4-32 μM of zinc carnosine showed significant reduction in micronuclei formation, nucleoplasmic bridges and nuclear bud frequencies (p < 0.05), suggesting that these concentrations maybe optimal in protecting cells from hydrogen peroxide-induced DNA damage. However, after being challenged with hydrogen peroxide, no increase in poly(ADP-ribose) polymerase expression was observed. Thus, results from this study demonstrate that zinc carnosines possess antioxidant properties and are able to reduce hydrogen peroxide-induced DNA damage in vitro independent of poly(ADP-ribose) polymerase. Further studies are warranted to understand the mechanism of protection of zinc carnosine against hydrogen peroxide-induced damage.
Collapse
Affiliation(s)
- Theng Choon Ooi
- Biomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
31
|
|
32
|
Does a sorghum–cowpea composite porridge hold promise for contributing to alleviating oxidative stress? Food Chem 2014; 157:157-66. [DOI: 10.1016/j.foodchem.2014.02.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/19/2013] [Accepted: 02/05/2014] [Indexed: 11/23/2022]
|
33
|
Structure-Function Elucidation of Antioxidative and Prooxidative Activities of the Polyphenolic Compound Curcumin. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/396708] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phenolic compounds have been very well known for their antioxidant properties, owing to their unique ability to act as free radical scavengers which, in turn, is an outstanding attribute of their unique biochemical structure. Recent accumulating lines of evidence inculcate sustainable interest and curiosity towards the chemoprotective nature of the natural polyphenolic compound curcumin (diferuloylmethane) against oxidative stress-mediated disorders. Curcumin is naturally found as a constituent of dietary spices called turmeric, extracted from the plant Curcuma longa. However, like every phenolic antioxidant, curcumin possesses a concentration and medium dependent anti- and pro-oxidant behaviour. A detailed study of the structure-function analysis and the understanding of the mode of action of curcumin as well as its chemical analogues is thus essential to understand the selective biochemical consequences of curcumin. Moreover, the presence of transition metal ions, route of administration, and localized tissue are also the vital decisive factors to determine curcumin behaviour. With this viewpoint, this paper sheds lights on the medium dependent prooxidative and antioxidative attributes of curcumin. Further, with respect to emergence of nanocarriers, a brief discussion focusing on the biochemical effect exertion of curcumin chiefly due to targeted and slow release has also been added towards the end.
Collapse
|
34
|
Kooltheat N, Sranujit RP, Chumark P, Potup P, Laytragoon-Lewin N, Usuwanthim K. An ethyl acetate fraction of Moringa oleifera Lam. Inhibits human macrophage cytokine production induced by cigarette smoke. Nutrients 2014; 6:697-710. [PMID: 24553063 PMCID: PMC3942728 DOI: 10.3390/nu6020697] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/26/2014] [Accepted: 01/29/2014] [Indexed: 12/11/2022] Open
Abstract
Moringa oleifera Lam. (MO) has been reported to harbor anti-oxidation and anti-inflammatory activity and useful in the treatment of inflammatory diseases. However, despite these findings there has been little work done on the effects of MO on immune cellular function. Since macrophages, TNF and related cytokines play an important pathophysiologic role in lung damage induced by cigarette smoke, we examined the effects of MO on cigarette smoke extract (CSE)-induced cytokine production by human macrophages. An ethyl acetate fraction of MO (MOEF) was prepared from fresh leaves extract of Moringa and shown to consist of high levels of phenolic and antioxidant activities. Human monocyte derived macrophages (MDM) pre-treated with varying concentrations of MOEF showed decreased production of TNF, IL-6 and IL-8 in response to both LPS and CSE. The decrease was evident at both cytokine protein and mRNA levels. Furthermore, the extract inhibited the expression of RelA, a gene implicated in the NF-κB p65 signaling in inflammation. The findings highlight the ability of MOEF to inhibit cytokines (IL-8) which promote the infiltration of neutrophils into the lungs and others (TNF, IL-6) which mediate tissue disease and damage.
Collapse
Affiliation(s)
- Nateelak Kooltheat
- Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | | | - Pilaipark Chumark
- Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.
| | - Pachuen Potup
- Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | - Nongnit Laytragoon-Lewin
- Department of Radiology, Oncology and Radiation Science, Faculty of Medicine, Uppsala University, Uppsala 75105, Sweden.
| | - Kanchana Usuwanthim
- Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
35
|
Humic acid and moderate hypoxia alter oxidative and physiological parameters in different tissues of silver catfish (Rhamdia quelen). J Comp Physiol B 2014; 184:469-82. [DOI: 10.1007/s00360-014-0808-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 12/08/2013] [Accepted: 12/17/2013] [Indexed: 12/12/2022]
|
36
|
Allegra M, Ianaro A, Tersigni M, Panza E, Tesoriere L, Livrea MA. Indicaxanthin from cactus pear fruit exerts anti-inflammatory effects in carrageenin-induced rat pleurisy. J Nutr 2014; 144:185-92. [PMID: 24306215 DOI: 10.3945/jn.113.183657] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nutritional research has shifted recently from alleviating nutrient deficiencies to chronic disease prevention. We investigated the activity of indicaxanthin, a bioavailable phytochemical of the betalain class from the edible fruit of Opuntia ficus-indica (L. Miller) in a rat model of acute inflammation. Rat pleurisy was achieved by injection of 0.2 mL of λ-carrageenin in the pleural cavity, and rats were killed 4, 24, and 48 h later; exudates were collected to analyze inflammatory parameters, such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α); cells recruited in pleura were analyzed for cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) expression, and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activation. Indicaxanthin (0.5, 1, or 2 μmol/kg), given orally before carrageenin, time- and dose-dependently, reduced the exudate volume (up to 70%) and the number of leukocytes recruited in the pleural cavity (up to 95%) at 24 h. Pretreatment with indicaxanthin at 2 μmol/kg inhibited the carrageenin-induced release of PGE(2) (91.4%), NO (67.7%), IL-1β (53.6%), and TNF-α (71.1%), and caused a decrease of IL-1β (34.5%), TNF-α (81.6%), iNOS (75.2%), and COX2 (87.7%) mRNA, as well as iNOS (71.9%) and COX-2 (65.9%) protein expression, in the recruited leukocytes. Indicaxanthin inhibited time- and dose- dependently the activation of NF-κB, a key transcription factor in the whole inflammatory cascade. A pharmacokinetic study with a single 2 μmol/kg oral administration showed a maximum 0.22 ± 0.02 μmol/L (n = 15) plasma concentration of indicaxanthin, with a half-life of 1.15 ± 0.11 h. When considering the high bioavailability of indicaxanthin in humans, our findings suggest that this dietary pigment has the potential to improve health and prevent inflammation-based disorders.
Collapse
Affiliation(s)
- Mario Allegra
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Rubió L, Motilva MJ, Romero MP. Recent advances in biologically active compounds in herbs and spices: a review of the most effective antioxidant and anti-inflammatory active principles. Crit Rev Food Sci Nutr 2014; 53:943-53. [PMID: 23768186 DOI: 10.1080/10408398.2011.574802] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spices, like vegetables, fruit, and medicinal herbs, are known to possess a variety of antioxidant effects and other biological activities. Phenolic compounds in these plant materials are closely associated with their antioxidant activity, which is mainly due to their redox properties and their capacity to block the production of reactive oxygen species. More recently, their ability to interfere with signal transduction pathways involving various transcription factors, protein kinases, phosphatases, and other metabolic enzymes has also been demonstrated. Many of the spice-derived compounds which are potent antioxidants are of great interest to biologists and clinicians because they may help protect the human body against oxidative stress and inflammatory processes. It is important to study the bioactive compounds that can modulate target functions related to defence against oxidative stress, and that might be used to achieve health benefits individually. In the present review, an attempt has been made to summarize the most current scientific evidence about the in vitro and in vivo effects of the bioactive compounds derived from herbs and spices, focused on anti-inflammatory and antioxidant effects, in order to provide science-based evidence for the traditional uses and develop either functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Laura Rubió
- Department of Food Technology, XaRTA-UTPV, Escola Tècnica Superior d'Enginyeria Agrària, Universitat de Lleida, Avda/Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | | | | |
Collapse
|
38
|
Hsu PYJ, Yang YW. Gene delivery via the hybrid vector of recombinant adeno-associated virus and polyethylenimine. Eur J Pharm Sci 2013; 52:62-8. [PMID: 24184196 DOI: 10.1016/j.ejps.2013.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/14/2013] [Accepted: 10/17/2013] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate the cellular delivery mechanism of the hybrid vector comprising the recombinant adeno-associated virus (rAAV) and polyethylenimine (PEI). The rAAV vector, rAAV-rIns1-hInsM2-ΔEGFP, was fluorescently labeled with Cy3, a cyanine dye, and complexed with PEI. The interaction of the hybrid vector with the Huh7 hepatoma cells was monitored by confocal microscopy. Complexation of rAAV with PEI enhanced the transduction efficiency, which was decreased by pretreatment of the cells with sodium chlorate, an inhibitor of glycosaminoglycan sulfation, suggesting the roles of heparan sulfate proteoglycans (HSPG) in the uptake of the hybrid vector by the cells. Examination by flow cytometry and confocal microscopy demonstrated an enhanced interaction between the cells and the virus when complexed with PEI. Pretreatment with wortmannin or cytochalasin B significantly reduced the virus uptake by the cells, suggesting the involvement of phosphatidylinositol 3-kinase (PI3K) signaling and phagocytosis in the interaction between the cells and the hybrid vectors. Treatment of cells with the antioxidants, including l-ascorbic acid, δ-tocotrienol, or N-acetylcysteine (NAC), impaired the rAAV-PEI-mediated transduction. Results obtained in this study illustrated the involvement of PI3K/Akt signaling and the ROS production in gene delivery via the rAAV-PEI hybrid vector.
Collapse
Affiliation(s)
- Paul Y-J Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, 1, Jen-Ai Road, Section 1, Taipei 10051, Taiwan
| | - Ya-Wun Yang
- School of Pharmacy, College of Medicine, National Taiwan University, 1, Jen-Ai Road, Section 1, Taipei 10051, Taiwan.
| |
Collapse
|
39
|
Biasi F, Guina T, Maina M, Cabboi B, Deiana M, Tuberoso CI, Calfapietra S, Chiarpotto E, Sottero B, Gamba P, Gargiulo S, Brunetto V, Testa G, Dessì MA, Poli G, Leonarduzzi G. Phenolic compounds present in Sardinian wine extracts protect against the production of inflammatory cytokines induced by oxysterols in CaCo-2 human enterocyte-like cells. Biochem Pharmacol 2013; 86:138-45. [DOI: 10.1016/j.bcp.2013.03.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 11/28/2022]
|
40
|
Perche O, Vergnaud-Gauduchon J, Morand C, Dubray C, Mazur A, Vasson MP. Orange juice and its major polyphenol hesperidin consumption do not induce immunomodulation in healthy well-nourished humans. Clin Nutr 2013; 33:130-5. [PMID: 23602614 DOI: 10.1016/j.clnu.2013.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND & AIMS Polyphenols exert a variety of biological properties, including antioxidant, immunomodulatory and antigenotoxic effects. In a randomized crossover study in healthy men, we investigated the effects of orange juice and its major polyphenolic compound hesperidin on a panel of immune cell functions, including cytokine secretion by leukocytes, lytic activity of NK cells, and the Reactive Oxygen Species (ROS) burst by polymorphonuclear neutrophil cells (PMN). METHODS The protocol design was divided into three 4-week treatment periods separated by 3-week wash-out intervals, for total study duration of 18 weeks. During treatment periods, volunteers (n = 24) consumed daily 500 mL of orange juice, or an isocaloric control beverage with hesperidin (292 mg in a capsule), or of the same control beverage with a placebo. RESULTS Whatever the intake was, no variations were recorded on leukocyte subset distributions (PMN, B and T lymphocytes, NK cells and monocytes), ROS production by stimulated PMNs, lytic activity of NK cells or cytokine production capacity of leukocytes in well-nourished healthy volunteers. CONCLUSIONS We show that consumption within the usual daily intake range of orange juice and its major polyphenol hesperidin do not induce immunomodulation of cell immune function in healthy well-nourished humans.
Collapse
Affiliation(s)
- Olivier Perche
- Clermont Université, Université d'Auvergne, UMR 1019, Unité de Nutrition Humaine, CRNH-Auvergne, CLARA, BP 10448, F-63000 Clermont-Ferrand, France
| | - Juliette Vergnaud-Gauduchon
- Clermont Université, Université d'Auvergne, UMR 1019, Unité de Nutrition Humaine, CRNH-Auvergne, CLARA, BP 10448, F-63000 Clermont-Ferrand, France
| | - Christine Morand
- Centre de recherche INRA, UMR 1019 INRA Université d'Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand Theix, France
| | - Claude Dubray
- CHU Clermont-Ferrand, Centre de Pharmacologie Clinique, Inserm, CIC 501, Univ Clermont 1, Faculté de Médecine, F-63001 Clermont-Ferrand, France
| | - Andrzej Mazur
- Centre de recherche INRA, UMR 1019 INRA Université d'Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand Theix, France
| | - Marie-Paule Vasson
- Centre anticancéreux Jean-Perrin, CHU, Unité de Nutrition, CLARA, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
41
|
Salama EEA, Ali AHA, Aldahmash AM, Makarem SMAE, Ghamrawy TAE, Aboulhassan GM, Alkhalidi H, Mubarak M. The Role of Vitamin E in Cerebral Hypoxia: An Ultrastructural Study. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ss.2013.41018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Phytochemical indicaxanthin suppresses 7-ketocholesterol-induced THP-1 cell apoptosis by preventing cytosolic Ca(2+) increase and oxidative stress. Br J Nutr 2012; 110:230-40. [PMID: 23228674 DOI: 10.1017/s000711451200493x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
7-Ketocholesterol (7-KC)-induced apoptosis of macrophages is considered a key event in the development of human atheromas. In the present study, the effect of indicaxanthin (Ind), a bioactive pigment from cactus pear fruit, on 7-KC-induced apoptosis of human monocyte/macrophage THP-1 cells was investigated. A pathophysiological condition was simulated by using amounts of 7-KC that can be reached in human atheromatous plaque. Ind was assayed within a micromolar concentration range, consistent with its plasma level after dietary supplementation with cactus pear fruit. Pro-apoptotic effects of 7-KC were assessed by cell cycle arrest, exposure of phosphatidylserine at the plasma membrane, variation of nuclear morphology, decrease of mitochondrial trans-membrane potential, activation of Bcl-2 antagonist of cell death and poly(ADP-ribose) polymerase-1 cleavage. Kinetic measurements within 24 h showed early formation of intracellular reactive oxygen species over basal levels, preceding NADPH oxidase-4 (NOX-4) over-expression and elevation of cytosolic Ca²⁺, with progressive depletion of total thiols. 7-KC-dependent activation of the redox-sensitive NF-κB was observed. Co-incubation of 2·5 μm of Ind completely prevented 7-KC-induced pro-apoptotic events. The effects of Ind may be ascribed to inhibition of NOX-4 basal activity and over-expression, inhibition of NF-κB activation, maintaining cell redox balance and Ca homeostasis, with prevention of mitochondrial damage and consequently apoptosis. The findings suggest that Ind, a highly bioavailable dietary phytochemical, may exert protective effects against atherogenetic toxicity of 7-KC at a concentration of nutritional interest.
Collapse
|
43
|
Vera-Ramirez L, Ramirez-Tortosa MC, Perez-Lopez P, Granados-Principal S, Battino M, Quiles JL. Long-term effects of systemic cancer treatment on DNA oxidative damage: The potential for targeted therapies. Cancer Lett 2012; 327:134-41. [DOI: 10.1016/j.canlet.2011.12.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 01/10/2023]
|
44
|
Ludke AR, Sharma AK, Akolkar G, Bajpai G, Singal PK. Downregulation of vitamin C transporter SVCT-2 in doxorubicin-induced cardiomyocyte injury. Am J Physiol Cell Physiol 2012; 303:C645-53. [DOI: 10.1152/ajpcell.00186.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vitamin C (Vit C) has been shown to be protective against doxorubicin (Dox)-induced cardiotoxicity. However, Vit C uptake into cardiomyocytes is poorly understood. Furthermore, whether the antioxidant enzyme reserve is enhanced by Vit C is also not known. The present study investigated an influence of Dox on Vit C transporters, expression of endogenous antioxidant reserve as well as enzymes, oxidative stress, and apoptosis in isolated cardiomyocytes. Cardiomyocytes isolated from adult Sprague-Dawley rats were exposed to control (culture medium 199 alone), Dox (10 μM), Vit C (25 μM), and Vit C + Dox for 24 h. Vit C transporter expression and localization, oxidative stress, antioxidant enzymes, and apoptosis were studied. Expression and localization of sodium-dependent vitamin C transporter-2 (SVCT-2) in the sarcolemma was reduced by Dox, but Vit C supplementation was able to blunt this change. There was a decrease in the expression of antioxidant enzymes glutathione peroxidase (GPx), catalase, and Cu/Zn superoxide dismutase (SOD) due to Dox, but only GPx expression was completely prevented and Cu/Zn SOD was partially rescued by Vit C. Dox-induced decrease in antioxidant reserve and increase in oxidative stress were partially mitigated by Vit C. Dox-induced apoptosis was ameliorated by Vit C. It is suggested that cardioprotection offered by Vit C in Dox-induced cardiomyopathy may involve an upregulation of SVCT-2 transporter followed by a reduction in oxidative stress as well as blunting of cardiomyocyte injury.
Collapse
Affiliation(s)
- Ana R. Ludke
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anita K. Sharma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gauri Akolkar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gunjan Bajpai
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pawan K. Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
45
|
Montenegro L, Ottimo S, Puglisi G, Castelli F, Sarpietro MG. Idebenone Loaded Solid Lipid Nanoparticles Interact with Biomembrane Models: Calorimetric Evidence. Mol Pharm 2012; 9:2534-41. [DOI: 10.1021/mp300149w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucia Montenegro
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| | - Sara Ottimo
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| | - Giovanni Puglisi
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| | - Francesco Castelli
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| | - Maria Grazia Sarpietro
- Department
of Drug Sciences, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
46
|
Stereospecific antioxidant effects of ginsenoside Rg3 on oxidative stress induced by cyclophosphamide in mice. Fitoterapia 2012; 83:636-42. [DOI: 10.1016/j.fitote.2012.01.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/12/2012] [Accepted: 01/14/2012] [Indexed: 02/03/2023]
|
47
|
Qian Y, Guan T, Huang M, Cao L, Li Y, Cheng H, Jin H, Yu D. Neuroprotection by the soy isoflavone, genistein, via inhibition of mitochondria-dependent apoptosis pathways and reactive oxygen induced-NF-κB activation in a cerebral ischemia mouse model. Neurochem Int 2012; 60:759-67. [PMID: 22490611 DOI: 10.1016/j.neuint.2012.03.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/08/2012] [Accepted: 03/19/2012] [Indexed: 01/08/2023]
Abstract
Recently, the treatment of stroke has focused on antioxidant therapies, where oxidative stress is implicated. The preventive and therapeutic potential of plant compounds on ischemic stroke has been intensively studied because many of them contain antioxidant properties. Genistein, one of the active ingredients in soybean, possesses many bioactivities. In this study, we investigated the potential neuroprotective effects of genistein and its possible mechanism of action in a cerebral ischemia mouse model. Mice were pretreated with genistein (2.5, 5, and 10mg/kg) or vehicle orally once daily for 14 consecutive days before transient middle cerebral artery occlusion was performed. Genistein at doses of 2.5-10mg/kg significantly reduced the infarct volume, improved the neurological deficit and prevented cell apoptosis after ischemia. In addition, genistein pretreatment was shown to inhibit the ischemia-induced reactive oxygen species (ROS) production, enhance the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx), and decrease levels of malondialdehyde (MDA) in stroke mice. Moreover, genistein reversed the mitochondria dysfunction after ischemia, as evidenced by decreasing mitochondria ROS levels, preventing cytochrome C release to the cytoplasm and inhibiting caspase-3 activation. Western blotting showed ischemia activated the ROS-dependent nuclear factor-κB (NF-κB) signaling pathway, and genistein suppressed phosphorylation and activation of the NF-κB p65 subunit, as well as the phosphorylation and degradation of the inhibitor protein of κBα (IκBα). Our findings suggested that genistein has a neuroprotective effect in transient focal ischemia, which may involve regulation of mitochondria-dependent apoptosis pathways and suppression of ROS-induced NF-κB activation.
Collapse
Affiliation(s)
- Yisong Qian
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Núñez B, Vargas R, Castillo I, Videla LA. Colloidal carbon stimulation of Kupffer cells triggers Nrf2 activation in the isolated perfused rat liver. J Mol Histol 2012; 43:343-9. [PMID: 22461194 DOI: 10.1007/s10735-012-9403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/11/2012] [Indexed: 11/30/2022]
Abstract
Activation of transcription factor Nrf2 was investigated in the isolated perfused rat liver infused with 0.5 mg of colloidal carbon (CC)/ml for 5-15 min to stimulated Kupffer cell function. Infusion of CC enhanced liver O(2) consumption over basal levels, with a time-dependent increase in CC-induced O(2) uptake, at constant rates of CC phagocytosis by Kupffer cells, as assessed histologically, and adequate viability conditions of the livers, as shown by the marginal (0.34 %) total sinusoidal lactate dehydrogenase (LDH) efflux over intrahepatic LDH activity. Under these conditions, cytosolic protein levels of Nrf2 (Western blot) and inhibitor of Nrf2 Keap1 progressively declined by CC infusion, those of nuclear Nrf2 increased, leading to enhancement in the nuclear/cytosolic Nrf2 ratios. It is concluded that the respiratory burst of CC-stimulated Kupffer cells triggers Nrf2 activation in the perfused liver, a response that may afford cellular protection under pro-oxidant conditions underlying Kupffer cell stimulation.
Collapse
Affiliation(s)
- Bárbara Núñez
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | |
Collapse
|
49
|
Barros MP, Marin DP, Bolin AP, de Cássia Santos Macedo R, Campoio TR, Fineto C, Guerra BA, Polotow TG, Vardaris C, Mattei R, Otton R. Combined astaxanthin and fish oil supplementation improves glutathione-based redox balance in rat plasma and neutrophils. Chem Biol Interact 2012; 197:58-67. [PMID: 22465178 DOI: 10.1016/j.cbi.2012.03.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 12/30/2022]
Abstract
The present study aimed to investigate the effects of daily (45 days) intake of fish oil (FO; 10mg EPA/kg body weight (BW) and 7 mg DHA/kg BW) and/or natural ASTA (1mg ASTA/kg BW) on oxidative stress and functional indexes of neutrophils isolated from Wistar rats by monitoring superoxide (O(2)(-)), hydrogen peroxide (H(2)O(2)), and nitric oxide (NO()) production compared to the progression of auto-induced lipid peroxidation and Ca(2+) release in activated neutrophils. Furthermore, phagocytic capacity, antioxidant enzyme activities, glutathione-recycling system, and biomarkers of lipid and protein oxidation in neutrophils were compared to the redox status. Our results show evidence of the beneficial effects of FO+ASTA supplementation for immune competence based on the redox balance in plasma (significant increase in GSH-dependent reducing power), non-activated neutrophils (increased activity of the glutathione-recycling enzymes GPx and GR) and PMA-activated neutrophils (lower O(2)(-), H(2)O(2), and NO() generation, reduced membrane oxidation, but higher phagocytic activity). Combined application of ASTA and FO promoted hypolipidemic/hypocholesterolemic effects in plasma and resulted in increased phagocytic activity of activated neutrophils when compared with ASTA or FO applied alone. In PMA-activated neutrophils, ASTA was superior to FO in exerting antioxidant effects. The bulk of data reinforces the hypothesis that habitual consumption of marine fish (e.g. salmon, which is a natural source of both astaxanthin and fish oil) is beneficial to human health, in particular by improving immune response and lowering the risk of vascular and infectious diseases.
Collapse
Affiliation(s)
- Marcelo Paes Barros
- Human Movement Sciences, Institute of Physical Activity and Sport Sciences (ICAFE), Universidade Cruzeiro do Sul, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Galgani JE, Núñez B, Videla LA. Vanillin suppresses Kupffer cell-related colloidal carbon-induced respiratory burst activity in isolated perfused rat liver: anti-inflammatory implications. Food Funct 2012; 3:1319-23. [DOI: 10.1039/c2fo30150d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|