1
|
Ruan H, Li SS, Zhang Q, Ran X. Elevated MMP-8 levels, inversely associated with BMI, predict mortality in mechanically ventilated patients: an observational multicenter study. Crit Care 2023; 27:290. [PMID: 37464428 PMCID: PMC10355076 DOI: 10.1186/s13054-023-04579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND The present study aimed to investigate the correlation between weight status and mortality in mechanically ventilated patients and explore the potential mediators. METHODS Three medical centers encompassing 3301 critically ill patients receiving mechanical ventilation were assembled for retrospective analysis to compare mortality across various weight categories of patients using machine learning algorithms. Bioinformatics analysis identified genes exhibiting differential expression among distinct weight categories. A prospective study was then conducted on a distinct cohort of 50 healthy individuals and 193 other mechanically ventilated patients. The expression levels of the genes identified through bioinformatics analysis were quantified through enzyme-linked immunosorbent assay (ELISA). RESULTS The retrospective analysis revealed that overweight individuals had a lower mortality rate than underweight individuals, and body mass index (BMI) was an independent protective factor. Bioinformatics analysis identified matrix metalloproteinase 8 (MMP-8) as a differentially expressed gene between overweight and underweight populations. The results of further prospective studies showed that overweight patients had significantly lower MMP-8 levels than underweight patients ((3.717 (2.628, 4.191) vs. 2.763 (1.923, 3.753), ng/ml, P = 0.002). High MMP-8 levels were associated with increased mortality risk (OR = 4.249, P = 0.005), indicating that elevated level of MMP-8 predicts the mortality risk of underweight patients receiving mechanical ventilation. CONCLUSIONS This study provides evidence for a protective effect of obesity in mechanically ventilated patients and highlights the potential role of MMP-8 level as a biomarker for predicting mortality risk in this population.
Collapse
Affiliation(s)
- Hang Ruan
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Sheng Li
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, China.
| | - Xiao Ran
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Smith AB, Jung M, Pressler SJ, Mocci E, Dorsey SG. Differential Gene Expression Among Patients With Heart Failure Experiencing Pain. Nurs Res 2023; 72:175-184. [PMID: 36920122 PMCID: PMC10121868 DOI: 10.1097/nnr.0000000000000648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND Chronic pain is frequently experienced by patients with heart failure (HF) and is associated with higher mortality, higher symptom burden, and worsened health-related quality of life. However, the genomic mechanisms underlying chronic pain in HF are understudied. Building an understanding of the mechanistic underpinnings of pain may inform novel interventions. OBJECTIVE The objective was to identify genes associated with pain from messenger RNA sequence data collected from patients with HF with and without pain. METHODS The current study analyzed data from 40 patients with HF previously enrolled in a clinical trial. Pain presence was measured using the Health Utilities Index Mark-3. Genes were tested for differential expression using DESeq2, and differentially expressed genes were analyzed for protein-protein interaction (PPI) and relevant ontological pathways using Metascape. Genes located within the core of the PPI network were considered key in disease-relevant biological pathways. Differentially expressed genes within this PPI network were reviewed in existing literature to narrow down candidate genes of interest. These target genes of interest were reanalyzed in a second sample of 24 patients with HF using validation quantitative polymerase chain reaction. RESULTS A total of 334 genes (279 upregulated, 55 downregulated) were differentially expressed between patients with and without pain in the primary sample of 40. These genes were largely aligned with neutrophil degranulation pathways. Seven genes of interest were identified from a core network of 15 co-expressed genes in the PPI network and existing literature. Three of these seven genes, matrix metallopeptidase 8 ( MMP8 ), proprotein convertase subtilisin/kexin type 9 ( PCSK9 ), and neutrophil defensin 3 ( DEFA3 ), were upregulated in patients with pain versus without pain in both the primary and validation samples. All seven genes of interest are involved in immune, inflammatory, and atherosclerotic processes. DISCUSSION These results identify potential genes that may play a mechanistic role in chronic pain in HF. Further research is needed to evaluate these potential genes among clearly delineated pain phenotypes.
Collapse
|
3
|
Maghajothi S, Subramanian L, Mani P, Singh M, Iyer DR, Sharma S, Khullar M, Victor SM, Asthana S, Mullasari AS, Mahapatra NR. A common Matrix metalloproteinase 8 promoter haplotype enhances the risk for hypertension via diminished interactions with nuclear factor kappa B. J Hypertens 2022; 40:2147-2160. [PMID: 36040233 DOI: 10.1097/hjh.0000000000003234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Matrix metalloproteinase 8 (MMP8) has a prominent role in collagen turnover in blood vessels and vascular remodeling. The contribution of regulatory single nucleotide polymorphisms in MMP8 to cardiovascular diseases is unclear. We aimed to delineate the influence of MMP8 promoter variations on hypertension. METHODS A case-control study in unrelated individuals ( n = 2565) was carried out. Resequencing of the MMP8 proximal promoter, linkage disequilibrium analysis, genotyping of variants and regression analyses were performed. MMP8 promoter-reporter constructs were generated and expressed in human vascular endothelial cells under various conditions. RESULTS We identified four single nucleotide polymorphisms (SNPs) in the promoter region of MMP8 : -1089A/G (rs17099452), -815G/T (rs17099451), -795C/T (rs11225395), -763A/T (rs35308160); these SNPs form three major haplotypes. Hap3 (viz., GTTT haplotype) carriers showed significant associations with hypertension in two geographically distinct human populations (e.g., Chennai: odds ratio [OR] = 1.47, 95% confidence interval [CI] = 1.16-1.86, P = 2 × 10 -3 ; Chandigarh: OR = 1.85, 95% CI = 1.21-2.81, P = 4 × 10 -3 ). Hap3 carriers also displayed elevated systolic blood pressure, diastolic blood pressure and mean arterial pressure levels. Hap3 promoter-reporter construct showed lower promoter activity than the wild-type (Hap1) construct. In silico analysis and molecular dynamics studies predicted diminished binding of the transcription factor nuclear factor kappa B (NF-κB) to the functional -815T allele of Hap3 compared to the -815G wild-type allele; this prediction was validated by in-vitro experiments. Hap3 displayed impaired response to tumor necrosis factor-alpha treatment, possibly due to weaker binding of NF-κB. Notably, MMP8 promoter haplotypes were identified as independent predictors of plasma MMP8 and endothelial dysfunction markers (von Willebrand factor and endothelin-1) levels. CONCLUSION MMP8 promoter GTTT haplotype has a functional role in reducing MMP8 expression during inflammation via diminished interaction with NF-κB and in enhancing the risk of hypertension.
Collapse
Affiliation(s)
- Sakthisree Maghajothi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai
| | - Lakshmi Subramanian
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai
| | - Preethi Mani
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai
| | - Mrityunjay Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana
| | - Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai
| | - Saurabh Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Suma M Victor
- Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana
| | - Ajit S Mullasari
- Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai
| |
Collapse
|
4
|
Targeted Inhibition of Matrix Metalloproteinase-8 Prevents Aortic Dissection in a Murine Model. Cells 2022; 11:cells11203218. [PMID: 36291087 PMCID: PMC9600539 DOI: 10.3390/cells11203218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Aortic dissection (AD) is a lethal aortic pathology without effective medical treatments since the underlying pathological mechanisms responsible for AD remain elusive. Matrix metalloproteinase-8 (MMP8) has been previously identified as a key player in atherosclerosis and arterial remodeling. However, the functional role of MMP8 in AD remains largely unknown. Here, we report that an increased level of MMP8 was observed in 3-aminopropionitrile fumarate (BAPN)-induced murine AD. AD incidence and aortic elastin fragmentation were markedly reduced in MMP8-knockout mice. Importantly, pharmacologic inhibition of MMP8 significantly reduced the AD incidence and aortic elastin fragmentation. We observed less inflammatory cell accumulation, a lower level of aortic inflammation, and decreased smooth muscle cell (SMC) apoptosis in MMP8-knockout mice. In line with our previous observation that MMP8 cleaves Ang I to generate Ang II, BAPN-treated MMP8-knockout mice had increased levels of Ang I, but decreased levels of Ang II and lower blood pressure. Additionally, we observed a decreased expression level of vascular cell adhesion molecule-1 (VCAM1) and a reduced level of reactive oxygen species (ROS) in MMP8-knockout aortas. Mechanistically, our data show that the Ang II/VCAM1 signal axis is responsible for MMP8-mediated inflammatory cell invasion and transendothelial migration, while MMP8-mediated SMC inflammation and apoptosis are attributed to Ang II/ROS signaling. Finally, we observed higher levels of aortic and serum MMP8 in patients with AD. We therefore provide new insights into the molecular mechanisms underlying AD and identify MMP8 as a potential therapeutic target for this life-threatening aortic disease.
Collapse
|
5
|
Amabebe E, Ogidi H, Anumba DO. Matrix metalloproteinase-induced cervical extracellular matrix remodelling in pregnancy and cervical cancer. REPRODUCTION AND FERTILITY 2022; 3:R177-R191. [PMID: 37931406 PMCID: PMC9422233 DOI: 10.1530/raf-22-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract The phenomenal extracellular matrix (ECM) remodelling of the cervix that precedes the myometrial contraction of labour at term or preterm appears to share some common mechanisms with the occurrence, growth, invasion and metastasis of cervical carcinoma. Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are pivotal to the complex extracellular tissue modulation that includes degradation, remodelling and exchange of ECM components, which contribute to homeostasis under normal physiological conditions such as cervical remodelling during pregnancy and puerperium. However, in cancer such as that of the uterine cervix, this extensive network of extracellular tissue modulation is altered leading to disrupted cell-cell and cell-basement membrane adhesion, abnormal tissue growth, neovascularization and metastasis that disrupt homeostasis. Cervical ECM remodelling during pregnancy and puerperium could be a physiological albeit benign neoplasm. In this review, we examined the pathophysiologic differences and similarities in the role of MMPs in cervical remodelling and cervical carcinoma. Lay summary During pregnancy and childbirth, the cervix, which is the barrel-shaped lower portion of the womb that connects to the vagina, gradually softens, shortens and opens to allow birth of the baby. This process requires structural and biochemical changes in the cervix that are stimulated by enzymes known as matrix metalloproteinases. Interestingly, these enzymes also affect the structural and biochemical framework of the cervix during cervical cancer, although cervical cancers usually occur after infection by human papillomavirus. This review is intended to identify and explain the similarities and differences between the structural and chemical changes in the cervix during pregnancy and childbirth and the changes seen in cervical cancer.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Henry Ogidi
- Department of Obstetrics and Gynaecology, Glan Clwyd Hospital North Wales, Gwynedd, UK
| | - Dilly O Anumba
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Zhang N, Aiyasiding X, Li WJ, Liao HH, Tang QZ. Neutrophil degranulation and myocardial infarction. Cell Commun Signal 2022; 20:50. [PMID: 35410418 PMCID: PMC8996539 DOI: 10.1186/s12964-022-00824-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022] Open
Abstract
Myocardial infarction (MI) is one of the most common cardiac emergencies with high morbidity and is a leading cause of death worldwide. Since MI could develop into a life-threatening emergency and could also seriously affect the life quality of patients, continuous efforts have been made to create an effective strategy to prevent the occurrence of MI and reduce MI-related mortality. Numerous studies have confirmed that neutrophils play important roles in inflammation and innate immunity, which provide the first line of defense against microorganisms by producing inflammatory cytokines and chemokines, releasing reactive oxygen species, and degranulating components of neutrophil cytoplasmic granules to kill pathogens. Recently, researchers reported that neutrophils are closely related to the severity and prognosis of patients with MI, and neutrophil to lymphocyte ratio in post-MI patients had predictive value for major adverse cardiac events. Neutrophils have been increasingly recognized to exert important functions in MI. Especially, granule proteins released by neutrophil degranulation after neutrophil activation have been suggested to involve in the process of MI. This article reviewed the current research progress of neutrophil granules in MI and discusses neutrophil degranulation associated diagnosis and treatment strategies. Video abstract
Collapse
Affiliation(s)
- Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Xiahenazi Aiyasiding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wen-Jing Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
7
|
Luchian I, Goriuc A, Sandu D, Covasa M. The Role of Matrix Metalloproteinases (MMP-8, MMP-9, MMP-13) in Periodontal and Peri-Implant Pathological Processes. Int J Mol Sci 2022; 23:1806. [PMID: 35163727 PMCID: PMC8837018 DOI: 10.3390/ijms23031806] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Severe periodontitis, a destructive inflammatory disease of the supporting tissues of the teeth, ranks sixth in terms of global spread, affecting about 11% of the population. Metalloproteinases (MMPs) are extracellular matrix (ECM) macromolecules that are important in cellular development and morphogenesis, and they are capable of activating growth factors in their proximity, cell surface receptors, and adhesion molecules. MMPs are part of a major family of zinc-dependent endopeptidases, and their activity is modulated and regulated by certain inhibitors known as tissue metalloproteinase inhibitors (TIMPs). Because type I collagen is the major component of the periodontal extracellular matrix, special attention has been paid to the role of collagenases, especially MMP-8 and MMP-13 and gelatinases, MMP-2 and MMP-9, in periodontal diseases. In fact, MMP-8 (or collagenase 2) is currently one of the most promising biomarkers for periodontitis in oral fluids. Among them, salivary MMP-9 has been shown to be a more sensitive marker for periodontal inflammation during orthodontic treatment, which opens new perspectives in reducing periodontal hazards during such treatments. Both MMP-8 and MMP-9 are extremely valuable diagnostic tools in treating periodontitis, and future studies and healthcare policies should focus on implementing more accessible methods of chairside testing in order to reduce the prevalence of this disease.
Collapse
Affiliation(s)
- Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (I.L.); (D.S.)
| | - Ancuta Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Darius Sandu
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (I.L.); (D.S.)
| | - Mihai Covasa
- College of Medicine and Biological Sciences, University “Stefan cel Mare” Suceava, 13 Universității Street, 720229 Suceava, Romania;
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, 309E Second Street, Pomona, CA 91766, USA
| |
Collapse
|
8
|
Sun Y, Wu Y, Jiang Y, Liu H. Aerobic exercise inhibits inflammatory response in atherosclerosis via Sestrin1 protein. Exp Gerontol 2021; 155:111581. [PMID: 34634412 DOI: 10.1016/j.exger.2021.111581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/02/2023]
Abstract
Aerobic exercise plays an important role in prevention and treatment of atherosclerosis. Inflammatory response is the main pathological process during occurrence and development stage of atherosclerosis. SESNs are considered as anti-inflammation protein in atherosclerosis. In current study, a high expression level of SESN1 is identified under the condition of aerobic exercise, further investigation shows levels of IL-1β/IL-6/TNF-α are significantly suppressed compared to those atherosclerosis mice with no aerobic training. Besides, we find that the activation of NF-κB signaling is impeded. Combine with our previous study, SESN1 is considered as the downstream factor of aerobic exercise which tend to inhibit the activation of inflammatory signaling and results in suppressing the expression level of inflammatory factors. Another exciting finding is that MMP9/13 are also suppressed,but the potential mechanism is unclear. Overall, present study sheds light on the significance of aerobic exercise for inflammation and stability of plaque through SESN1 may help developing new clinical treatments of atherosclerosis.
Collapse
Affiliation(s)
- Yunfeng Sun
- Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi City, XinJiang Province, China
| | - Yawei Wu
- Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi City, XinJiang Province, China
| | - Yingping Jiang
- Guangdong Second Provincial General Hospital, Guangzhou City, Guangdong Province, China.
| | - Hao Liu
- Guangdong Second Provincial General Hospital, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
9
|
Wang J, Wang Y, Sheng L, He T, Nin X, Xue A, Zhang H, Liu Z. High fluid shear stress prevents atherosclerotic plaque formation by promoting endothelium denudation and synthetic phenotype of vascular smooth muscle cells. Mol Med Rep 2021; 24:577. [PMID: 34132364 PMCID: PMC8223103 DOI: 10.3892/mmr.2021.12216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/25/2021] [Indexed: 11/05/2022] Open
Abstract
Low blood fluid shear stress (SS) promotes vascular remodeling and atherosclerosis; however, the effects of high (H)SS on vascular remodeling and atherogenesis is not fully clarified. The major goal of this study was to investigate the role of HSS in atherosclerotic plaque formation. A perivascular SS modifier was implanted in the right carotid artery of apolipoprotein E (ApoE)−/− mice to induce HSS, whereas the left carotid artery represented undisturbed (U)SS as a control in vivo. In vitro modeling used human umbilical vein endothelial cells and vascular smooth muscle cells exposed to HSS (2.5 Pa) using a parallel-plate flow system. The results demonstrated that there were no plaque formations or endothelial cells in the HSS regions of the carotid artery in ApoE−/− mice. The number of umbilical vein endothelial cells was markedly decreased in a time-dependent manner in HSS. HSS significantly decreased α-smooth muscle actin and increased osteopontin protein expression levels compared with USS in vascular smooth muscle cells (P<0.05). In addition, HSS significantly increased the protein expression levels of collagen α1(XVIII) chain/endostatin and matrix metalloproteinase-8 in vascular smooth muscle cells. These data indicated that HSS may prevent atherosclerotic plaque formation through endothelium denudation and contractile-to-synthetic phenotypic conversion of smooth muscle cells.
Collapse
Affiliation(s)
- Juan Wang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yan Wang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lin Sheng
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Tian He
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiang Nin
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Aiying Xue
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Hua Zhang
- Cardio‑Cerebrovascular Control and Research Center, Basic Medical College, Shandong First Medical University, Jinan, Shandong 250062, P.R. China
| | - Zhendong Liu
- Cardio‑Cerebrovascular Control and Research Center, Basic Medical College, Shandong First Medical University, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
10
|
Yang F, Chen Q, Yang M, Maguire EM, Yu X, He S, Xiao R, Wang CS, An W, Wu W, Zhou Y, Xiao Q, Zhang L. Macrophage-derived MMP-8 determines smooth muscle cell differentiation from adventitia stem/progenitor cells and promotes neointima hyperplasia. Cardiovasc Res 2020; 116:211-225. [PMID: 30778537 DOI: 10.1093/cvr/cvz044] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/17/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS Emerging evidence has suggested that adventitia stem/progenitor cells (AdSPCs) migrate into the intima of arteries in response to injury, where they differentiate towards smooth muscle cells (SMCs) and participate in neointimal hyperplasia. We have previously identified matrix metalloproteinase-8 (MMP8) as a key player in atherogenesis. In this study, we aimed to investigate the functional roles of macrophage-derived MMP8 in AdSPC differentiation and injury-induced arterial remodelling. METHODS AND RESULTS We first observed an important role for MMP8 in SMC differentiation from embryonic stem cells, but this effect was not seen in AdSPCs. Instead, through macrophages/AdSPCs co-culture and macrophage conditional culture medium studies, we have demonstrated that the MMP8 protein secreted from macrophages promotes SMC differentiation from AdSPCs. Mechanistically, we showed that macrophage-derived MMP8 promotes SMC differentiation from AdSPCs through modulating transforming growth factor-β activity and a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10)/Notch1 signalling. We further demonstrated that the binding site for CBF1, Suppressor of Hairless, and Lag-1 (CSL) within SMC gene promoters is responsible for Notch1 mediated SMC differentiation. Finally, we demonstrated that macrophage-derived MMP8 increased injury-induced neointimal SMC hyperplasia by activating ADAM10/Notch1 signalling. CONCLUSIONS We have identified macrophage-derived MMP8 as a regulator in SMC differentiation from AdSPCs and neointimal SMC hyperplasia in response to injury. Our data provide new insights into the roles of MMP8 in AdSPC differentiation and the pathogenesis of neointima formation in the context of angiographic restenosis, and therefore may aid in the development of novel therapeutic agents for the prevention of this disease.
Collapse
Affiliation(s)
- Feng Yang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qishan Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Mei Yang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Eithne Margaret Maguire
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Xiaotian Yu
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Shiping He
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Rui Xiao
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Claire S Wang
- Gonville & Caius College, University of Cambridge, Trinity Street, Cambridge, CB2 1TA, UK
| | - Weiwei An
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Wei Wu
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Yijiang Zhou
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China
| | - Qingzhong Xiao
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.,Key Laboratory of Cardiovascular Diseases, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong, 511436, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong, 511436, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
11
|
Morla S, Desai UR. Discovery of Sulfated Small Molecule Inhibitors of Matrix Metalloproteinase-8. Biomolecules 2020; 10:biom10081166. [PMID: 32784891 PMCID: PMC7465109 DOI: 10.3390/biom10081166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022] Open
Abstract
Elevated matrix metalloproteinase-8 (MMP-8) activity contributes to the etiology of many diseases, including atherosclerosis, pulmonary fibrosis, and sepsis. Yet, very few small molecule inhibitors of MMP-8 have been identified. We reasoned that the synthetic non-sugar mimetics of glycosaminoglycans may inhibit MMP-8 because natural glycosaminoglycans are known to modulate the functions of various MMPs. The screening a library of 58 synthetic, sulfated mimetics consisting of a dozen scaffolds led to the identification of only two scaffolds, including sulfated benzofurans and sulfated quinazolinones, as promising inhibitors of MMP-8. Interestingly, the sulfated quinazolinones displayed full antagonism of MMP-8 and sulfated benzofuran appeared to show partial antagonism. Of the two, sulfated quinazolinones exhibited a >10-fold selectivity for MMP-8 over MMP-9, a closely related metalloproteinase. Molecular modeling suggested the plausible occupancy of the S1′ pocket on MMP-8 as the distinguishing feature of the interaction. Overall, this work provides the first proof that the sulfated mimetics of glycosaminoglycans could lead to potent, selective, and catalytic activity-tunable, small molecular inhibitors of MMP-8.
Collapse
Affiliation(s)
- Shravan Morla
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Drug Discovery and Development, Institute for Structural Biology, Virginia Commonwealth University, Richmond 23219, VA, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Drug Discovery and Development, Institute for Structural Biology, Virginia Commonwealth University, Richmond 23219, VA, USA
- Correspondence: ; Tel.: +804-828-7575; Fax: +804-827-3664
| |
Collapse
|
12
|
Wu W, Peng S, Shi Y, Li L, Song Z, Lin S. NPY promotes macrophage migration by upregulating matrix metalloproteinase-8 expression. J Cell Physiol 2020; 236:1903-1912. [PMID: 32710469 DOI: 10.1002/jcp.29973] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 01/03/2023]
Abstract
Macrophage migration is thought to participate in obesity-related cardiovascular diseases. Matrix metalloproteinase-8 (MMP-8) possesses proteolytic activity on the extracellular matrix (ECM), which promotes macrophage migration to the site of vascular injury. Neuropeptide Y (NPY) is a bioactive peptide involved in MMP expression. However, it is uncertain whether NPY can regulate the expression of matrix metalloproteinase-8 (MMP-8) in macrophages. In this study, wild-type C57BL/6 and NPY-/- mice were fed a high-fat diet and subjected to subcutaneous carotid artery injury with ferric chloride, to observe the role of NPY and macrophages in neointima formation. In addition, Raw264.7 cells were treated with NPY and its antagonists to observe MMP-8 expression and macrophage migration. We found that NPY-/- mice exhibited significantly reduced neointima formation after carotid artery injury. The content of macrophages and MMP-8 in the neointima and media were also significantly reduced in NPY-/- mice compared with C57BL/6 mice. Moreover, the expression of MMP-8 in macrophages was also decreased in NPY-/- mice. NPY increased MMP-8 messenger RNA and protein expression in Raw264.7 cells in vitro, and this effect was abrogated by the Y1R antagonist. In addition, NPY increased the phosphorylation of ERK1/2, which was significantly attenuated by co-treatment with the Y1R antagonist. Moreover, NPY-induced MMP-8 expression could be decreased by the ERK1/2 inhibitor PD98059. Furthermore, NPY promoted macrophage migration across type I collagen in vitro. In conclusion, NPY promotes macrophage migration by upregulating MMP-8 expression, which we believe to be an underappreciated mechanism of the increased progression of neointima formation.
Collapse
Affiliation(s)
- Weiqiang Wu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Song Peng
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yanchuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, UNSW Australia, NSW, Australia
| | - Linyu Li
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiyuan Song
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shu Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| |
Collapse
|
13
|
Jafari L, Hassanisaber H, Savard M, Gobeil F, Langelier E. Efficacy of Combining PRP and MMP Inhibitors in Treating Moderately Damaged Tendons Ex Vivo. J Orthop Res 2019; 37:1838-1847. [PMID: 31042324 DOI: 10.1002/jor.24319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/25/2019] [Indexed: 02/04/2023]
Abstract
Platelet-rich plasma (PRP) and broad-spectrum matrix metalloproteinase inhibitors (MMPIs) have been used as therapeutic options for tendinopathy. However, mixed results have been reported regarding their efficacy. We posited that the combination of these two treatment strategies would be more beneficial for healing tendons than each treatment alone. Rat tail tendons were harvested and cultured without mechanical stress for 0, 4, or 10 days. Single and combination treatment with PRP and MMPIs with either broad- or narrow-spectrum (MMP-13 selective), was administered to 4-day stress-deprived (SD) tendons, an ex vivo model for moderate tendinopathy. This treatment was applied to the damaged tendons over 6 days. At the end of their culture time, the tendons were subjected to traction testing and pathohistology, immunohistochemistry, and viability assays. The results showed better histological features for the PRP + narrow-spectrum MMPI group compared with all individual treatment modalities. Moreover, higher fiber density, more elongated nucleus shape, smaller space between fibers, and a trend toward higher mechanical strength were noted for PRP + narrow-spectrum MMPI group compared with 10-day SD tendons. This study shows that the combination of PRP + narrow-spectrum MMPI is a potentially effective treatment approach for tendinopathy. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1838-1847, 2019.
Collapse
Affiliation(s)
- Leila Jafari
- Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Hamid Hassanisaber
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Martin Savard
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Fernand Gobeil
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Eve Langelier
- Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
14
|
Wang L, Shen C, Wang Y, Zou T, Zhu H, Lu X, Li L, Yang B, Chen J, Chen S, Lu X, Gu D. Identification of circular RNA Hsa_circ_0001879 and Hsa_circ_0004104 as novel biomarkers for coronary artery disease. Atherosclerosis 2019; 286:88-96. [DOI: 10.1016/j.atherosclerosis.2019.05.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/04/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
|
15
|
Yu LR, Sun J, Daniels JR, Cao Z, Schnackenberg L, Choudhury D, Palevsky PM, Ma JZ, Beger RD, Portilla D. Aptamer-Based Proteomics Identifies Mortality-Associated Serum Biomarkers in Dialysis-Dependent AKI Patients. Kidney Int Rep 2018; 3:1202-1213. [PMID: 30197987 PMCID: PMC6127416 DOI: 10.1016/j.ekir.2018.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/01/2018] [Accepted: 04/23/2018] [Indexed: 01/06/2023] Open
Abstract
Introduction Currently, no effective therapies exist to reduce the high mortality associated with dialysis-dependent acute kidney injury (AKI-D). Serum biomarkers may be useful in understanding the pathophysiological processes involved with AKI and the severity of injury, and point to novel therapeutic targets. Methods Study day 1 serum samples from 100 patients and day 8 samples from 107 patients enrolled in the Veteran’s Affairs/National Institutes of Health Acute Renal Failure Trial Network study were analyzed by the slow off-rate modified aptamers scan proteomic platform to profile 1305 proteins in each sample. Patients in each cohort were classified into tertiles based on baseline biomarker measurements. Cox regression analyses were performed to examine the relationships between serum levels of each biomarker and mortality. Results Changes in the serum levels of 54 proteins, 33 of which increased and 21 of which decreased, were detected when comparing samples of patients who died in the first 8 days versus patients who survived >8 days. Among the 33 proteins that increased, higher serum levels of fibroblast growth factor-23 (FGF23), tissue plasminogen activator (tPA), neutrophil collagenase (matrix metalloproteinase-8), and soluble urokinase plasminogen activator receptor, when stratified by tertiles, were associated with higher mortality. The association with mortality persisted for each of these proteins after adjusting for other potential risk factors, including age, sex, cardiovascular sequential organ failure assessment score, congestive heart failure, and presence of diabetes. Upper tertile levels of FGF23, tPA, and interleukin-6 on day 8 were associated with increased mortality; however, FGF23 barely lost significance after multivariable adjustment. Conclusions Our results underscore an emerging proteomics tool capable of identifying low-abundance serum proteins important not only in the pathogenesis of AKI-D, but which is also helpful in discriminating AKI-D patients with high mortality.
Collapse
Affiliation(s)
- Li-Rong Yu
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Jinchun Sun
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Dr Jinchun Sun Division of Systems Biology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | - Jaclyn R. Daniels
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Zhijun Cao
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Laura Schnackenberg
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Devasmita Choudhury
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
- Salem Veterans Affairs Medical Center, Salem, Virginia, USA
| | - Paul M. Palevsky
- VA Pittsburgh Healthcare System, University of Pittsburgh, Pennsylvania, USA
| | - Jennie Z. Ma
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Richard D. Beger
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Didier Portilla
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
- Salem Veterans Affairs Medical Center, Salem, Virginia, USA
- Correspondence: Didier Portilla, University of Virginia, PO Box 800133, Charlottesville, VA 22908, USA.
| |
Collapse
|
16
|
Brown BA, Williams H, George SJ. Evidence for the Involvement of Matrix-Degrading Metalloproteinases (MMPs) in Atherosclerosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:197-237. [PMID: 28413029 DOI: 10.1016/bs.pmbts.2017.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Atherosclerosis leads to blockage of arteries, culminating in myocardial infarction, and stroke. The involvement of matrix-degrading metalloproteinases (MMPs) in atherosclerosis is established and many studies have highlighted the importance of various MMPs in this process. MMPs were first implicated in atherosclerosis due to their ability to degrade extracellular matrix components, which can lead to increased plaque instability. However, more recent work has highlighted a multitude of roles for MMPs in addition to breakdown of extracellular matrix proteins. MMPs are now known to be involved in various stages of plaque progression: from initial macrophage infiltration to plaque rupture. This chapter summarizes the development and progression of atherosclerotic plaques and the contribution of MMPs. We provide data from human studies showing the effect of MMP polymorphisms and the expression of MMPs in both the atherosclerotic plaque and within plasma. We also discuss work in animal models of atherosclerosis that show the effect of gain or loss of function of MMPs. Together, the data provided from these studies illustrate that MMPs are ideal targets as both biomarkers and potential drug therapies for atherosclerosis.
Collapse
Affiliation(s)
- Bethan A Brown
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Helen Williams
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Sarah J George
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
17
|
Zhang F, Li S, Song J, Liu J, Cui Y, Chen H. Angiotensin-(1-7) regulates angiotensin II-induced matrix metalloproteinase-8 in vascular smooth muscle cells. Atherosclerosis 2017; 261:90-98. [PMID: 28283184 DOI: 10.1016/j.atherosclerosis.2017.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/25/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Angiotensin II (Ang II) is a bioactive peptide that is related to cardiovascular disease such as atherosclerosis, whereas angiotensin-(1-7) (Ang-(1-7)) is a counter-regulator of angiotensin II, which protects against cardiovascular disease. Matrix metalloproteinase 8 (MMP-8) is thought to participate in plaque destabilization though degradation of extracellular matrix, improving the development of atherosclerosis. Whether Ang-(1-7) modulates Ang II-induced MMP-8 remains unclear. In this study, we investigated the effect of Ang-(1-7) on Ang II-induced MMP-8 expression in smooth muscle cells. METHODS Smooth muscle cells were treated with Ang II, Ang-(1-7) and their antagonists. In addition, ApoE knockout mice were fed a high fat diet and subcutaneously injected with Ang II, Ang-(1-7), Ang II+Ang-(1-7) (±A779). RESULTS We found that Ang II increased MMP-8 mRNA and protein expression in vascular smooth muscle cells, while Ang-(1-7) alone had no effect. However, Ang-(1-7) inhibited Ang II-induced MMP-8 expression. The inhibitory effect of Ang-(1-7) could be abolished by the competitive antagonist of Ang-(1-7) at the MAS receptor. Furthermore, Ang II induced p38 MAPK activation, and this was inhibited by the treatment of Ang-(1-7). Ang II-induced MMP-8 expression could be attenuated by the p38 MAPK inhibitor SB203580. Ang-(1-7) also significantly suppressed Ang II-induced MMP-8 in both atherosclerotic plaques and serum in ApoE-/- mice. The atherosclerotic plaques in mice treated with Ang-(1-7) and Ang II appeared to be more stable with more type I collagen contents than those in mice treated with Ang II. CONCLUSIONS Our results suggest that Ang-(1-7) plays an important role in protecting against atherosclerosis via counter-regulation of Ang II-induced MMP-8.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Cardiology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China; William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sufang Li
- Department of Cardiology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Junxian Song
- Department of Cardiology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Jun Liu
- Department of Cardiology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Yuxia Cui
- Department of Cardiology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Hong Chen
- Department of Cardiology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
18
|
Li Y, Li L, Zeng O, Liu JM, Yang J. H 2S improves renal fibrosis in STZ-induced diabetic rats by ameliorating TGF-β1 expression. Ren Fail 2016; 39:265-272. [PMID: 27882817 PMCID: PMC6014487 DOI: 10.1080/0886022x.2016.1257433] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nephropathy develops in many patients with type 1 diabetes mellitus (T1DM). However, the specific mechanisms and therapies remain unclear. For this purpose we investigated the effects of hydrogen sulfide (H2S) on renal fibrosis in streptozotocin (STZ) induced diabetic rats and its underlying mechanisms. Experimental rats were randomly divided into four groups: Control group (normal rats), DM group (diabetes rats), DM + NaHS group [diabetes rats treated with sodium hydrosulfide (NaHS)], and NaHS group (normal rats treated with NaHS). The diabetic models were established by intraperitoneal injection of STZ. The NaHS-treated rats were injected with NaHS as an exogenous donor of H2S. At the same time, control group and DM group were administrated with equal doses of normal saline (NS). After eight weeks, the rats’ urine samples were collected to measure the renal hydroxyproline content by basic hydrolysis method with a hydroxyproline detection kit. Collagen I and III content was detected by immunohistochemical method, and the pathology morphology of kidney was analyzed by Masson staining. Protein expressions of transforming growth factor beta 1 (TGF-β1), ERK1/2, TIMP1, TIMP2, MMP-2, MMP-7, MMP-8, MMP-11, and MMP-14 were assessed by western blotting. The results showed that significant fibrosis occurred in the kidney of diabetes rats. NaHS treatment downregulated TGF-β1, ERK1/2, TIMP1, TIMP2, MMP-2, MMP-7, MMP-8, MMP-11, and MMP-14 expressions in the kidney of these diabetes rats (p<.01). This result suggests that NaHS treatment could attenuate renal fibrosis by TGF-β1 signaling, and its mechanisms may be correlated with ERK1/2 expression and modulation of MMPs/TIMPs expression. Therefore, H2S may provide a promising option for defensing against diabetic renal fibrosis through TGF-β1 signaling, equilibrating the balance between profibrotic and antifibrotic mediators.
Collapse
Affiliation(s)
- Yan Li
- a Cardiovascular Department , The First Affiliated Hospital of the University of South China , Hengyang , Hunan , PR China
| | - Lin Li
- a Cardiovascular Department , The First Affiliated Hospital of the University of South China , Hengyang , Hunan , PR China
| | - Ou Zeng
- a Cardiovascular Department , The First Affiliated Hospital of the University of South China , Hengyang , Hunan , PR China
| | - Jun Mao Liu
- a Cardiovascular Department , The First Affiliated Hospital of the University of South China , Hengyang , Hunan , PR China
| | - Jun Yang
- a Cardiovascular Department , The First Affiliated Hospital of the University of South China , Hengyang , Hunan , PR China
| |
Collapse
|
19
|
Du J, Jin T, Cao Y, Chen J, Guo Y, Sun M, Li J, Zhang X, Wang G, Wang J. Association between genetic polymorphisms of MMP8 and the risk of steroid-induced osteonecrosis of the femoral head in the population of northern China. Medicine (Baltimore) 2016; 95:e4794. [PMID: 27631232 PMCID: PMC5402575 DOI: 10.1097/md.0000000000004794] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (ONFH) is the most common clinical nontraumatic ONFH. Once ONFH occurs, it seriously reduces patients' quality of life. The matrix metalloproteinase/tissue inhibitor of metalloproteinase (MMP/TIMP) system was found to play a significant role in the development of ONFH. The aim of this study was to identify the associations between 7 genes selected from the MMP/TIMP system and steroid-induced ONFH. METHODS We genotyped 34 single-nucleotide polymorphisms (SNPs) of 7 genes selected from the MMP/TIMP system in a case-control study with 285 cases of steroid-induced ONFH and 308 healthy controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using the chi-squared test, genetic model analysis, haplotype analysis, and stratification analysis. RESULTS We found that the minor alleles of rs1940475 and rs11225395 in MMP8 were associated with a 1.32-fold increased risk of steroid-induced ONFH in the allelic model analysis (P = 0.021 and 0.022, respectively). In the genetic model analysis, we found that rs3740938, rs2012390, rs1940475, and rs11225395 were associated with an increased risk of steroid-induced ONFH. In further stratification analysis, rs3740938 and rs2012390 displayed a significantly increased risk of steroid-induced ONFH in females under the dominant (rs3740938, OR = 2.69, 95% CI: 1.50-4.83, P = 0.001; rs2012390, OR = 2.30, 95% CI: 1.31-4.03, P = 0.012) and additive (rs3740938, OR = 2.02, 95% CI: 1.24-3.29, P = 0.010; rs2012390, OR = 1.77, 95% CI: 1.12-2.80, P = 0.047) models. In addition, haplotype "AGTCA" of MMP8 was found to be associated with a 1.40-fold increased risk of steroid-induced ONFH (95% CI: 1.04-1.88, P = 0.025). CONCLUSION Our results verify that genetic variants of MMP8 contribute to steroid-induced ONFH susceptibility in the population of northern China. In addition, we found that gender differences might interact with MMP8 polymorphisms to contribute to the overall susceptibility to steroid-induced ONFH.
Collapse
Affiliation(s)
- Jieli Du
- Inner Mongolia Medical University, Hohhot, Inner Mongolia
- Department of Orthopedics and Traumatology, The 2th Affiliated Hospital of Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Tianbo Jin
- The College of Life Sciences, Northwest University
- National Engineering Research Center for Miniaturized Detection Systems, Xi’an, Shanxi
| | - Yuju Cao
- Zhengzhou TCM Traumatology Hospital, Zhengzhou, Henan
| | - Junyu Chen
- Inner Mongolia Medical University, Hohhot, Inner Mongolia
- Department of Orthopedics and Traumatology, The 2th Affiliated Hospital of Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Yongchang Guo
- Zhengzhou TCM Traumatology Hospital, Zhengzhou, Henan
| | - Mingqi Sun
- Department of Orthopedics and Traumatology, The 2th Affiliated Hospital of Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Jian Li
- Zhengzhou TCM Traumatology Hospital, Zhengzhou, Henan
| | - Xiyang Zhang
- The College of Life Sciences, Northwest University
- National Engineering Research Center for Miniaturized Detection Systems, Xi’an, Shanxi
| | - Guoqiang Wang
- Department of Orthopedics and Traumatology, The 2th Affiliated Hospital of Inner Mongolia University, Hohhot, Inner Mongolia, China
- Correspondence: Guoqiang Wang, The Second Affiliated Hospital, Inner Mongolia Medical University, 1 Yingfang Road, Hohhot 010050, Inner Mongolia, China (e-mail: ); Jianzhong Wang, The Second Affiliated Hospital, Inner Mongolia Medical University, 1 Yingfang Road, Hohhot 010050, Inner Mongolia, China (e-mail: )
| | - Jianzhong Wang
- Department of Orthopedics and Traumatology, The 2th Affiliated Hospital of Inner Mongolia University, Hohhot, Inner Mongolia, China
- Correspondence: Guoqiang Wang, The Second Affiliated Hospital, Inner Mongolia Medical University, 1 Yingfang Road, Hohhot 010050, Inner Mongolia, China (e-mail: ); Jianzhong Wang, The Second Affiliated Hospital, Inner Mongolia Medical University, 1 Yingfang Road, Hohhot 010050, Inner Mongolia, China (e-mail: )
| |
Collapse
|
20
|
Neotuberostemonine attenuates bleomycin-induced pulmonary fibrosis by suppressing the recruitment and activation of macrophages. Int Immunopharmacol 2016; 36:158-164. [DOI: 10.1016/j.intimp.2016.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 12/19/2022]
|
21
|
Newby AC. Metalloproteinase production from macrophages - a perfect storm leading to atherosclerotic plaque rupture and myocardial infarction. Exp Physiol 2016; 101:1327-1337. [PMID: 26969796 DOI: 10.1113/ep085567] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/08/2016] [Indexed: 12/26/2022]
Abstract
What is the topic of this review? The review discusses how in atherosclerotic plaques, a combination of inflammatory mediators together with loss of anti inflammatory factors is most likely to be responsible for the excess of MMP over TIMP expression that causes plaque rupture and myocardial infarction. What advances does it highlight? Regulation of matrix metalloproteinases (MMPs) and tissue inhibitors of MMP (TIMPs) is divergent between human and mouse macrophages. There is prostaglandin E2 -dependent and -independent regulation. Inflammatory cytokines act through distinct (albeit overlapping) signalling pathways to elicit different patterns of MMP and TIMP expression. Transcriptional and epigenetic regulation occurs. Matrix metalloproteinases (MMPs) produced from macrophages contribute to plaque rupture, atherothrombosis and myocardial infarction. New treatments could emerge from defining the mediators and underlying mechanisms. In human monocytes, prostaglandin E2 (PGE2 ) stimulates MMP production, and inflammatory mediators such as tumour necrosis factor α, interleukin-1 and Toll-like receptor ligands can act either through or independently of PGE2 . Differentiation of human monocytes to non-foamy macrophages increases constitutive expression of MMP-7, -8, -9, -14 and -19 and tissue inhibitor of MMP (TIMP)-1 to -3 through unknown, PGE2 -independent mechanisms. Human macrophages express more MMP-1, -7 and -9 and TIMP-3 and less MMP-12 and -13 than mouse macrophages. Inflammatory mediators working through activator protein-1 and nuclear factor-κB transcription factor pathways upregulate MMP-1, -3, -10, -12 and -14 in human macrophages (MMP-9, -12 and -13 in mice), and studies with plaque tissue sections and isolated foam cells confirm this conclusion in vivo. Classical activation with granulocyte-macrophage colony-stimulating factor upregulates MMP-12, whereas interferon-γ upregulates MMP-12, -14 and -25 and downregulates TIMP-3 in human but not mouse macrophages. Alternative activation with interleukin-4 markedly stimulates the expression of only MMP-12 in humans and MMP-19 in mice. The anti-inflammatory cytokines interleukin-10 and transforming growth factor-β decrease production of several MMPs. Epigenetic upregulation of MMP-14 during foam cell formation or by granulocyte-macrophage colony-stimulating factor occurs by decreasing miRNA-24. A 'perfect storm' caused by a combination of these mechanisms is most likely to promote MMP-mediated macrophage invasion, tissue destruction and atherosclerotic plaque rupture.
Collapse
Affiliation(s)
- Andrew C Newby
- University of Bristol, School of Clinical Sciences and Bristol Heart Institute, Bristol, UK.
| |
Collapse
|
22
|
Geng J, Huang C, Jiang S. Roles and regulation of the matrix metalloproteinase system in parturition. Mol Reprod Dev 2016; 83:276-86. [PMID: 26888468 DOI: 10.1002/mrd.22626] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/10/2016] [Indexed: 12/23/2022]
Abstract
Significant tissue destruction, repair, and remodeling are involved in parturition, which involves fetal membrane rupture, cervical ripening, and uterine contraction and its subsequent involution. Extracellular matrix degradation and remodeling by proteolytic enzymes, such as matrix metalloproteinases (MMPs), are required for the final steps of parturition. MMPs participate in physiological degradation and remodeling through their proteolytic activities on specific substrates, and are balanced by the action of their inhibitors. Disruption to this balance can result in pathological stress that ends with preterm or post-term birth or pre-eclampsia. In this review, we examine the roles and regulation of the MMP system in physiological and pathological labor, and propose a model that illustrates the mechanisms by which the MMP system contributes to these processes.
Collapse
Affiliation(s)
- Junnan Geng
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Cong Huang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Siwen Jiang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|