1
|
Yang JT, Zhang QJ, Li H, Liu MW. Progress Analysis of Personalized Antiplatelet Therapy in Patients with Coronary Heart Disease Undergoing Interventional Therapy. Rev Cardiovasc Med 2024; 25:462. [PMID: 39742248 PMCID: PMC11683700 DOI: 10.31083/j.rcm2512462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 01/03/2025] Open
Abstract
Coronary atherosclerosis (or coronary heart disease [CHD]) is a common cardiovascular disease that seriously damages human health. Percutaneous coronary stent implantation represents the primary treatment option for severe CHD in clinical practice; meanwhile, dual antiplatelet therapy (DAPT) is widely used to reduce the risk of postoperative thrombosis. Although the mechanisms of action of the two most commonly used antiplatelet drugs, aspirin and clopidogrel, remain unclear, clinical studies have shown that some patients are susceptible to stent thrombosis-antiplatelet resistance (high on-treatment platelet reactivity [HTPR])-despite using these drugs. Therefore, screening for HTPR and formulating personalized antiplatelet therapies is necessary. Ticagrelor, indobufen, and rivaroxaban are the most common and safe antiplatelet drugs used in clinical practice, with broad application prospects. This review summarizes the mechanisms of action of existing antiplatelet drugs, reasons for personalized treatment, screening of antiplatelet reactions, and development of novel antiplatelet drugs.
Collapse
Affiliation(s)
- Ji-tong Yang
- Department of Clinical Medicine, Kunming Medical University, 651106 Kunming, Yunnan, China
| | - Qiu-juan Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Hua Li
- Department of Emergency, The Third People’s Hospital of Yunnan Province, 650011 Kunming, Yunnan, China
| | - Ming-wei Liu
- Department of Emergency, People’s Hospital of Dali Bai Autonomous Prefecture, 671000 Dali, Yunnan, China
| |
Collapse
|
2
|
Stabile J, Fürstenau CR. Platelets isolation and ectonucleotidase assay: Revealing functional aspects of the communication between the vasculature and the immune system. J Immunol Methods 2024; 533:113746. [PMID: 39181235 DOI: 10.1016/j.jim.2024.113746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Platelets are enucleated fragments of cells with a diversity of internal granules. They are responsible for functions related to hemostasis, coagulation, and inflammation. The activation of these processes depends on a cascade coordinated by cytokines, chemokines, and components of purinergic signaling, such as ATP, ADP, and adenosine. Platelets express distinct components of the purinergic system: P2X1, P2Y1, PY12, and P2Y14 receptors; and the ectonucleotidases NTPDase, NPP, and 5NTE (ecto-5'-nucleotidase). Except for P2Y14, which has not yet exhibited a known function, all other components relate to the biological processes mentioned before. Platelets are known to display specific responses to microorganisms, being capable of recognizing pathogen-associated molecular patterns (PAMPs), engulfing certain classes of viruses, and participating in NETosis. Platelet function dysregulation implicates various pathophysiological processes, including cardiovascular diseases (CVDs) and infections. In COVID-19 patients, platelets exhibit altered purinergic signaling and increased activation, contributing to inflammation. Excessive platelet activation can lead to complications from thrombosis, which can affect the circulation of vital organs. Therefore, controlling the activation is necessary to end the inflammatory process and restore homeostasis. Ectonucleotidases, capable of hydrolyzing ATP, ADP, and AMP, are of fundamental importance in activating platelets, promising pharmacological targets for clinical use as cardiovascular protective drugs. In this review, we revisit platelet biology, the purinergic receptors and ectonucleotidases on their surface, and their importance in platelet activity. Additionally, we describe methods for isolating platelets in humans and murine, as well as the main techniques for detecting the activity of ectonucleotidases in platelets. Considering the multitude of functions revealed by platelets and their potential use as potent bioreactors able to secrete and present molecules involved in the communication of the vasculature with the immune system, it is crucial to deeply understand platelet biology and purinergic signaling participation to contribute to the developing of therapeutic strategies in diseases of the cardiovascular, inflammatory, and immune systems.
Collapse
Affiliation(s)
- Jeferson Stabile
- Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Cristina Ribas Fürstenau
- Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil.
| |
Collapse
|
3
|
Cohen MV, Downey JM. Initial Despair and Current Hope of Identifying a Clinically Useful Treatment of Myocardial Reperfusion Injury: Insights Derived from Studies of Platelet P2Y 12 Antagonists and Interference with Inflammation and NLRP3 Assembly. Int J Mol Sci 2024; 25:5477. [PMID: 38791515 PMCID: PMC11122283 DOI: 10.3390/ijms25105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Myocardial necrosis following the successful reperfusion of a coronary artery occluded by thrombus in a patient presenting with ST-elevation myocardial infarction (STEMI) continues to be a serious problem, despite the multiple attempts to attenuate the necrosis with agents that have shown promise in pre-clinical investigations. Possible reasons include confounding clinical risk factors, the delayed application of protective agents, poorly designed pre-clinical investigations, the possible effects of routinely administered agents that might unknowingly already have protected the myocardium or that might have blocked protection, and the biological differences of the myocardium in humans and experimental animals. A better understanding of the pathobiology of myocardial infarction is needed to stem this reperfusion injury. P2Y12 receptor antagonists minimize platelet aggregation and are currently part of the standard treatment to prevent thrombus formation and propagation in STEMI protocols. Serendipitously, these P2Y12 antagonists also dramatically attenuate reperfusion injury in experimental animals and are presumed to provide a similar protection in STEMI patients. However, additional protective agents are needed to further diminish reperfusion injury. It is possible to achieve additive protection if the added intervention protects by a mechanism different from that of P2Y12 antagonists. Inflammation is now recognized to be a critical factor in the complex intracellular response to ischemia and reperfusion that leads to tissue necrosis. Interference with cardiomyocyte inflammasome assembly and activation has shown great promise in attenuating reperfusion injury in pre-clinical animal models. And the blockade of the executioner protease caspase-1, indeed, supplements the protection already seen after the administration of P2Y12 antagonists. Importantly, protective interventions must be applied in the first minutes of reperfusion, if protection is to be achieved. The promise of such a combination of protective strategies provides hope that the successful attenuation of reperfusion injury is attainable.
Collapse
Affiliation(s)
- Michael V. Cohen
- The Departments of Physiology and Cell Biology, Frederick P. Whiddon College of Medicine, Mobile, AL 36688, USA;
- The Departments of Medicine, Frederick P. Whiddon College of Medicine, Mobile, AL 36688, USA
| | - James M. Downey
- The Departments of Physiology and Cell Biology, Frederick P. Whiddon College of Medicine, Mobile, AL 36688, USA;
| |
Collapse
|
4
|
Alasmari AM, Alsulayyim AS, Alghamdi SM, Philip KEJ, Buttery SC, Banya WAS, Polkey MI, Armstrong PC, Rickman MJ, Warner TD, Mitchell JA, Hopkinson NS. Oral nitrate supplementation improves cardiovascular risk markers in COPD: ON-BC, a randomised controlled trial. Eur Respir J 2024; 63:2202353. [PMID: 38123239 PMCID: PMC10831142 DOI: 10.1183/13993003.02353-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Short-term studies suggest that dietary nitrate (NO3 -) supplementation may improve the cardiovascular risk profile, lowering blood pressure (BP) and enhancing endothelial function. It is not clear if these beneficial effects are sustained and whether they apply in people with COPD, who have a worse cardiovascular profile than those without COPD. Nitrate-rich beetroot juice (NR-BRJ) is a convenient dietary source of nitrate. METHODS The ON-BC trial was a randomised, double-blind, placebo-controlled parallel group study in stable COPD patients with home systolic BP (SBP) measurement ≥130 mmHg. Participants were randomly allocated (1:1) using computer-generated, block randomisation to either 70 mL NR-BRJ (400 mg NO3 -) (n=40) or an otherwise identical nitrate-depleted placebo juice (0 mg NO3 -) (n=41), once daily for 12 weeks. The primary end-point was between-group change in home SBP measurement. Secondary outcomes included change in 6-min walk distance (6MWD) and measures of endothelial function (reactive hyperaemia index (RHI) and augmentation index normalised to a heart rate of 75 beats·min-1 (AIx75)) using an EndoPAT device. Plasma nitrate and platelet function were also measured. RESULTS Compared with placebo, active treatment lowered SBP (Hodges-Lehmann treatment effect -4.5 (95% CI -5.9- -3.0) mmHg), and improved 6MWD (30.0 (95% CI 15.7-44.2) m; p<0.001), RHI (0.34 (95% CI 0.03-0.63); p=0.03) and AIx75 (-7.61% (95% CI -14.3- -0.95%); p=0.026). CONCLUSIONS In people with COPD, prolonged dietary nitrate supplementation in the form of beetroot juice produces a sustained reduction in BP, associated with an improvement in endothelial function and exercise capacity.
Collapse
Affiliation(s)
- Ali M Alasmari
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
- Respiratory Therapy Department, College of Medical Rehabilitation Sciences, Taibah University, Madinah, Saudi Arabia
| | - Abdullah S Alsulayyim
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Saeed M Alghamdi
- Clinical Technology Department, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Keir E J Philip
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
- Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, UK
| | - Sara C Buttery
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Winston A S Banya
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Michael I Polkey
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
- Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, UK
| | - Paul C Armstrong
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matthew J Rickman
- National Heart and Lung Institute, Cardiothoracic Pharmacology, Vascular Biology, Imperial College London, London, UK
| | - Timothy D Warner
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane A Mitchell
- National Heart and Lung Institute, Cardiothoracic Pharmacology, Vascular Biology, Imperial College London, London, UK
| | - Nicholas S Hopkinson
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| |
Collapse
|
5
|
Chyrchel B, Kruszelnicka O, Wieczorek-Surdacka E, Surdacki A. Association of ADP-Induced Whole-Blood Platelet Aggregation with Serum Low-Density Lipoprotein Cholesterol in Patients with Coronary Artery Disease When Receiving Maintenance Ticagrelor-Based Dual Antiplatelet Therapy. J Clin Med 2023; 12:4530. [PMID: 37445565 DOI: 10.3390/jcm12134530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The degree of platelet inhibition in patients undergoing dual antiplatelet therapy (DAPT) affects cardiovascular outcomes after acute coronary syndromes (ACS) and/or percutaneous coronary intervention. Our aim was to search for correlates of residual ex vivo platelet reactivity and circulating soluble P-selectin (sP-selectin), an index of in vivo platelet activation, in patients being treated by DAPT with ticagrelor. Adenosine diphosphate (ADP)-induced platelet aggregability (by multiple electrode aggregometry) and plasma sP-selectin were estimated in 62 stable post-ACS subjects (46 men and 16 women; mean age: 64 ± 10 years; 30 with type 2 diabetes (T2DM)) undergoing maintenance DAPT with ticagrelor and aspirin. These patients did not exhibit heart failure or other relevant coexistent diseases except for properly controlled T2DM, mild renal insufficiency, and hypertension. We also assessed this in 64 subjects on clopidogrel-based DAPT matched for age, sex, and T2DM status. ADP-induced platelet aggregation was below the optimal levels (190-460 arbitrary units (AU) * min) in most patients receiving ticagrelor-based DAPT, especially in those with below-median (<1.9 mmol/L) serum concentrations of low-density lipoprotein cholesterol (LDL-c) (128 ± 61 vs. 167 ± 73 AU * min for below-median and above-median LDL-c, respectively, p = 0.025). In contrast, platelet reactivity did not differ by LDL-c on clopidogrel-based DAPT (246 ± 101 vs. 268 ± 108 AU * min for below-median and above-median LDL-c, respectively, p > 0.4). Plasma sP-selectin was found to be unrelated to serum LDL-c when receiving DAPT with ticagrelor (p > 0.4) or clopidogrel (p > 0.8). In conclusion, our preliminary observational study suggests the association of lower residual ex vivo platelet aggregability with better LDL-c control in patients undergoing ticagrelor-based maintenance DAPT, which does not appear to be reflected by plasma sP-selectin. Whether the serum LDL-c level should be considered among the factors affecting the degree of platelet inhibition for those treated with ticagrelor-based DAPT needs to be investigated in larger studies.
Collapse
Affiliation(s)
- Bernadeta Chyrchel
- Second Department of Cardiology, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 2 Jakubowskiego Street, 30-688 Cracow, Poland
- Department of Cardiology and Cardiovascular Interventions, University Hospital, 2 Jakubowskiego Street, 30-688 Cracow, Poland
| | - Olga Kruszelnicka
- Department of Coronary Artery Disease and Heart Failure, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 80 Prądnicka Street, 31-202 Cracow, Poland
| | - Ewa Wieczorek-Surdacka
- Center of Innovative Medical Education, Jagiellonian University Medical College, 7 Medyczna Street, 30-688 Cracow, Poland
| | - Andrzej Surdacki
- Second Department of Cardiology, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 2 Jakubowskiego Street, 30-688 Cracow, Poland
- Department of Cardiology and Cardiovascular Interventions, University Hospital, 2 Jakubowskiego Street, 30-688 Cracow, Poland
| |
Collapse
|
6
|
Huseynov A, Reinhardt J, Chandra L, Dürschmied D, Langer HF. Novel Aspects Targeting Platelets in Atherosclerotic Cardiovascular Disease—A Translational Perspective. Int J Mol Sci 2023; 24:ijms24076280. [PMID: 37047253 PMCID: PMC10093962 DOI: 10.3390/ijms24076280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Platelets are important cellular targets in cardiovascular disease. Based on insights from basic science, translational approaches and clinical studies, a distinguished anti-platelet drug treatment regimen for cardiovascular patients could be established. Furthermore, platelets are increasingly considered as cells mediating effects “beyond thrombosis”, including vascular inflammation, tissue remodeling and healing of vascular and tissue lesions. This review has its focus on the functions and interactions of platelets with potential translational and clinical relevance. The role of platelets for the development of atherosclerosis and therapeutic modalities for primary and secondary prevention of atherosclerotic disease are addressed. Furthermore, novel therapeutic options for inhibiting platelet function and the use of platelets in regenerative medicine are considered.
Collapse
|
7
|
Khakpash M, Esfahanizadeh M, Mahboubi-Rabbani M, Amidi S, Kobarfard F. Synthesis and Biological Evaluation of Novel Thiadiazole Derivatives as Antiplatelet Agents. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e141846. [PMID: 38655234 PMCID: PMC11036646 DOI: 10.5812/ijpr-141846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 04/26/2024]
Abstract
A novel series of thiadiazole compounds was synthesized through the reaction of thiosemicarbazone intermediates with 2, 3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The antiplatelet activity of the synthesized compounds was evaluated using an aggregation test with adenosine diphosphate (ADP) and arachidonic acid (AA) as platelet aggregation inducers. Among the synthesized analogs, compound 3b exhibited the most potent inhibition of platelet aggregation induced by ADP (half maximal inhibitory concentration [IC50] = 39 ± 11 µM). Molecular docking studies of 3b revealed hydrogen bonds between the nitrogen of the thiadiazole ring and Lys280. The tolyl ring exhibited hydrophobic interactions with Tyr105, similar to the antagonist co-crystallized with P2Y12 (PDB ID: 4NTJ). These compounds have the potential to serve as lead molecules for designing P2Y12 inhibitors.
Collapse
Affiliation(s)
- Mahsima Khakpash
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Esfahanizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salimeh Amidi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Chyrchel B, Kruszelnicka O, Surdacki A. Endothelial biomarkers and platelet reactivity on ticagrelor versus clopidogrel in patients after acute coronary syndrome with and without concomitant type 2 diabetes: a preliminary observational study. Cardiovasc Diabetol 2022; 21:249. [PMID: 36397167 PMCID: PMC9670560 DOI: 10.1186/s12933-022-01685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pleiotropic effects have been implicated in clinical benefits of ticagrelor compared to thienopyridine P2Y12 antagonists. There are conflicting data regarding effects of ticagrelor vs. thienopyridine P2Y12 blockers on endothelial function. Our aim was to compare endothelial biomarkers and their relations with platelet reactivity in real-world patients after acute coronary syndrome (ACS) on maintenance dual antiplatelet therapy (DAPT) with ticagrelor or clopidogrel stratified by diabetes status. METHODS Biochemical indices of endothelial dysfunction/activation and platelet reactivity by multiple electrode aggregometry were compared in 126 stable post-ACS subjects (mean age: 65 ± 10 years, 92 men and 34 women), including patients with (n = 61) or without (n = 65) coexistent type 2 diabetes (T2DM) on uneventful maintenance DAPT with either ticagrelor (90 mg b.d.) or clopidogrel (75 mg o.d.) in addition to low-dose aspirin. Exclusion criteria included a complicated in-hospital course, symptomatic heart failure, left ventricular ejection fraction < 40% and relevant coexistent diseases except for well-controlled diabetes, mild renal insufficiency or hypertension. RESULTS Clinical characteristics were similar in patients on ticagrelor (n = 62) and clopidogrel (n = 64). The adenosine diphosphate-induced platelet aggregation and circulating soluble P-selectin (sP-selectin) were decreased in ticagrelor users irrespective of T2DM status (p < 0.001 and p < 0.01 for platelet reactivity and sP-selectin, respectively). Plasma levels of soluble vascular cell adhesion molecule-1 (sVCAM-1) were lower in T2DM subjects on ticagrelor vs. clopidogrel (758 ± 162 vs. 913 ± 217 µg/L, p < 0.01). In contrast, plasma sVCAM-1 was similar in non-diabetic patients on ticagrelor and clopidogrel (872 ± 203 vs. 821 ± 210 µg/L, p > 0.7). The concentrations of sE-selectin, monocyte chemoattractant protein-1 and asymmetric dimethylarginine did not differ according to the type of P2Y12 antagonist regardless of T2DM status. Platelet reactivity was unrelated to any endothelial biomarker in subjects with or without T2DM. CONCLUSIONS Our preliminary findings may suggest an association of ticagrelor-based maintenance DAPT with favorable endothelial effects compared to clopidogrel users in stable post-ACS patients with T2DM. If proven, this could contribute to more pronounced clinical benefits of ticagrelor in diabetic subjects.
Collapse
Affiliation(s)
- Bernadeta Chyrchel
- grid.5522.00000 0001 2162 9631Second Department of Cardiology, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 2 Jakubowskiego Street, 30-688 Cracow, Poland ,grid.412700.00000 0001 1216 0093Department of Cardiology and Cardiovascular Interventions, University Hospital, 2 Jakubowskiego Street, 30-688 Cracow, Poland
| | - Olga Kruszelnicka
- grid.5522.00000 0001 2162 9631Department of Coronary Artery Disease and Heart Failure, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 80 Prądnicka Street, 31-202 Cracow, Poland
| | - Andrzej Surdacki
- grid.5522.00000 0001 2162 9631Second Department of Cardiology, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 2 Jakubowskiego Street, 30-688 Cracow, Poland ,grid.412700.00000 0001 1216 0093Department of Cardiology and Cardiovascular Interventions, University Hospital, 2 Jakubowskiego Street, 30-688 Cracow, Poland
| |
Collapse
|
9
|
Chao YM, Rauchová H, Chan JYH. Disparate Roles of Oxidative Stress in Rostral Ventrolateral Medulla in Age-Dependent Susceptibility to Hypertension Induced by Systemic l-NAME Treatment in Rats. Biomedicines 2022; 10:biomedicines10092232. [PMID: 36140333 PMCID: PMC9496567 DOI: 10.3390/biomedicines10092232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 12/12/2022] Open
Abstract
This study aims to investigate whether tissue oxidative stress in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons reside, plays an active role in age-dependent susceptibility to hypertension in response to nitric oxide (NO) deficiency induced by systemic l-NAME treatment, and to decipher the underlying molecular mechanisms. Systolic blood pressure (SBP) and heart rate (HR) in conscious rats were recorded, along with measurements of plasma and RVLM level of NO and reactive oxygen species (ROS), and expression of mRNA and protein involved in ROS production and clearance, in both young and adult rats subjected to intraperitoneal (i.p.) infusion of l-NAME. Pharmacological treatments were administered by oral gavage or intracisternal infusion. Gene silencing of target mRNA was made by bilateral microinjection into RVLM of lentivirus that encodes a short hairpin RNA (shRNA) to knock down gene expression of NADPH oxidase activator 1 (Noxa1). We found that i.p. infusion of l-NAME resulted in increases in SBP, sympathetic neurogenic vasomotor activity, and plasma norepinephrine levels in an age-dependent manner. Systemic l-NAME also evoked oxidative stress in RVLM of adult, but not young rats, accompanied by augmented enzyme activity of NADPH oxidase and reduced mitochondrial electron transport enzyme activities. Treatment with L-arginine via oral gavage or infusion into the cistern magna (i.c.), but not i.c. tempol or mitoQ10, significantly offset the l-NAME-induced hypertension in young rats. On the other hand, all treatments appreciably reduced l-NAME-induced hypertension in adult rats. The mRNA microarray analysis revealed that four genes involved in ROS production and clearance were differentially expressed in RVLM in an age-related manner. Of them, Noxa1, and GPx2 were upregulated and Duox2 and Ucp3 were downregulated. Systemic l-NAME treatment caused greater upregulation of Noxa1, but not Ucp3, mRNA expression in RVLM of adult rats. Gene silencing of Noxa1 in RVLM effectively alleviated oxidative stress and protected adult rats against l-NAME-induced hypertension. These data together suggest that hypertension induced by systemic l-NAME treatment in young rats is mediated primarily by NO deficiency that occurs both in vascular smooth muscle cells and RVLM. On the other hand, enhanced augmentation of oxidative stress in RVLM may contribute to the heightened susceptibility of adult rats to hypertension induced by systemic l-NAME treatment.
Collapse
Affiliation(s)
- Yung-Mei Chao
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Hana Rauchová
- Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Julie Y. H. Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Correspondence: ; Tel.: +886-77338415
| |
Collapse
|
10
|
Application and Prospect of Platelet Multi-Omics Technology in Study of Blood Stasis Syndrome. Chin J Integr Med 2021; 28:99-105. [PMID: 34935097 DOI: 10.1007/s11655-021-3349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
The abnormality of platelet function plays an important role in the pathogenesis and evolution of blood stasis syndrome (BSS). The explanation of its mechanism is a key scientific issue in the study of cardiovascular and cerebrovascular diseases and treatment. System biology technology provides a good technical platform for further development of platelet multi-omics, which is conducive to the scientific interpretation of the biological mechanism of BSS. The article summarized the pathogenesis of platelets in BSS, the mechanism of action of blood activating and stasis resolving drugs, and the application of genomics, proteomics, and metabonomics in platelet research, and put forward the concept of "plateletomics in BSS". Through the combination and cross-validation of multi-omics technology, it mainly focuses on the clinical and basic research of cardiovascular and cerebrovascular diseases; through the interactive verification of multi-omics technology and system biology, it mainly focuses on the platelet function and secretion system. The article systematically explains the molecular biological mechanism of platelet activation, aggregation, release, and other stages in the formation and development of BSS, and provides a new research idea and method for clarifying the pathogenesis of BSS and the mechanism of action of blood activating and stasis resolving drugs.
Collapse
|
11
|
Ke J, Li MT, Huo YJ, Cheng YQ, Guo SF, Wu Y, Zhang L, Ma J, Liu AJ, Han Y. The Synergistic Effect of Ginkgo biloba Extract 50 and Aspirin Against Platelet Aggregation. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3543-3560. [PMID: 34429584 PMCID: PMC8375244 DOI: 10.2147/dddt.s318515] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023]
Abstract
Purpose We aimed to investigate potential synergistic antiplatelet effects of Ginkgo biloba extract (GBE50) in combination with aspirin using in vitro models. Methods Arachidonic acid (AA), platelet activating factor (PAF), adenosine 5'-diphosphate (ADP) and collagen were used as inducers. The antiplatelet effects of GBE50, aspirin and 1:1 combination of GBE50 and aspirin were detected by microplate method using rabbit platelets. Synergy finder 2.0 was used to analyze the synergistic antiplatelet effect. The compounds in GBE50 were identified by UPLC-Q/TOF-MS analysis and the candidate compounds were screened by TCMSP database. The targets of candidate compounds and aspirin were obtained in TCMSP, CCGs, Swiss target prediction database and drugbank. Targets involving platelet aggregation were obtained from GenCLiP database. Compound-target network was constructed and GO and KEGG enrichment analyses were performed to identify the critical biological processes and signaling pathways. The levels of thromboxane B2 (TXB2), cyclic adenosine monophosphate (cAMP) and PAF receptor (PAFR) were detected by ELISA to determine the effects of GBE50, aspirin and their combination on these pathways. Results GBE50 combined with aspirin inhibited platelet aggregation more effectively. The combination displayed synergistic antiplatelet effects in AA-induced platelet aggregation, and additive antiplatelet effects occurred in PAF, ADP and collagen induced platelet aggregation. Seven compounds were identified as candidate compounds in GBE50. Enrichment analyses revealed that GBE50 could interfere with platelet aggregation via cAMP pathway, AA metabolism and calcium signaling pathway, and aspirin could regulate platelet aggregation through AA metabolism and platelet activation. ELISA experiments showed that GBE50 combined with aspirin could increase cAMP levels in resting platelets, and decreased the levels of TXB2 and PAFR. Conclusion Our study indicated that GBE50 combined with aspirin could enhance the antiplatelet effects. They exerted both synergistic and additive effects in restraining platelet aggregation. The study highlighted the potential application of GBE50 as a supplementary therapy to treat thrombosis-related diseases.
Collapse
Affiliation(s)
- Jia Ke
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Meng-Ting Li
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ya-Jing Huo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yan-Qiong Cheng
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Shu-Fen Guo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yang Wu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jianpeng Ma
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, People's Republic of China
| | - Ai-Jun Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
12
|
Shih CC, Chan MV, Kirkby NS, Vojnovic I, Mitchell JA, Armstrong PC, Warner TD. Platelet inhibition by P2Y 12 antagonists is potentiated by adenosine signalling activators. Br J Pharmacol 2021; 178:4758-4771. [PMID: 34383973 DOI: 10.1111/bph.15659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE P2Y12 receptor antagonists reduce platelet aggregation and the incidence of arterial thrombosis. Adenosine signalling in platelets directly affects cyclic nucleotide tone which we have previously shown to have a synergistic relationship with P2Y12 inhibition. Several studies suggest that ticagrelor inhibits erythrocyte uptake of adenosine and that this could also contribute to its antiplatelet effects. We therefore examined the effects on platelet activation of adenosine signalling activators in combination with the P2Y12 receptor antagonists ticagrelor and prasugrel. EXPERIMENTAL APPROACH Human washed platelets, platelet-rich plasma, and whole blood were used to test the interactions between ticagrelor or prasugrel, and adenosine or 5'-N-ethylcarboxamidoadenosine (NECA). Platelet reactivity to thrombin, PAR-1 activation or collagen was assessed by a combination of 96-well plate aggregometry, light transmission aggregometry, whole blood aggregometry, ATP release assay, and levels of cAMP. KEY RESULTS The inhibitory effects of ticagrelor and prasugrel on platelet aggregation and ATP release were enhanced in the presence of adenosine or NECA. Isobolographic analysis indicated a powerful synergy between P2Y12 receptor inhibition and adenosine signalling activators. Increased levels of cAMP in platelets were also observed. In all cases, ticagrelor showed similar synergistic effects on platelet inhibition as prasugrel in the presence of adenosine or NECA. CONCLUSION AND IMPLICATIONS These results indicate that P2Y12 antagonists have a synergistic relationship with adenosine signalling and that their efficacy may depend partly upon the presence of endogenous adenosine. This effect was common to both prasugrel and ticagrelor despite reports of differences in their effects upon adenosine reuptake.
Collapse
Affiliation(s)
- Chih-Chin Shih
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Pharmacology, National Defense Medical Center, Taipei, R.O.C., Taiwan
| | - Melissa V Chan
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nicholas S Kirkby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ivana Vojnovic
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jane A Mitchell
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Paul C Armstrong
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Timothy D Warner
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
13
|
Thrombocytopenia: Effect in Ischemic and Hemorrhagic Stroke. Dimens Crit Care Nurs 2021; 40:139-148. [PMID: 33792271 DOI: 10.1097/dcc.0000000000000471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND There are 2 classification of strokes: ischemic, if caused by an arterial occlusion from a clot or obstruction by atherosclerosis, and hemorrhagic, if caused by the rupture of a vessel and subsequent bleeding. Each type of stroke is influenced by platelet counts and platelet function. The intention of this article is to discuss the role of the platelet in the pathophysiology of acute stroke processes. This serves as a prelude to discussing these processes as disrupted with thrombocytopenia (low platelet counts). Platelets initiate clot formation and obstruct blood flow through the creation of a platelet plug. They also extend the penumbra in ischemic and hemorrhagic strokes. Thrombocytopenia can be a causal factor in an ischemic stroke, a risk factor for hemorrhagic stroke, and a risk factor for hemorrhagic stroke conversion. METHODS The aims of this study were to review 1 case study that illustrates the pivotal role of the platelet in strokes and to review the aspect that was impacted by autoimmune thrombocytopenia. DISCUSSION Thrombocytopenia is a hematologic disorder not often included in stroke care discussions. Thrombocytopenia sets up strokes to occur and, paradoxically, may also set the patient up for bleeding complications in the brain or groin. CONCLUSION Acknowledging the impact of both platelet and thrombocytopenia on stroke causation, stroke interventions, and outcomes is a pivotal aspect of comprehensive stroke care. Platelet function processes are impactful in each point of the continuum of stroke care, prevention, intervention, and discharge.
Collapse
|
14
|
Mitchell JA, Kirkby NS, Ahmetaj-Shala B, Armstrong PC, Crescente M, Ferreira P, Lopes Pires ME, Vaja R, Warner TD. Cyclooxygenases and the cardiovascular system. Pharmacol Ther 2021; 217:107624. [DOI: 10.1016/j.pharmthera.2020.107624] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
|
15
|
The sodium-glucose cotransporter-2 (SGLT2) inhibitors synergize with nitric oxide and prostacyclin to reduce human platelet activation. Biochem Pharmacol 2020; 182:114276. [PMID: 33039417 DOI: 10.1016/j.bcp.2020.114276] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
Gliflozins (canagliflozin, dapagliflozin and empagliflozin) are the newest anti-hyperglycemic class and have offered cardiovascular and renal benefits. Because platelets are involved in the atherothrombosis process, this study is aimed to evaluate the direct effect of gliflozins on platelet reactivity. Platelet-rich plasma (PRP) or washed platelets (WP) were obtained from healthy volunteers. Aggregation, flow cytometry for glycoprotein IIb/IIIa, cyclic nucleotides and intracellular calcium levels, Western blot, thromboxane B2 (TXB2) measurement and COX-1 activity were performed in the presence of gliflozins (1-30 μM) alone or in combination with sodium nitroprusside (SNP, 10 or 100 nM) + iloprost (ILO, 0.1 or 1 nM). SGLT2 protein is not expressed on human platelets. Gliflozins produced little inhibitory effect in agonists-induced aggregation and this effect was greatly potentiated by ~10-fold in the presence of SNP + ILO, accompanied by lower levels of TXB2 (58.1 ± 5.1%, 47.1 ± 7.2% and 43.4 ± 9.2% inhibition for canagliflozin, dapagliflozin and empagliflozin, respectively). The activity of COX-1 was not affected by gliflozins. Collagen increased Ca2+ levels and α(IIb)β(3) activation, both of which were significantly reduced by gliflozins + SNP + ILO. The intracellular levels of cAMP and cGMP and the protein expression of p-VASPSer157 and p-VASPSer239 were not increased by gliflozins while the expression of the serine-threonine kinase, AktSer473 was markedly reduced. Our results showed that the antiplatelet activity of gliflozins were greatly enhanced by nitric oxide and prostacyclin, thus suggesting that the cardiovascular protection seen by this class of drugs could be in part due to platelet inhibition.
Collapse
|
16
|
Sumarokov AB, Buryachkovskaya LI, Docenko YV, Kurochkin MS, Lomakin NV. Clinical Significance of Thrombin Blockade with Low Doses (2.5 mg) of Rivaroxaban in Ischemic Heart Disease Patients. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2020. [DOI: 10.20996/1819-6446-2020-01-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arterial thrombosis is a result of complex interaction between blood cells, soluble coagulation factors in plasma and vessel wall. Antiplatelet drugs do not always provide the necessary antithrombotic effect of sufficient strength, because their influence does not extend to all three factors involved in this process. Low doses of direct oral inhibitors of thrombin are able to potentiate antithrombotic effect of antiplatelet therapy. The combination of rivaroxaban in a dose of 2.5 mg and standard double antiplatelet therapy turned out to be the most promising for clinical use, since studies with dabigatran and apixaban at the II and III stages of the trials were found to be unsuccessful due to the unacceptably high frequency of bleeding. Studies of the combination of rivaroxaban at a dose of 2.5 mg and standard antiplatelet therapy conducted in previous years among patients with acute myocardial infarction showed a decrease in the frequency of complications of atherothrombosis associated with their ischemic nature, while at the same time there was a slight increase in hemorrhagic complications. In the COMPASS study the combination of rivaroxaban (2.5 mg) plus aspirin reduced the risk of the primary endpoint (myocardial infarction, ischemic stroke, cardiovascular death) more significantly than aspirin alone in patients with stable ischemic heart disease and ischemic brain disease. The pathophysiological rationales for the use of low doses of rivaroxaban when added to dual antiplatelet therapy are considered, and the significance of recent studies in patients with acute coronary syndrome, stable ischemic heart disease and in the prevention of ischemic stroke is discussed.
Collapse
Affiliation(s)
| | | | | | - M. S. Kurochkin
- Central Clinical Hospital of the Presidential Administration of the Russian Federation
| | - N. V. Lomakin
- Central Clinical Hospital of the Presidential Administration of the Russian Federation
| |
Collapse
|
17
|
Transfused platelets enhance alloimmune responses to transfused KEL-expressing red blood cells in a murine model. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018; 17:368-377. [PMID: 30418129 DOI: 10.2450/2018.0178-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Factors influencing the development of alloantibodies against blood group antigens on transfused red blood cells are poorly defined. We hypothesised that transfused platelets may act as a danger signal to recipients and affect humoral immune responses to transfused red blood cells. MATERIALS AND METHODS Platelet-rich plasma prepared from wild-type C57BL/6 or CD40L knock-out donors was transfused into wild-type or CD40L knock-out recipients. Leucoreduced red blood cells from transgenic donors expressing high levels of the human KEL glycoprotein in an erythrocyte-specific manner (KELhi donors) were transfused after the platelets, and anti-KEL responses were measured longitudinally. In some experiments, recipients were treated with poly (I:C), monoclonal CD40L-blocking antibody, or CD4-depleting antibody prior to transfusion. RESULTS Transfusion of wild-type C57BL/6 platelets or treatment with poly (I:C) prior to KELhi red blood cell transfusion led to an anti-KEL alloimmune response in wild-type recipients. Transfusion of platelets from wild-type but not CD40L knock-out donors prior to KELhi red blood cell transfusion led to an IgG anti-KEL alloimmune response in CD40L knock-out recipients; unexpectedly, transfusion of platelets from CD40L knock-out donors prior to KELhi red blood cell transfusion led to a robust anti-KEL alloimmune response in wild-type recipients. Recipient treatment with MR1 CD40L-blocking antibody or CD4-depleting antibody prevented KEL alloimmunisation altogether. DISCUSSION Transfused platelets serve as an adjuvant in this T-dependent murine model of anti-KEL red blood cell alloimmunisation, with CD40/CD40L interactions being involved to some degree but with additional mechanisms also playing a role. These findings raise questions about the role that transfused or endogenous platelets may play in other innate/adaptive immune responses.
Collapse
|