1
|
Bao W, Cheng M, Chen X, Wang T, Xu D, Liao H, Chen L, Wen F, He J, Chen J. Effect of fasudil on clinical outcomes of pulmonary hypertension: a systematic review and meta-analysis. Expert Rev Clin Pharmacol 2024:1-18. [PMID: 39269366 DOI: 10.1080/17512433.2024.2404688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a life-threatening condition with high mortality, categorized into Group 1-5 by distinct etiologies. Fasudil, a potent vasodilator targeting RhoA/Rho kinase pathway, holds promise for diverse PH pathologies. However, a systematic evaluation of its clinical benefits remains elusive. METHODS We conducted a systematic search in several databases. Meta-analysis using odds ratio and mean difference was performed, with an assessment of studies' quality and pooled evidences. RESULTS Inclusion of 3269 Group-3 PH patients demonstrated that Fasudil increased effective events, forced expiratory volume in one second (FEV1), 6-minute walking distance (6MWD) and arterial partial pressure of oxygen (PaO2), and decreased mean pulmonary artery pressure (mPAP) and pulmonary artery systolic pressure (PASP); Inclusion of 197 Group-2 PH patients suggested that Fasudil increased 6MWD and PaO2, and decreased PASP. Subgroup analysis revealed no significant difference between 30 and 60 mg/day dosages of Fasudil, while administration durations and methods might affect its effectiveness in treating Group-3 PH patients. CONCLUSIONS Our study favors the beneficial effects of Fasudil by enhancing FEV1, 6MWD and PaO2, and reducing mPAP and PASP on Group-3 PH patients, suggesting Fasudil as a viable treatment option and highlighting the need for further studies to inform healthcare policies. PROTOCOL REGISTRATION www.crd.york.ac.uk/prospero identifier is CRD42022308947.
Collapse
Affiliation(s)
- Wanying Bao
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Mengxin Cheng
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoye Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Dan Xu
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Hualin Liao
- Department of Respiratory Medicine, Hospital of Chengdu office of People's Government of Tibetan Autonomous Region of China, Chengdu, Sichuan, China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Junyun He
- Department of Respiratory Medicine, Hospital of Chengdu office of People's Government of Tibetan Autonomous Region of China, Chengdu, Sichuan, China
| | - Jun Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Reddy TP, Barrios R, Bernicker E, Qian W, Chang J, Safdar Z. Use of combined chemotherapy and immunotherapy improves pulmonary arterial hypertension. Pulm Circ 2024; 14:e12426. [PMID: 39224834 PMCID: PMC11366960 DOI: 10.1002/pul2.12426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/10/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Treatment modalities for pulmonary arterial hypertension (PAH) improve quality of life and walk distance. However, none of these therapies alter the structural/functional pulmonary vascular integrity that results in vascular remodeling. PAH smooth muscle cells share biological characteristics with cancer cells, which may be potential therapeutic targets for PAH. We present a case of a patient with connective tissue disease (CTD)-associated PAH treated on triple therapy who developed metastatic lung adenocarcinoma. While on PAH triple-therapy, she received a combination of carboplatin, pemetrexed, and pembrolizumab. She eventually had a complete pathologic response, no evidence of cancer recurrence, and significant improvement of PAH/overall clinical status. After discontinuation of neoplastic therapy, her clinical status worsened, she eventually passed away, and lung biopsy findings revealed evidence of severe pulmonary smooth muscle cell hypertrophy and pulmonary veno-occlusive disease. This report suggests that combined chemotherapy and immunotherapy may influence the efficacy of PAH therapies and improve clinical status.
Collapse
Affiliation(s)
- Tejaswini P. Reddy
- Texas A&M University School of MedicineBryanTexasUSA
- Houston Methodist Research InstituteHoustonTexasUSA
| | - Roberto Barrios
- Department of Pathology and Genomic MedicineHouston Methodist HospitalHoustonTexasUSA
| | | | - Wei Qian
- Houston Methodist Research InstituteHoustonTexasUSA
| | - Jenny Chang
- Houston Methodist Research InstituteHoustonTexasUSA
- Houston Methodist Neal Cancer CenterHoustonTexasUSA
| | - Zeenat Safdar
- Houston Methodist Research InstituteHoustonTexasUSA
- Pulmonary Hypertension Center at Houston Methodist Lung CenterHouston Methodist Hospital, Weill Cornell College of MedicineHoustonTexasUSA
| |
Collapse
|
3
|
Correale M, Chirivì F, Bevere EML, Tricarico L, D’Alto M, Badagliacca R, Brunetti ND, Vizza CD, Ghio S. Endothelial Function in Pulmonary Arterial Hypertension: From Bench to Bedside. J Clin Med 2024; 13:2444. [PMID: 38673717 PMCID: PMC11051060 DOI: 10.3390/jcm13082444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Pulmonary arterial hypertension is a complex pathology whose etiology is still not completely well clarified. The pathogenesis of pulmonary arterial hypertension involves different molecular mechanisms, with endothelial dysfunction playing a central role in disease progression. Both individual genetic predispositions and environmental factors seem to contribute to its onset. To further understand the complex relationship between endothelial and pulmonary hypertension and try to contribute to the development of future therapies, we report a comprehensive and updated review on endothelial function in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Michele Correale
- Cardiothoracic Department, Policlinico Riuniti University Hospital, 71100 Foggia, Italy;
| | - Francesco Chirivì
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Ester Maria Lucia Bevere
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Lucia Tricarico
- Cardiothoracic Department, Policlinico Riuniti University Hospital, 71100 Foggia, Italy;
| | - Michele D’Alto
- Department of Cardiology, A.O.R.N. dei Colli, Monaldi Hospital, University of Campania L. ‘Vanvitelli’, 80133 Naples, Italy;
| | - Roberto Badagliacca
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.B.); (C.D.V.)
| | - Natale D. Brunetti
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Carmine Dario Vizza
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.B.); (C.D.V.)
| | - Stefano Ghio
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
4
|
Wilson BK, Sadowski CK, Baeten RG. A clinician's guide to pulmonary hypertension. JAAPA 2024; 37:12-18. [PMID: 38484294 DOI: 10.1097/01.jaa.0001007360.09090.5f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
ABSTRACT Despite advances in diagnosis and treatment, pulmonary hypertension has high morbidity and mortality. The presenting symptoms often are vague and may mimic other more common diseases, so patients can be misdiagnosed or missed early in the disease process. Early detection of pulmonary hypertension by primary care providers can play an important role in patient outcomes and survival. Identifying signs and symptoms, understanding the causes and classifications, and knowing the systematic approach to evaluating and diagnosing patients with suspected pulmonary hypertension are key to preventing premature patient decline.
Collapse
Affiliation(s)
- Bailey K Wilson
- Bailey K. Wilson practices at Wellstar Colon Rectal in Roswell, Ga. Catherine K. Sadowski is a clinical associate professor in the PA program at Mercer University in Atlanta, Ga. Robert G. Baeten is a clinical assistant professor in the PA program at Mercer University and practices in cardiac critical care at Northside Hospital in Canton, Ga. The authors have disclosed no potential conflicts of interest, financial or otherwise
| | | | | |
Collapse
|
5
|
Yan X, Huang J, Zeng Y, Zhong X, Fu Y, Xiao H, Wang X, Lian H, Luo H, Li D, Guo R. CGRP attenuates pulmonary vascular remodeling by inhibiting the cGAS-STING-NFκB pathway in pulmonary arterial hypertension. Biochem Pharmacol 2024; 222:116093. [PMID: 38408681 DOI: 10.1016/j.bcp.2024.116093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Hyperproliferation, inflammation, and mitochondrial abnormalities in pulmonary artery smooth muscle cells (PASMCs) underlie the pathological mechanisms of vascular remodeling in pulmonary arterial hypertension (PAH). Cytoplasmic mtDNA activates the cGAS-STING-NFκB pathway and secretes pro-inflammatory cytokines that may be involved in the pathogenesis of PAH. Calcitonin gene-related peptide (CGRP) acts as a vasodilator to regulate patterns of cellular energy metabolism and has vasodilatory and anti-inflammatory effects. METHODS The role of the cGAS-STING-NFκB signaling pathway in PAH vascular remodeling and the regulation of CGRP in the cGAS-STING-NFκB signaling pathway were investigated by echocardiography, morphology, histology, enzyme immunoassay, and fluorometry. RESULTS Monocrotaline (MCT) could promote right heart hypertrophy, pulmonary artery intima thickening, and inflammatory cell infiltration in rats. Cinnamaldehyde (CA)-induced CGRP release alleviates MCT-induced vascular remodeling in PAH. CGRP reduces PDGF-BB-induced proliferation, and migration, and downregulates smooth muscle cell phenotypic proteins. In vivo and in vitro experiments confirm that the mitochondria of PASMCs were damaged during PAH, and the superoxide and mtDNA produced by injured mitochondria activate the cGAS-STING-NFκB pathway to promote PAH process, while CGRP could play an anti-PAH role by protecting the mitochondria and inhibiting the cGAS-STING-NFκB pathway through PKA. CONCLUSION This study identifies that CGRP attenuates cGAS-STING-NFκB axis-mediated vascular remodeling in PAH through PKA.
Collapse
Affiliation(s)
- Xin Yan
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Jun Huang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xuefeng Zhong
- Phase Ⅰ Clinical Trial Center, The Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yangxia Fu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Haiyan Xiao
- Phase Ⅰ Clinical Trial Center, The Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xia Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Huilin Lian
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Hui Luo
- Department of Anesthesiology, The Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Dai Li
- Phase Ⅰ Clinical Trial Center, The Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
6
|
Gillies H, Chakinala MM, Dake BT, Feldman JP, Hoeper MM, Humbert M, Jing Z, Langley J, McLaughlin VV, Niven RW, Rosenkranz S, Zhang X, Hill NS. IMPAHCT: A randomized phase 2b/3 study of inhaled imatinib for pulmonary arterial hypertension. Pulm Circ 2024; 14:e12352. [PMID: 38532768 PMCID: PMC10963589 DOI: 10.1002/pul2.12352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
AV-101 (imatinib) powder for inhalation, an investigational dry powder inhaled formulation of imatinib designed to target the underlying pathobiology of pulmonary arterial hypertension, was generally well tolerated in healthy adults in a phase 1 single and multiple ascending dose study. Inhaled Imatinib Pulmonary Arterial Hypertension Clinical Trial (IMPAHCT; NCT05036135) is a phase 2b/3, randomized, double-blind, placebo-controlled, dose-ranging, and confirmatory study. IMPAHCT is designed to identify an optimal AV-101 dose (phase 2b primary endpoint: pulmonary vascular resistance) and assess the efficacy (phase 3 primary endpoint: 6-min walk distance), safety, and tolerability of AV-101 dose levels in subjects with pulmonary arterial hypertension using background therapies. The study has an operationally seamless, adaptive design allowing for continuous recruitment. It includes three parts; subjects enrolled in Part 1 (phase 2b dose-response portion) or Part 2 (phase 3 intermediate portion) will be randomized 1:1:1:1 to 10, 35, 70 mg AV-101, or placebo (twice daily), respectively. Subjects enrolled in Part 3 (phase 3 optimal dose portion) will be randomized 1:1 to the optimal dose of AV-101 and placebo (twice daily), respectively. All study parts include a screening period, a 24-week treatment period, and a 30-day safety follow-up period; the total duration is ∼32 weeks. Participation is possible in only one study part. IMPAHCT has the potential to advance therapies for patients with pulmonary arterial hypertension by assessing the efficacy and safety of a novel investigational drug-device combination (AV-101) using an improved study design that has the potential to save 6-12 months of development time. ClinicalTrials.gov Identifier: NCT05036135.
Collapse
Affiliation(s)
| | - Murali M. Chakinala
- Division of Pulmonary and Critical Care MedicineWashington University in St. LouisSt. LouisMissourIUSA
| | | | | | - Marius M. Hoeper
- Department of Respiratory Medicine and Infectious DiseasesHannover Medical SchoolHannoverGermany
- German Center for Lung Research (DZL)Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH)HannoverGermany
| | - Marc Humbert
- Service de Pneumologieet Soins Intensifs Respiratoires, Assistance Publique Hôpitaux de Paris, Hôpital BicêtreUniversité Paris–Saclay, INSERMUMR_S 999Le Kremlin‐BicêtreFrance
| | - Zhi‐Cheng Jing
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical SciencesSouthern Medical UniversityGuangzhouChina
| | | | - Vallerie V. McLaughlin
- Cardiology Clinic, Frankel Cardiovascular CenterUniversity of MichiganAnn ArborMichiganUSA
| | | | - Stephan Rosenkranz
- Department of Internal Medicine III, Cologne Cardiovascular Research Center, Heart CenterUniversityof CologneCologneGermany
| | | | - Nicholas S. Hill
- Pulmonary Critical Care and Sleep DivisionTufts Medical CenterBostonMassachusettsUSA
| |
Collapse
|
7
|
Boucetta H, Zhang L, Sosnik A, He W. Pulmonary arterial hypertension nanotherapeutics: New pharmacological targets and drug delivery strategies. J Control Release 2024; 365:236-258. [PMID: 37972767 DOI: 10.1016/j.jconrel.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, serious, and incurable disease characterized by high lung pressure. PAH-approved drugs based on conventional pathways are still not exhibiting favorable therapeutic outcomes. Drawbacks like short half-lives, toxicity, and teratogenicity hamper effectiveness, clinical conventionality, and long-term safety. Hence, approaches like repurposing drugs targeting various and new pharmacological cascades and/or loaded in non-toxic/efficient nanocarrier systems are being investigated lately. This review summarizes the status of conventional, repurposed, either in vitro, in vivo, and/or in clinical trials of PAH treatment. In-depth description, discussion, and classification of the new pharmacological targets and nanomedicine strategies with a description of all the nanocarriers that showed promising efficiency in delivering drugs are discussed. Ultimately, an illustration of the different nucleic acids tailored and nanoencapsulated within different types of nanocarriers to restore the pathways affected by this disease is presented.
Collapse
Affiliation(s)
- Hamza Boucetta
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Lei Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| |
Collapse
|
8
|
Zhong HL, Li PZ, Li D, Guan CX, Zhou Y. The role of vasoactive intestinal peptide in pulmonary diseases. Life Sci 2023; 332:122121. [PMID: 37742737 DOI: 10.1016/j.lfs.2023.122121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Vasoactive intestinal peptide (VIP) is an abundant neurotransmitter in the lungs and other organs. Its discovery dates back to 1970. And VIP gains attention again due to the potential application in COVID-19 after a research wave in the 1980s and 1990s. The diverse biological impacts of VIP extend beyond its usage in COVID-19 treatment, encompassing its involvement in various pulmonary and systemic disorders. This review centers on the function of VIP in various lung diseases, such as pulmonary arterial hypertension, chronic obstructive pulmonary disease, asthma, cystic fibrosis, acute lung injury/acute respiratory distress syndrome, pulmonary fibrosis, and lung tumors. This review also outlines two main limitations of VIP as a potential medication and gathers information on extended-release formulations and VIP analogues.
Collapse
Affiliation(s)
- Hong-Lin Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Pei-Ze Li
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Di Li
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
9
|
Wei S, Lin L, Jiang W, Chen J, Gong G, Sui D. Naked cuticle homolog 1 prevents mouse pulmonary arterial hypertension via inhibition of Wnt/β-catenin and oxidative stress. Aging (Albany NY) 2023; 15:11114-11130. [PMID: 37857014 PMCID: PMC10637826 DOI: 10.18632/aging.205105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a poorly prognostic cardiopulmonary disease characterized by abnormal contraction and remodeling of pulmonary artery (PA). Excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) are considered as the major etiology of PA remodeling. As a negative regulator of Wnt/β-catenin pathway, naked cuticle homolog 1 (NKD1) is originally involved in the tumor growth and metastasis via affecting the proliferation and migration of different types of cancer cells. However, the effect of NKD1 on PAH development has not been investigated. In the current study, downregulated NKD1 was identified in hypoxia-challenged PASMCs. NKD1 overexpression by adenovirus carrying vector encoding Nkd1 (Ad-Nkd1) repressed hypoxia-induced proliferation and migration of PASMCs. Mechanistically, upregulating NKD1 inhibited excessive reactive oxygen species (ROS) generation and β-catenin expression in PASMCs after hypoxia stimulus. Both inducing ROS and recovering β-catenin expression abolished NKD1-mediated suppression of proliferation and migration in PASMCs. In vivo, we also observed decreased expression of NKD1 in dissected PAs of monocrotaline (MCT)-induced PAH model. Upregulating NKD1 by Ad-Nkd1 transfection attenuated the increase in right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), pulmonary vascular wall thickening, and vascular β-catenin expression after MCT treatment. After recovering β-catenin expression by SKL2001, the vascular protection of external expression of NKD1 was also abolished. Taken together, our data suggest that NKD1 inhibits the proliferation, migration of PASMC, and PAH via inhibition of β-catenin and oxidative stress. Thus, targeting NKD1 may provide novel insights into the prevention and treatment of PAH.
Collapse
Affiliation(s)
- Shanwu Wei
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Lu Lin
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Wen Jiang
- Department of Outpatient, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Jie Chen
- Department of Cardiac Surgery, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Gu Gong
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Daming Sui
- Department of Pain Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|
10
|
Zhao Y, Li C, Zhang S, Cheng J, Liu Y, Han X, Wang Y, Wang Y. Inhaled nitric oxide: can it serve as a savior for COVID-19 and related respiratory and cardiovascular diseases? Front Microbiol 2023; 14:1277552. [PMID: 37849924 PMCID: PMC10577426 DOI: 10.3389/fmicb.2023.1277552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Nitric oxide (NO), as an important gaseous medium, plays a pivotal role in the human body, such as maintaining vascular homeostasis, regulating immune-inflammatory responses, inhibiting platelet aggregation, and inhibiting leukocyte adhesion. In recent years, the rapid prevalence of coronavirus disease 2019 (COVID-19) has greatly affected the daily lives and physical and mental health of people all over the world, and the therapeutic efficacy and resuscitation strategies for critically ill patients need to be further improved and perfected. Inhaled nitric oxide (iNO) is a selective pulmonary vasodilator, and some studies have demonstrated its potential therapeutic use for COVID-19, severe respiratory distress syndrome, pulmonary infections, and pulmonary hypertension. In this article, we describe the biochemistry and basic characteristics of NO and discuss whether iNO can act as a "savior" for COVID-19 and related respiratory and cardiovascular disorders to exert a potent clinical protective effect.
Collapse
Affiliation(s)
- Yifan Zhao
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Cheng Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Shuai Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Jiayu Cheng
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Yucheng Liu
- Department of Family and Community Medicine, Feinberg School of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, United States
| | - Xiaorong Han
- Department of Special Care Center, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yinghui Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Wang LJ, Feng F, Li JC, Chen TT, Liu LP. Role of heparanase in pulmonary hypertension. Front Pharmacol 2023; 14:1202676. [PMID: 37637421 PMCID: PMC10450954 DOI: 10.3389/fphar.2023.1202676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Pulmonary hypertension (PH) is a pathophysiological condition of increased pulmonary circulation vascular resistance due to various reasons, which mainly leads to right heart dysfunction and even death, especially in critically ill patients. Although drug interventions have shown some efficacy in improving the hemodynamics of PH patients, the mortality rate remains high. Hence, the identification of new targets and treatment strategies for PH is imperative. Heparanase (HPA) is an enzyme that specifically cleaves the heparan sulfate (HS) side chains in the extracellular matrix, playing critical roles in inflammation and tumorigenesis. Recent studies have indicated a close association between HPA and PH, suggesting HPA as a potential therapeutic target. This review examines the involvement of HPA in PH pathogenesis, including its effects on endothelial cells, inflammation, and coagulation. Furthermore, HPA may serve as a biomarker for diagnosing PH, and the development of HPA inhibitors holds promise as a targeted therapy for PH treatment.
Collapse
Affiliation(s)
- Lin-Jun Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Fei Feng
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Jian-Chun Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Ting-Ting Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Li-Ping Liu
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
- Departments of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
12
|
Drummond FR, Soares LL, Leal TF, Leite LB, Rezende LMT, Fidelis MR, Lavorato VN, Miranda DC, Carneiro-Júnior MA, Neves MM, Alberici LC, Carlo Reis EC, Neves CA, Natali AJ. Effects of voluntary running on the skeletal muscle of rats with pulmonary artery hypertension. Front Physiol 2023; 14:1206484. [PMID: 37469567 PMCID: PMC10352770 DOI: 10.3389/fphys.2023.1206484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
The effects of voluntary running on the skeletal muscle of rats with pulmonary arterial hypertension (PAH) were tested in the present study. PAH was induced in rats by a single injection of monocrotaline (MCT, 60 mg/kg). Rats in the sedentary hypertension (HS) group had their tolerance to physical exertion reduced throughout the experiment, while those in the sedentary control (SC), exercise control (EC), exercise hypertension (EH) and median exercise (EM) groups maintained or increased. Despite that, the muscular citrate synthase activity was not different between groups. The survival time was higher in the EH (32 days) than in the SH (28 days) (p = 0.0032). SH and EH groups showed a lower percentage of muscle fiber and a higher percentage of extracellular matrix compared to control groups (p < 0.0001). However, the EM and EH groups presented higher percentage of muscle fiber and lower percentage of extracellular matrix than SH group (p < 0.0001). Regarding muscular gene expression, the SH and EM groups showed a lower expression of PGC1-α (p = 0.0024) and a higher expression of VEGF (p = 0.0033) compared to SC, while PGC1-α was elevated in the EH. No difference between groups was found for the carbonylated protein levels (p > 0.05), while the TNF-α/IL-10 ratio was augmented in the EH (p = 0.0277). In conclusion, voluntary running augments the proportion of fiber and affects the gene expression of inflammatory and mitochondrial biogenesis' markers in the skeletal muscle of rats with MCT-induced PAH, which benefits their survival and tolerance to physical effort.
Collapse
Affiliation(s)
- Filipe Rios Drummond
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Leôncio Lopes Soares
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, Brazil
| | - Tiago Ferreira Leal
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, Brazil
| | - Luciano Bernardes Leite
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, Brazil
| | | | - Meilene Ribeiro Fidelis
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, Brazil
| | - Victor Neiva Lavorato
- Department of Physical Education, Governador Ozanam Coelho University Center (UNIFAGOC), Ubá, Minas Gerais, Brazil
| | - Denise Coutinho Miranda
- Department of Physical Education, Governador Ozanam Coelho University Center (UNIFAGOC), Ubá, Minas Gerais, Brazil
| | | | - Mariana Machado Neves
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Luciane Carla Alberici
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | | | - Clovis Andrade Neves
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Antônio José Natali
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, Brazil
| |
Collapse
|
13
|
Liu R, Yuan T, Wang R, Gong D, Wang S, Du G, Fang L. Insights into Endothelin Receptors in Pulmonary Hypertension. Int J Mol Sci 2023; 24:10206. [PMID: 37373355 DOI: 10.3390/ijms241210206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Pulmonary hypertension (PH) is a disease which affects the cardiopulmonary system; it is defined as a mean pulmonary artery pressure (mPAP) > 20 mmHg as measured by right heart catheterization at rest, and is caused by complex and diverse mechanisms. In response to stimuli such as hypoxia and ischemia, the expression and synthesis of endothelin (ET) increase, leading to the activation of various signaling pathways downstream of it and producing effects such as the induction of abnormal vascular proliferation during the development of the disease. This paper reviews the regulation of endothelin receptors and their pathways in normal physiological processes and disease processes, and describes the mechanistic roles of ET receptor antagonists that are currently approved and used in clinical studies. Current clinical researches on ET are focused on the development of multi-target combinations and novel delivery methods to improve efficacy and patient compliance while reducing side effects. In this review, future research directions and trends of ET targets are described, including monotherapy and precision medicine.
Collapse
Affiliation(s)
- Ruiqi Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianyi Yuan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ranran Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Difei Gong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shoubao Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
14
|
He Z, Chang T, Chen Y, Wang H, Dai L, Zeng H. PARM1 Drives Smooth Muscle Cell Proliferation in Pulmonary Arterial Hypertension via AKT/FOXO3A Axis. Int J Mol Sci 2023; 24:ijms24076385. [PMID: 37047359 PMCID: PMC10094810 DOI: 10.3390/ijms24076385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/25/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a group of severe, progressive, and debilitating diseases with limited therapeutic options. This study aimed to explore novel therapeutic targets in PAH through bioinformatics and experiments. Weighted gene co-expression network analysis (WGCNA) was applied to detect gene modules related to PAH, based on the GSE15197, GSE113439, and GSE117261. GSE53408 was applied as validation set. Subsequently, the validated most differentially regulated hub gene was selected for further ex vivo and in vitro assays. PARM1, TSHZ2, and CCDC80 were analyzed as potential intervention targets for PAH. Consistently with the bioinformatic results, our ex vivo and in vitro data indicated that PARM1 expression increased significantly in the lung tissue and/or pulmonary artery of the MCT-induced PAH rats and hypoxia-induced PAH mice in comparison with the respective controls. Besides, a similar expression pattern of PARM1 was found in the hypoxia- and PDGF--treated isolated rat primary pulmonary arterial smooth muscle cells (PASMCs). In addition, hypoxia/PDGF--induced PARM1 protein expression could promote the elevation of phosphorylation of AKT, phosphorylation of FOXO3A and PCNA, and finally the proliferation of PASMCs in vitro, whereas PARM1 siRNA treatment inhibited it. Mechanistically, PARM1 promoted PAH via AKT/FOXO3A/PCNA signaling pathway-induced PASMC proliferation.
Collapse
|
15
|
New Drugs and Therapies in Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24065850. [PMID: 36982922 PMCID: PMC10058689 DOI: 10.3390/ijms24065850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Pulmonary arterial hypertension is a chronic, progressive disorder of the pulmonary vasculature with associated pulmonary and cardiac remodeling. PAH was a uniformly fatal disease until the late 1970s, but with the advent of targeted therapies, the life expectancy of patients with PAH has now considerably improved. Despite these advances, PAH inevitably remains a progressive disease with significant morbidity and mortality. Thus, there is still an unmet need for the development of new drugs and other interventional therapies for the treatment of PAH. One shortcoming of currently approved vasodilator therapies is that they do not target or reverse the underlying pathogenesis of the disease process itself. A large body of evidence has evolved in the past two decades clarifying the role of genetics, dysregulation of growth factors, inflammatory pathways, mitochondrial dysfunction, DNA damage, sex hormones, neurohormonal pathways, and iron deficiency in the pathogenesis of PAH. This review focuses on newer targets and drugs that modify these pathways as well as novel interventional therapies in PAH.
Collapse
|
16
|
Zeng Z, Wang X, Cui L, Wang H, Guo J, Chen Y. Natural Products for the Treatment of Pulmonary Hypertension: Mechanism, Progress, and Future Opportunities. Curr Issues Mol Biol 2023; 45:2351-2371. [PMID: 36975522 PMCID: PMC10047369 DOI: 10.3390/cimb45030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Pulmonary hypertension (PH) is a lethal disease due to the remodeling of pulmonary vessels. Its pathophysiological characteristics include increased pulmonary arterial pressure and pulmonary vascular resistance, leading to right heart failure and death. The pathological mechanism of PH is complex and includes inflammation, oxidative stress, vasoconstriction/diastolic imbalance, genetic factors, and ion channel abnormalities. Currently, many clinical drugs for the treatment of PH mainly play their role by relaxing pulmonary arteries, and the treatment effect is limited. Recent studies have shown that various natural products have unique therapeutic advantages for PH with complex pathological mechanisms owing to their multitarget characteristics and low toxicity. This review summarizes the main natural products and their pharmacological mechanisms in PH treatment to provide a useful reference for future research and development of new anti-PH drugs and their mechanisms.
Collapse
Affiliation(s)
- Zuomei Zeng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyue Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lidan Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongjuan Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (J.G.); (Y.C.)
| | - Yucai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (J.G.); (Y.C.)
| |
Collapse
|
17
|
Gillies H, Niven R, Dake BT, Chakinala MM, Feldman JP, Hill NS, Hoeper MM, Humbert M, McLaughlin VV, Kankam M. AV-101, a novel inhaled dry-powder formulation of imatinib, in healthy adult participants: a phase 1 single and multiple ascending dose study. ERJ Open Res 2023; 9:00433-2022. [PMID: 36923571 PMCID: PMC10009698 DOI: 10.1183/23120541.00433-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/16/2022] [Indexed: 11/12/2022] Open
Abstract
Background Oral imatinib has been shown to be effective, but poorly tolerated, in patients with advanced pulmonary arterial hypertension (PAH). To maintain efficacy while improving tolerability, AV-101, a dry powder inhaled formulation of imatinib, was developed to deliver imatinib directly to the lungs. Methods This phase 1, placebo-controlled, randomised single ascending dose (SAD) and multiple ascending dose (MAD) study evaluated the safety/tolerability and pharmacokinetics of AV-101 in healthy adults. The SAD study included five AV-101 cohorts (1 mg, 3 mg, 10 mg, 30 mg, 90 mg) and placebo, and a single-dose oral imatinib 400-mg cohort. The MAD study included three AV-101 cohorts (10 mg, 30 mg, 90 mg) and placebo; dosing occurred twice daily for 7 days. Results 82 participants (SAD n=48, MAD n=34) were enrolled. For the SAD study, peak plasma concentrations of imatinib occurred within 3 h of dosing with lower systemic exposure compared to oral imatinib (p<0.001). For the MAD study, systemic exposure of imatinib was higher after multiple doses of AV-101 compared to a single dose, but steady-state plasma concentrations were lower for the highest AV-101 cohort (90 mg) compared to simulated steady-state oral imatinib at day 7 (p=0.0002). Across AV-101 MAD dose cohorts, the most common treatment-emergent adverse events were cough (n=7, 27%) and headache (n=4, 15%). Conclusions AV-101 was well tolerated in healthy adults, and targeted doses of AV-101 significantly reduced the systemic exposure of imatinib compared with oral imatinib. An ongoing phase 2b/phase 3 study (IMPAHCT; clinicaltrials.gov identifier NCT05036135) will evaluate the safety/tolerability and clinical benefit of AV-101 for PAH.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicholas S Hill
- Pulmonary Critical Care and Sleep Division, Tufts Medical Center, Boston, MA, USA
| | - Marius M Hoeper
- Respiratory Medicine, Hannover Medical School and German Centre of Lung Research, Hannover, Germany
| | - Marc Humbert
- Université Paris-Saclay, INSERM, Assistance Publique Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | | | - Martin Kankam
- Altasciences Clinical Kansas, Inc., Overland Park, KS, USA
| |
Collapse
|
18
|
Zhang W, Liu B, Wang Y, Zhang H, He L, Wang P, Dong M. Mitochondrial dysfunction in pulmonary arterial hypertension. Front Physiol 2022; 13:1079989. [PMID: 36589421 PMCID: PMC9795033 DOI: 10.3389/fphys.2022.1079989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/29/2022] [Indexed: 01/03/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by the increased pulmonary vascular resistance due to pulmonary vasoconstriction and vascular remodeling. PAH has high disability, high mortality and poor prognosis, which is becoming a more common global health issue. There is currently no drug that can permanently cure PAH patients. The pathogenesis of PAH is still not fully elucidated. However, the role of metabolic theory in the pathogenesis of PAH is becoming clearer, especially mitochondrial metabolism. With the deepening of mitochondrial researches in recent years, more and more studies have shown that the occurrence and development of PAH are closely related to mitochondrial dysfunction, including the tricarboxylic acid cycle, redox homeostasis, enhanced glycolysis, and increased reactive oxygen species production, calcium dysregulation, mitophagy, etc. This review will further elucidate the relationship between mitochondrial metabolism and pulmonary vasoconstriction and pulmonary vascular remodeling. It might be possible to explore more comprehensive and specific treatment strategies for PAH by understanding these mitochondrial metabolic mechanisms.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital (The Second Clinical Medical College Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Bo Liu
- Department of Cardiovascular, Geratric Diseases Institute of Chengdu, Chengdu Fifth People’s Hospital (The Second Clinical Medical College Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Yazhou Wang
- Department of Cardiothoracic, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital (The Second Clinical Medical College Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Hengli Zhang
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital (The Second Clinical Medical College Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Lang He
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital (The Second Clinical Medical College Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China,Correspondence: Mingqing Dong, ; Lang He, ; Pan Wang,
| | - Pan Wang
- Department of Critical Care Medicine, The Traditional Chinese Medicine Hospital of Wenjiang District, Chengdu, China,Correspondence: Mingqing Dong, ; Lang He, ; Pan Wang,
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China,Correspondence: Mingqing Dong, ; Lang He, ; Pan Wang,
| |
Collapse
|
19
|
Strategizing Drug Therapies in Pulmonary Hypertension for Improved Outcomes. Pharmaceuticals (Basel) 2022; 15:ph15101242. [PMID: 36297354 PMCID: PMC9609426 DOI: 10.3390/ph15101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 01/19/2023] Open
Abstract
Pulmonary hypertension (PH) is characterized by a resting mean pulmonary artery pressure (PAP) of 20 mmHg or more and is a disease of multiple etiologies. Of the various types of PH, pulmonary arterial hypertension (PAH) is characterized by elevated resistance in the pulmonary arterial tree. It is a rare but deadly disease characterized by vascular remodeling of the distal pulmonary arteries. This paper focuses on PAH diagnosis and management including current and future treatment options. Over the last 15 years, our understanding of this progressive disease has expanded from the concept of vasoconstrictive/vasodilatory mismatch in the pulmonary arterioles to now a better appreciation of the role of genetic determinants, numerous cell signaling pathways, cell proliferation and apoptosis, fibrosis, thrombosis, and metabolic abnormalities. While knowledge of its pathophysiology has expanded, the majority of the treatments available today still modulate the same three vasodilatory pathways that have been targeted for over 30 years (endothelin, nitric oxide, and prostacyclin). While modifying these pathways may help improve symptoms and quality of life, none of these directly modify the underlying disease pathogenesis. However, there are now studies ongoing with new drugs that can prevent or reverse these underlying causes of PAH. This review discusses the evidence base for the current treatment algorithms for PAH, as well as discusses novel therapies in development.
Collapse
|
20
|
FAM171B as a Novel Biomarker Mediates Tissue Immune Microenvironment in Pulmonary Arterial Hypertension. Mediators Inflamm 2022; 2022:1878766. [PMID: 36248192 PMCID: PMC9553458 DOI: 10.1155/2022/1878766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to uncover potential diagnostic indicators of pulmonary arterial hypertension (PAH), evaluate the function of immune cells in the pathogenesis of the disease, and find innovative treatment targets and medicines with the potential to enhance prognosis. Gene Expression Omnibus was utilized to acquire the PAH datasets. We recognized differentially expressed genes (DEGs) and investigated their functions utilizing R software. Weighted gene coexpression network analysis, least absolute shrinkage and selection operators, and support vector machines were used to identify biomarkers. The extent of immune cell infiltration in the normal and PAH tissues was determined using CIBERSORT. Additionally, the association between diagnostic markers and immune cells was analyzed. In this study, 258DEGs were used to analyze the disease ontology. Most DEGs were linked with atherosclerosis, arteriosclerotic cardiovascular disease, and lung disease, including obstructive lung disease. Gene set enrichment analysis revealed that compared to normal samples, results from PAH patients were mostly associated with ECM-receptor interaction, arrhythmogenic right ventricular cardiomyopathy, the Wnt signaling pathway, and focal adhesion. FAM171B was identified as a biomarker for PAH (area under the curve = 0.873). The mechanism underlying PAH may be mediated by nave CD4 T cells, resting memory CD4 T cells, resting NK cells, monocytes, activated dendritic cells, resting mast cells, and neutrophils, according to an investigation of immune cell infiltration. FAM171B expression was also associated with resting mast cells, monocytes, and CD8 T cells. The results suggest that PAH may be closely related to FAM171B with high diagnostic performance and associated with immune cell infiltration, suggesting that FAM171B may promote the progression of PAH by stimulating immune infiltration and immune response. This study provides valuable insights into the pathogenesis and treatment of PAH.
Collapse
|
21
|
Inhibition of Bruton’s Tyrosine Kinase Alleviates Monocrotaline-Induced Pulmonary Arterial Hypertension by Modulating Macrophage Polarization. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6526036. [PMID: 36071873 PMCID: PMC9444460 DOI: 10.1155/2022/6526036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
Macrophage accumulation and activation contribute to the development of pulmonary arterial hypertension (PAH), while Bruton's tyrosine kinase (BTK) is an important regulator for the activation and polarization of macrophage. However, the role of BTK in PAH remains unknown. In the present study, a selective BTK inhibitor (BTKi) BGB-3111 was applied to investigate the role of BTK in monocrotaline- (MCT-) induced PAH rat and phorbol myristate acetate- (PMA-) differentiated U937 macrophages. Our results showed that BTK was mainly distributed and upregulated in CD68+ macrophages in the lungs of PAH rats. Daily treated with BTKi BGB-3111 alleviated MCT-induced PAH, as indicated by the decrease in right ventricular systolic pressure (RVSP), attenuation in right ventricle hypertrophy and pulmonary vascular remodeling, reduction in perivascular collagen deposition, as well as inhibition of inflammation and endothelial-to-mesenchymal transition (EndMT) in the lung. Moreover, BTK inhibition suppressed MCT-induced recruitment of macrophages, especially the classical activated macrophages (M1) in the lung. In vitro, BGB-3111 significantly suppressed lipopolysaccharide- (LPS-) induced M1 polarization and proinflammatory cytokine production in U937-derived macrophages. The underlying mechanism is associated with the inhibition of NF-κB/MAPK pathways and nucleotide-binding oligomerization domain-like receptor with pyrin domain 3 (NLRP3) inflammasome activation. Furthermore, macrophage conditioned medium (CM) from LPS-induced M1 macrophages promoted migration and EndMT of HPAECs, while CM from BGB-3111-pretreated LPS-induced M1 macrophages failed to induce this response. These findings suggest that BTK inhibition alleviates PAH by regulating macrophage recruitment and polarization and may be a potential therapeutic strategy for the treatment of PAH.
Collapse
|
22
|
Yang Z, Zhou L, Ge H, Shen W, Shan L. Identification of autophagy-related biomarkers in patients with pulmonary arterial hypertension based on bioinformatics analysis. Open Med (Wars) 2022; 17:1148-1157. [PMID: 35859795 PMCID: PMC9263897 DOI: 10.1515/med-2022-0497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/15/2022] Open
Abstract
Autophagy participates in the regulation of pulmonary arterial hypertension (PAH). However, the role of autophagy-related genes (ARGs) in the pathogenesis of the PAH is still unclear. This study aimed to identify the ARGs in PAH via bioinformatics analysis. A microarray dataset (GSE113439) was downloaded from the Gene Expression Omnibus database to identify differentially expressed ARGs (DEARGs). Protein–protein interactions network, gene ontology, and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to screen hub genes and the underlying molecular mechanisms of PAH. Finally, the mRNA expression of the hub genes was validated using the GSE53408 dataset. Twenty-six DEARGs were identified, all of which were upregulated. Enrichment analyses revealed that these DEARGs were mainly enriched in the nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway, PI3K-Akt signaling pathway, response to hypoxia, response to nutrient levels, and autophagy. Among these hub genes, the mRNA expression levels of HSP90AA1, HIF1A, MET, IGF1, LRRK2, CLTC, DNM1L, MDM2, RICTOR, and ROCK2 were significantly upregulated in PAH patients than in healthy individuals. Ten hub DEARGs were identified and may participate in the pathogenesis of the PAH via the regulation of autophagy. The present study may provide novel therapeutic targets for PAH prevention and treatment and expand our understanding of PAH.
Collapse
Affiliation(s)
- Zhisong Yang
- Department of Emergency, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, China
| | - Li Zhou
- Department of Emergency, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, China
| | - Haiyan Ge
- Department of Respiratory Medicine, Shanghai Huadong Hospital, Shanghai 200040, China
| | - Weimin Shen
- Department of Respiratory Medicine, Shanghai Huadong Hospital, Shanghai 200040, China
| | - Lin Shan
- Department of Respiratory Medicine, Shanghai Huadong Hospital, Shanghai 200040, China
| |
Collapse
|
23
|
Oxidative Stress and Antioxidative Therapy in Pulmonary Arterial Hypertension. Molecules 2022; 27:molecules27123724. [PMID: 35744848 PMCID: PMC9229274 DOI: 10.3390/molecules27123724] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is clinically characterized by a progressive increase in pulmonary artery pressure, followed by right ventricular hypertrophy and subsequently right heart failure. The underlying mechanism of PAH includes endothelial dysfunction and intimal smooth muscle proliferation. Numerous studies have shown that oxidative stress is critical in the pathophysiology of PAH and involves changes in reactive oxygen species (ROS), reactive nitrogen (RNS), and nitric oxide (NO) signaling pathways. Disrupted ROS and NO signaling pathways cause the proliferation of pulmonary arterial endothelial cells (PAECs) and pulmonary vascular smooth muscle cells (PASMCs), resulting in DNA damage, metabolic abnormalities, and vascular remodeling. Antioxidant treatment has become a main area of research for the treatment of PAH. This review mainly introduces oxidative stress in the pathogenesis of PAH and antioxidative therapies and explains why targeting oxidative stress is a valid strategy for PAH treatment.
Collapse
|
24
|
Wang M, Hu Y, Guo B, Tang H. Simulation of Acute Pulmonary Hypertension in Beagle Dogs. Int Heart J 2022; 63:612-622. [PMID: 35650161 DOI: 10.1536/ihj.21-676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acoustic cardiography (AC) combined with heart sound (HS) recording and electrocardiogram (ECG) provides a noninvasive and inexpensive way to understand the electrical mechanical activity of the heart. Pulmonary artery stenosis can cause hemodynamic abnormalities that might lead to pulmonary hypertension (PH). In this paper, we examined the relationships between the acoustic characteristics of the AC and hemodynamic changes in a beagle dog model of PH.Four healthy beagle dogs were injected with the prostaglandin endoperoxide receptor agonist U-44069 to induce acute PH states. AC was employed to analyze the process of pre-PH, intra-PH, and post-PH. Right ventricular blood pressure (RVBP) was measured via right cardiac catheterization, an invasive method performed in parallel for comparative hemodynamic evaluation. As RVBP increased or decreased, the HS features changed accordingly during acute PH occurrence and development. Right ventricular systolic blood pressure (RVSBP) significantly correlated with the minimum of the first HS (S1) amplitude (correlation coefficient (CC) = -0.82), energy of the S1 (CC = 0.86), energy of the second HS (S2) (CC = 0.67), entropy of the S1 (CC = -0.94), and ratio of electromechanical systolic time (EMST) to the cardiac cycle time (CC = 0.81). The two techniques (AC [HSs and ECG] versus right cardiac catheterization [RVBP]) were significantly correlated. Especially, the diastolic filling time (DFT) had a significant relationship with the right ventricular diastolic time (RVDT) (CC = 0.97), perfusion time (PT) (CC = 0.96), and cardiac cycle time (RR) (CC = 0.96). The CCs between the RVDT and the max dp/dt to min dp/dt, the EMST and the Q to min dp/dt, and the electromechanical activation time and the Q to max dp/dt were 0.95, 0.99, and 0.86, respectively. Furthermore, the logistic regression model with different combinations was used to identify the effective features for monitoring hemodynamic and pathophysiologic conditions.AC provided significant insight into mechanical dysfunction in a rapid and noninvasive way that could be used for early screening of PH.
Collapse
Affiliation(s)
- Miao Wang
- School of Biomedical Engineering, Dalian University of Technology
| | - YaTing Hu
- School of Biomedical Engineering, Dalian University of Technology
| | - BinBin Guo
- School of Biomedical Engineering, Dalian University of Technology
| | - Hong Tang
- School of Biomedical Engineering, Dalian University of Technology
| |
Collapse
|
25
|
Qin X, Gao A, Hou X, Xu X, Chen L, Sun L, Hao Y, Shi Y. Connexins may play a critical role in cigarette smoke-induced pulmonary hypertension. Arch Toxicol 2022; 96:1609-1621. [PMID: 35344070 DOI: 10.1007/s00204-022-03274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 11/02/2022]
Abstract
Pulmonary hypertension (PH) is a chronic progressive disease characterized by pulmonary vasoconstriction and remodeling. It causes a gradual increase in pulmonary vascular resistance leading to right-sided heart failure, and may be fatal. Chronic exposure to cigarette smoke (CS) is an essential risk factor for PH group 3; however, smoking continues to be prevalent and smoking cessation is reported to be difficult. A majority of smokers exhibit PH, which leads to a concomitant increase in the risk of mortality. The current treatments for PH group 3 focus on vasodilation and long-term oxygen supplementation, and fail to stop or reverse PH-associated continuous vascular remodeling. Recent studies have suggested that pulmonary vascular endothelial dysfunction induced by CS exposure may be an initial event in the natural history of PH, which in turn may be associated with abnormal alterations in connexin (Cx) expression. The relationship between Cx and CS-induced PH development has not yet been directly investigated. Therefore, this review will describe the roles of CS and Cx in the development of PH and discuss the related downstream pathways. We also discuss the possible role of Cx in CS-induced PH. It is hoped that this review may provide new perspectives for early intervention.
Collapse
Affiliation(s)
- Xiaojiang Qin
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.
- China Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.
| | - Anqi Gao
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
- China Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Xinrong Xu
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Liangjin Chen
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Lin Sun
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Yuxuan Hao
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Yiwei Shi
- Department of Respiratory and Critical Care Medicine, Shanxi Medical University Affiliated First Hospital, 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
26
|
He Z, Dai L, Zuo Y, Chen Y, Wang H, Zeng H. Hotspots and frontiers in pulmonary arterial hypertension research: a bibliometric and visualization analysis from 2011 to 2020. Bioengineered 2022; 13:14667-14680. [PMID: 35880647 PMCID: PMC9342150 DOI: 10.1080/21655979.2022.2100064] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a group of devastating and progressive disorders, resulting in relentless increases in pulmonary vascular resistance. The number of studies related to PAH has been increasing in recent years. Our study aims to illustrate trends in PAH research over the past decade using bibliometric analysis. Science Citation Index-Expanded was adopted to search studies concerning PAH between 2011 and 2020. The bibliographic information was converted and analyzed automatically using a bibliometric package in R software and citespace. The annual quantity of publications on PAH showed an overall increase last decade. The United States was the most prolific country with 2,479 publications, and it was also the country that cooperated most with other countries. Hôpital Bicêtre made important research achievements on PAH and was a leader in study cooperation. Marc Humbert led the PAH field by publishing 150 articles in the past decade. During the past decade, there was a close transnational relation among countries or regions, institutions and authors. Further, Circulation was the most cited journal, followed by the Journal of the American College of Cardiology and the American Journal of Respiratory and Critical Care Medicine, with 3,895, 3,406, and 3,170 citations, respectively. The global research status and trend of PAH are deeply understood for the first time using bibliometric and visual methods, and the results of our study bring us a valuable reference for clinical researchers. This is the first study to illustrate trends in pulmonary arterial hypertension research using bibliometric analysis. Our study provides extensive and in-depth directions for researchers. Our study may benefit further researches on the etiology, diagnosis, and treatment of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Zhen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, China
| | - Lei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, China
| | - Yuyue Zuo
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, China
| | - Hongjie Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, China
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, China
| |
Collapse
|
27
|
Lin W, Tang Y, Zhang M, Liang B, Wang M, Zha L, Yu Z. Integrated Bioinformatic Analysis Reveals TXNRD1 as a Novel Biomarker and Potential Therapeutic Target in Idiopathic Pulmonary Arterial Hypertension. Front Med (Lausanne) 2022; 9:894584. [PMID: 35646965 PMCID: PMC9133447 DOI: 10.3389/fmed.2022.894584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/27/2022] [Indexed: 01/03/2023] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a life-threatening cardiopulmonary disease lacking specific diagnostic markers and targeted therapy, and its mechanism of development remains to be elucidated. The present study aimed to explore novel diagnostic biomarkers and therapeutic targets in IPAH by integrated bioinformatics analysis. Four eligible datasets (GSE117261, GSE15197, GSE53408, GSE48149) was firstly downloaded from GEO database and subsequently integrated by Robust rank aggregation (RRA) method to screen robust differentially expressed genes (DEGs). Then functional annotation of robust DEGs was performed by GO and KEGG enrichment analysis. The protein-protein interaction (PPI) network was constructed followed by using MCODE and CytoHubba plug-in to identify hub genes. Finally, 10 hub genes were screened including ENO1, TALDO1, TXNRD1, SHMT2, IDH1, TKT, PGD, CXCL10, CXCL9, and CCL5. The GSE113439 dataset was used as a validation cohort to appraise these hub genes and TXNRD1 was selected for verification at the protein level. The experiment results confirmed that serum TXNRD1 concentration was lower in IPAH patients and the level of TXNRD1 had great predictive efficiency (AUC:0.795) as well as presents negative correlation with mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR). Consistently, the expression of TXNRD1 was proved to be inhibited in animal and cellular model of PAH. In addition, GSEA analysis was performed to explore the functions of TXNRD1 and the results revealed that TXNRD1 was closely correlated with mTOR signaling pathway, MYC targets, and unfolded protein response. Finally, knockdown of TXNRD1 was shown to exacerbate proliferative disorder, migration and apoptosis resistance in PASMCs. In conclusion, our study demonstrates that TXNRD1 is a promising candidate biomarker for diagnosis of IPAH and plays an important role in PAH pathogenesis, although further research is necessary.
Collapse
|
28
|
Jia Z, Yan H, Wang S, Wang L, Cao Y, Lin S, Zhang Z, Wang C, Wang X, Mao J. Shufeiya Recipe Improves Monocrotaline-Induced Pulmonary Hypertension in Rats by Regulating SIRT3/FOXO3a and Its Downstream Signaling Pathways. DISEASE MARKERS 2022; 2022:3229888. [PMID: 35222742 PMCID: PMC8881168 DOI: 10.1155/2022/3229888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/18/2022]
Abstract
Pulmonary hypertension (PH) is a chronic and progressive disease caused by obstructions and functional changes of small pulmonary arteries. Current treatment options of PH are costly with patients needing long-term taking medicine. The traditional Chinese medicine (TCM) compound "Shufeiya Recipe" was used to intervene in monocrotaline- (MCT-) induced pulmonary hypertension in rats. The rats were randomly divided into the control group, model group, positive drug (Sildenafil) group, and Shufeiya Recipe low-, moderate-, and high-dose groups. The improvement effect of the Shufeiya Recipe on the mean pulmonary artery pressure (mPAP) was assessed in PH rats, and pathological staining was used to observe the pathological changes of lung tissue. The impact of the Shufeiya Recipe on oxidative stress damage in rats with pulmonary hypertension and the regulation of SIRT3/FOXO3a and its downstream signaling pathways were determined. The results showed that Shufeiya Recipe could significantly downregulate mPAP and improve lung histopathological changes; downregulate serum levels of reactive oxygen species (ROS); upregulate the concentrations of COX-1 and COX-2 and the activity of Mn-SOD; inhibit oxidative response damage; promote the protein expression of SIRT3, FOXO3a, p-PI3K, p-AKT, and p-eNOS; increase the level of expression of NO, sGC, cGMP, and PKG; and downregulate the level of protein expression of Ras, p-MEK1/2, p-ERK1/2 and c-fos. These results indicate that Shufeiya Recipe can improve MCT-induced pulmonary hypertension in rats by regulating SIRT3/FOXO3a and its downstream PI3K/AKT/eNOS and Ras/ERK signaling pathways.
Collapse
Affiliation(s)
- Zhuangzhuang Jia
- Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haifeng Yan
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, China
| | - Shuai Wang
- Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Lin Wang
- Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yawen Cao
- Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanshan Lin
- Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zeyu Zhang
- Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ci Wang
- Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xianliang Wang
- Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Jingyuan Mao
- Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| |
Collapse
|
29
|
Yi J, Wang X, Song K, Ren J, Che H, Yu H, Li Q. Integrated metabolomics and mechanism to reveal the protective effect of kaempferol on pulmonary arterial hypertension. J Pharm Biomed Anal 2022; 212:114662. [DOI: 10.1016/j.jpba.2022.114662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/05/2023]
|
30
|
Zhao Q, Hou C, Lu Y, Qiu Q, Xie L, Xu S, Xiao T, Zhong M. Characterization and protective effects of a novel Bosentan nano-particle. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Yu Z, Xiao J, Chen X, Ruan Y, Chen Y, Zheng X, Wang Q. Bioactivities and mechanisms of natural medicines in the management of pulmonary arterial hypertension. Chin Med 2022; 17:13. [PMID: 35033157 PMCID: PMC8760698 DOI: 10.1186/s13020-022-00568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and rare disease without obvious clinical symptoms that shares characteristics with pulmonary vascular remodeling. Right heart failure in the terminal phase of PAH seriously threatens the lives of patients. This review attempts to comprehensively outline the current state of knowledge on PAH its pathology, pathogenesis, natural medicines therapy, mechanisms and clinical studies to provide potential treatment strategies. Although PAH and pulmonary hypertension have similar pathological features, PAH exhibits significantly elevated pulmonary vascular resistance caused by vascular stenosis and occlusion. Currently, the pathogenesis of PAH is thought to involve multiple factors, primarily including genetic/epigenetic factors, vascular cellular dysregulation, metabolic dysfunction, even inflammation and immunization. Yet many issues regarding PAH need to be clarified, such as the "oestrogen paradox". About 25 kinds monomers derived from natural medicine have been verified to protect against to PAH via modulating BMPR2/Smad, HIF-1α, PI3K/Akt/mTOR and eNOS/NO/cGMP signalling pathways. Yet limited and single PAH animal models may not corroborate the efficacy of natural medicines, and those natural compounds how to regulate crucial genes, proteins and even microRNA and lncRNA still need to put great attention. Additionally, pharmacokinetic studies and safety evaluation of natural medicines for the treatment of PAH should be undertaken in future studies. Meanwhile, methods for validating the efficacy of natural drugs in multiple PAH animal models and precise clinical design are also urgently needed to promote advances in PAH.
Collapse
Affiliation(s)
- Zhijie Yu
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Jun Xiao
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiao Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yi Ruan
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yang Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiaoyuan Zheng
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China.
| | - Qiang Wang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
32
|
Sun S, Kong Q, Cai Z, Wang M, Zhao H, Zhao C. circ‑Grm1 promotes pulmonary artery smooth muscle cell proliferation and migration via suppression of GRM1 expression by FUS. Int J Mol Med 2021; 48:202. [PMID: 34528696 PMCID: PMC8480385 DOI: 10.3892/ijmm.2021.5035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 01/15/2023] Open
Abstract
Pulmonary arterial hypertension is a progressive and fatal disease. Recent studies suggest that circular RNA (circRNAs/circs) can regulate various biological processes, including cell proliferation. Therefore, it is possible that circRNA may have important roles in pulmonary artery smooth muscle cell proliferation in hypoxic pulmonary hypertension (HPH). The aim of the present study was to determine the role and mechanism of circRNA‑glutamate metabotropic receptor 1 (circ‑Grm1; mmu_circ_0001907) in pulmonary artery smooth muscle cell (PASMC) proliferation and migration in HPH. High‑throughput transcriptome sequencing was used to screen circRNAs and targeted genes involved in HPH. Cell Counting Kit‑8 (CCK‑8), 5‑ethynyl‑2‑deoxyuridine and wound healing assays were employed to assess cell viability and migration. Reverse transcription‑quantitative PCR and western blotting were used to detect target gene expression in different groups. Bioinformatical approaches were used to predict the interaction probabilities of circ‑Grm1 and Grm1 with FUS RNA binding protein (FUS). The interactions of circ‑Grm1, Grm1 and FUS were evaluated using RNA silencing and RNA immunoprecipitation assays. The results demonstrated that circ‑Grm1 was upregulated in hypoxic PASMCs. Further experiments revealed that the knockdown of circ‑Grm1 could suppress the proliferation and migration of hypoxic PASMCs. Transcriptome sequencing revealed that Grm1 could be the target gene of circ‑Grm1. It was found that circ‑Grm1 could competitively bind to FUS and consequently downregulate Grm1. Moreover, Grm1 could inhibit the function of circ‑Grm1 by promoting the proliferative and migratory abilities of hypoxic PASMCs. The results also demonstrated that circ‑Grm1 influenced the biological functions of PASMCs via the Rap1/ERK pathway by regulating Grm1. Overall, the current results suggested that circ‑Grm1 was associated with HPH and promoted the proliferation and migration of PASMCs via suppression of Grm1 expression through FUS.
Collapse
Affiliation(s)
- Shijing Sun
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Pediatrics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266034, P.R. China
| | - Qingyu Kong
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhifeng Cai
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Minmin Wang
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haizhao Zhao
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Cuifen Zhao
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
33
|
Zou HX, Qiu BQ, Lai SQ, Zhou XL, Gong CW, Wang LJ, Yuan MM, He AD, Liu JC, Huang H. Iron Metabolism and Idiopathic Pulmonary Arterial Hypertension: New Insights from Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5669412. [PMID: 34722766 PMCID: PMC8556088 DOI: 10.1155/2021/5669412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a rare vascular disease with a poor prognosis, and the mechanism of its development remains unclear. Further molecular pathology studies may contribute to a comprehensive understanding of IPAH and provide new insights into diagnostic markers and potential therapeutic targets. Iron deficiency has been reported in 43-63% of patients with IPAH and is associated with reduced exercise capacity and higher mortality, suggesting that dysregulated iron metabolism may play an unrecognized role in influencing the development of IPAH. In this study, we explored the regulatory mechanisms of iron metabolism in IPAH by bioinformatic analysis. The molecular function of iron metabolism-related genes (IMRGs) is mainly enriched in active transmembrane transporter activity, and they mainly affect the biological process of response to oxidative stress. Ferroptosis and fluid shear stress and atherosclerosis pathways may be the critical pathways regulating iron metabolism in IPAH. We further identified 7 key genes (BCL2, GCLM, MSMO1, SLC7A11, SRXN1, TSPAN5, and TXNRD1) and 5 of the key genes (BCL2, MSMO1, SLC7A11, TSPAN5, and TXNRD1) as target genes may be regulated by 6 dysregulated miRNAs (miR-483-5p, miR-27a-3p, miR-27b-3p, miR-26b-5p, miR-199a-5p, and miR-23b-3p) in IPAH. In addition, we predicted potential IPAH drugs-celastrol and cinnamaldehyde-that target iron metabolism based on our results. These results provide insights for further definition of the role of dysregulated iron metabolism in IPAH and contribute to a deeper understanding of the molecular mechanisms and potential therapeutic targets of IPAH.
Collapse
Affiliation(s)
- Hua-Xi Zou
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Bai-Quan Qiu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Song-Qing Lai
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xue-Liang Zhou
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Cheng-Wu Gong
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Li-Jun Wang
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ming-Ming Yuan
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - An-Di He
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ji-Chun Liu
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Huang Huang
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
34
|
Mamazhakypov A, Hein L, Lother A. Mineralocorticoid receptors in pulmonary hypertension and right heart failure: From molecular biology to therapeutic targeting. Pharmacol Ther 2021; 231:107987. [PMID: 34480966 DOI: 10.1016/j.pharmthera.2021.107987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022]
Abstract
Pulmonary hypertension (PH) is a devastating condition characterized by pulmonary vascular remodelling, leading to progressive increase in pulmonary artery pressure and subsequent right ventricular failure. Aldosterone and the mineralocorticoid receptor (MR), a nuclear transcription factor, are key drivers of cardiovascular disease and MR antagonists are well-established in heart failure. Now, a growing body of evidence points at a detrimental role of MR in PH. Pharmacological MR blockade attenuated PH and prevented RV failure in experimental models. Mouse models with cell selective MR deletion suggest that this effect is mediated by MR in endothelial cells. While the evidence from experimental studies appears convincing, the available clinical data on MR antagonist use in patients with PH is more controversial. Integrated analysis of clinical data together with MR-dependent molecular alterations may provide insights why some patients respond to MRA treatment while others do not. Potential ways to identify MRA 'responders' include the analysis of underlying PH causes, stage of disease, or sex, as well as new biomarkers.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany; Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
35
|
Integrated Bioinformatics Analysis Reveals Marker Genes and Potential Therapeutic Targets for Pulmonary Arterial Hypertension. Genes (Basel) 2021; 12:genes12091339. [PMID: 34573320 PMCID: PMC8467453 DOI: 10.3390/genes12091339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare cardiovascular disease with very high mortality rate. The currently available therapeutic strategies, which improve symptoms, cannot fundamentally reverse the condition. Thus, new therapeutic strategies need to be established. Our research analyzed three microarray datasets of lung tissues from human PAH samples retrieved from the Gene Expression Omnibus (GEO) database. We combined two datasets for subsequent analyses, with the batch effects removed. In the merged dataset, 542 DEGs were identified and the key module relevant to PAH was selected using WGCNA. GO and KEGG analyses of DEGs and the key module indicated that the pre-ribosome, ribosome biogenesis, centriole, ATPase activity, helicase activity, hypertrophic cardiomyopathy, melanoma, and dilated cardiomyopathy pathways are involved in PAH. With the filtering standard (|MM| > 0.95 and |GS| > 0.90), 70 hub genes were identified. Subsequently, five candidate marker genes (CDC5L, AP3B1, ZFYVE16, DDX46, and PHAX) in the key module were found through overlapping with the top thirty genes calculated by two different methods in CytoHubb. Two of them (CDC5L and DDX46) were found to be significantly upregulated both in the merged dataset and the validating dataset in PAH patients. Meanwhile, expression of the selected genes in lung from PAH chicken measured by qRT-PCR and the ROC curve analyses further verified the potential marker genes' predictive value for PAH. In conclusion, CDC5L and DDX46 may be marker genes and potential therapeutic targets for PAH.
Collapse
|
36
|
Tran HB, Maiolo S, Harper R, Zalewski PD, Reynolds PN, Hodge S. Dysregulated zinc and sphingosine-1-phosphate signaling in pulmonary hypertension: Potential effects by targeting of bone morphogenetic protein receptor type 2 in pulmonary microvessels. Cell Biol Int 2021; 45:2368-2379. [PMID: 34347342 DOI: 10.1002/cbin.11682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/01/2021] [Indexed: 12/16/2022]
Abstract
Recently identified molecular targets in pulmonary artery hypertension (PAH) include sphingosine-1-phosphate (S1P) and zinc transporter ZIP12 signaling. This study sought to determine linkages between these pathways, and with BMPR2 signaling. Lung tissues from a rat model of monocrotaline-induced PAH and therapeutic treatment with bone marrow-derived endothelial-like progenitor cells transduced to overexpress BMPR2 were studied. Multifluorescence quantitative confocal microscopy (MQCM) was applied for analysis of protein expression and localization of markers of vascular remodeling (αSMA and BMPR2), parameters of zinc homeostasis (zinc transporter SLC39A/ZIP family members 1, 10, 12 and 14; and metallothionein MT3) and S1P extracellular signaling (SPHK1, SPNS2, S1P receptor isoforms 1, 2, 3, 5) in 20-200 µm pulmonary microvessels. ZIP12 expression in whole lung tissue lysates was assessed by western blot. Spearman nonparametric correlations between MQCM readouts and hemodynamic parameters, Fulton index (FI), and right ventricular systolic pressure (RVSP) were measured. In line with PAH status, pulmonary microvessels in monocrotaline-treated animals demonstrated significant (p < .05, n = 6 per group) upregulation of αSMA (twofold) and downregulation of BMPR2 (20%). Upregulated ZIP12 (92%), MT3 (57.7%), S1PR2 (54.8%), and S1PR3 (30.3%) were also observed. Significant positive and negative correlations were demonstrated between parameters of zinc homeostasis (ZIP12, MT3), S1P signaling (S1PRs, SPNS2), and vascular remodeling (αSMA, FI, RVSP). MQCM and western blot analysis showed that monocrotaline-induced ZIP12 upregulation could be partially negated by BMPR2-targeted therapy. Our results indicate that altered zinc transport/storage and S1P signaling in the monocrotaline-induced PAH rat model are linked to each other, and could be alleviated by BMPR2-targeted therapy.
Collapse
Affiliation(s)
- Hai B Tran
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Suzanne Maiolo
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Rebecca Harper
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Peter D Zalewski
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Translational Vascular Function Research Collaborative, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Paul N Reynolds
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Sandra Hodge
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
37
|
Qaiser KN, Tonelli AR. Novel Treatment Pathways in Pulmonary Arterial Hypertension. Methodist Debakey Cardiovasc J 2021; 17:106-114. [PMID: 34326930 PMCID: PMC8298123 DOI: 10.14797/cbhs2234] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe and progressive vascular disease characterized by pulmonary vascular remodeling, proliferation, and inflammation. Despite the availability of effective treatments, PAH may culminate in right ventricular failure and death. Currently approved medications act through three well-characterized pathways: the nitric oxide, endothelin, and prostacyclin pathways. Ongoing research efforts continue to expand our understanding of the molecular pathogenesis of this complex and multifactorial disease. Based on recent discoveries in the pathobiology of PAH, several new treatments are being developed and tested with the goal of modifying the disease process and ultimately improving the long-term prognosis.
Collapse
|
38
|
Hao S, Jiang P, Xie L, Xiang G, Liu Z, Hu W, Wu Q, Jiang L, Xiao Y, Li S. Essential Genes and MiRNA-mRNA Network Contributing to the Pathogenesis of Idiopathic Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:627873. [PMID: 34026864 PMCID: PMC8133434 DOI: 10.3389/fcvm.2021.627873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Idiopathic pulmonary arterial hypertension (IPAH) is a life-threatening disease. Owing to its high fatality rate and narrow therapeutic options, identification of the pathogenic mechanisms of IPAH is becoming increasingly important. Methods: In our research, we utilized the robust rank aggregation (RRA) method to integrate four eligible pulmonary arterial hypertension (PAH) microarray datasets and identified the significant differentially expressed genes (DEGs) between IPAH and normal samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed to analyze their functions. The interaction network of protein-protein interaction (PPI) was constructed to explore the correlation between these DEGs. The functional modules and hub genes were further identified by the weighted gene coexpression network analysis (WGCNA). Moreover, a miRNA microarray dataset was involved and analyzed to filter differentially expressed miRNAs (DE-miRNAs). Potential target genes of screened DE-miRNAs were predicted and merged with DEGs to explore a miRNA-mRNA network in IPAH. Some hub genes were selected and validated by RT-PCR in lung tissues from the PAH animal model. Results: A total of 260 DEGs, consisting of 183 upregulated and 77 downregulated significant DEGs, were identified, and some of those genes were novel. Their molecular roles in the etiology of IPAH remained vague. The most crucial functional module involved in IPAH is mainly enriched in biological processes, including leukocyte migration, cell chemotaxis, and myeloid leukocyte migration. Construction and analysis of the PPI network showed that CXCL10, CXCL9, CCR1, CX3CR1, CX3CL1, CXCR2, CXCR1, PF4, CCL4L1, and ADORA3 were recognized as top 10 hub genes with high connectivity degrees. WGCNA further identified five main functional modules involved in the pathogenesis of IPAH. Twelve upregulated DE-miRNAs and nine downregulated DE-miRNAs were identified. Among them, four downregulated DEGs and eight upregulated DEGs were supposed to be negatively regulated by three upregulated DE-miRNAs and three downregulated DE-miRNAs, respectively. Conclusions: This study identifies some key and functional coexpression modules involved in IPAH, as well as a potential IPAH-related miRNA-mRNA regulated network. It provides deepening insights into the molecular mechanisms and provides vital clues in seeking novel therapeutic targets for IPAH.
Collapse
Affiliation(s)
- Shengyu Hao
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Pan Jiang
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Liang Xie
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Guiling Xiang
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zilong Liu
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weiping Hu
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qinhan Wu
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Liyan Jiang
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yi Xiao
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shanqun Li
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|