1
|
Neary JP, Singh J, Alcorn J, Laprairie RB, Dehghani P, Mang CS, Bjornson BH, Hadjistavropoulos T, Bardutz HA, Bhagaloo L, Walsh Z, Szafron M, Dorsch KD, Thompson ES. Pharmacological and physiological effects of cannabidiol: a dose escalation, placebo washout study protocol. BMC Neurol 2024; 24:340. [PMID: 39266961 PMCID: PMC11391713 DOI: 10.1186/s12883-024-03847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Cannabinoids such as cannabidiol (CBD) exhibit anti-inflammatory properties and have the potential to act as a therapeutic following mild traumatic brain injury. There is limited evidence available on the pharmacological, physiological and psychological effects of escalating CBD dosages in a healthy, male, university athlete population. Furthermore, no dosing regimen for CBD is available with implications of improving physiological function. This study will develop an optimal CBD dose based on the pharmacokinetic data in contact-sport athletes. The physiological and psychological data will be correlated to the pharmacokinetic data to understand the mechanism(s) associated with an escalating CBD dose. METHODS/DESIGN Forty participants will receive escalating doses of CBD ranging from 5 mg CBD/kg/day to 30 mg CBD/kg/day. The CBD dose is escalated every two weeks in increments of 5 mg CBD/kg/day. Participants will provide blood for pharmacological assessments at each of the 10 visits. Participants will complete a physiological assessment at each of the visits, including assessments of cerebral hemodynamics, blood pressure, electrocardiogram, seismocardiogram, transcranial magnetic stimulation, and salivary analysis for genomic sequencing. Finally, participants will complete a psychological assessment consisting of sleep, anxiety, and pain-related questionnaires. DISCUSSION This study will develop of an optimal CBD dose based on pharmacological, physiological, and psychological properties for future use during contact sport seasons to understand if CBD can help to reduce the frequency of mild traumatic injuries and enhance recovery. TRIAL REGISTRATION Clinicaltrials.gov: NCT06204003.
Collapse
Affiliation(s)
- J Patrick Neary
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada.
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada.
| | - Jyotpal Singh
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
- Department of Cardiology, Prairie Vascular Research Inc, Regina, Canada
| | - Jane Alcorn
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Robert B Laprairie
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Payam Dehghani
- Department of Cardiology, Prairie Vascular Research Inc, Regina, Canada
- College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Cameron S Mang
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
| | | | | | - Holly A Bardutz
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
| | | | - Zachary Walsh
- Department of Psychology, University of British Columbia, Kelowna, Canada
| | - Michael Szafron
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada
- School of Public Health - Biostatistics, University of Saskatchewan, Saskatoon, Canada
| | - Kim D Dorsch
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
| | - Elizabeth S Thompson
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
2
|
da Costa-Oliveira C, Pereira ML, de Carvalho NF, Silvério LAL, Jessé Ramos Y, Mazzola PG. Exploring the Significance of Pharmaceutical Care in Mental Health: A Spotlight on Cannabis. PHARMACY 2024; 12:100. [PMID: 39051384 PMCID: PMC11270281 DOI: 10.3390/pharmacy12040100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Although preliminary evidence suggests Cannabis's efficacy in symptom control for anxiety and depression-psychiatric disorders that significantly impact mental health-much remains to be understood about its effects on the central nervous system (CNS) and how to optimize treatment for these disorders. This study aims to conduct a narrative review to evaluate pharmaceutical care in treating symptoms of anxiety and depression alongside Cannabis use, focusing on safety and therapeutic efficacy optimization. We seek to conceptualize anxiety and depression disorders, review evidence on Cannabis use, evaluate the evidence quality, and identify knowledge gaps. Twelve articles were identified, revealing a significant gap in the literature regarding the integration of pharmaceutical care with Cannabis-based therapies, specifically for anxiety and depression. Despite a growing interest in the relationship between Cannabis and mental health, current research is insufficient for a comprehensive understanding. The relationship between Cannabis use and anxiety and depression disorders requires further, more targeted investigations. This study underscores the importance of future research to fill existing gaps, providing informed insights and robust guidelines for the safe and effective use of Cannabis as part of the treatment for anxiety and depression. It is crucial that pharmaceutical care integrates these therapies responsibly to improve the overall well-being of patients.
Collapse
Affiliation(s)
- Claudete da Costa-Oliveira
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas 13083-887, Brazil
- APEPI—Medicinal Cannabis Research and Patient Support Association, Rio de Janeiro 20040-030, Brazil
| | - Michele Lafayette Pereira
- Faculdade de Ciências Biológicas e Saúde, Universidade do Estado do Rio de Janeiro, Campus Zona Oeste, Rio de Janeiro 23070-200, Brazil
| | - Nicole Ferrari de Carvalho
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas 13083-871, Brazil; (N.F.d.C.); (L.A.L.S.); (P.G.M.)
| | - Luiza Aparecida Luna Silvério
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas 13083-871, Brazil; (N.F.d.C.); (L.A.L.S.); (P.G.M.)
| | - Ygor Jessé Ramos
- Farmácia da Terra Laboratory, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil;
| | - Priscila Gava Mazzola
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas 13083-871, Brazil; (N.F.d.C.); (L.A.L.S.); (P.G.M.)
| |
Collapse
|
3
|
Kelly LE, Rieder MJ, Finkelstein Y. Medical cannabis for children: Evidence and recommendations. Paediatr Child Health 2024; 29:104-121. [PMID: 38586483 PMCID: PMC10996577 DOI: 10.1093/pch/pxad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/20/2023] [Indexed: 04/09/2024] Open
Abstract
Interest in using cannabis products for a medical purpose in children under the age of 18 years is increasing. There are many medical cannabis products available that can include cannabidiol (CBD) or delta-9-tetrahydrocannabinol (THC), or both. Despite many therapeutic claims, there are few rigorous studies to inform the dosing, safety, and efficacy of medical cannabis in paediatric clinical practice. This statement reviews the current evidence and provides recommendations for using medical cannabis in children. Longer-term (2-year) reports support the sustained tolerability and efficacy of cannabidiol therapy for patients with Lennox-Gastaut and Dravet syndromes. CBD-enriched cannabis extracts containing small amounts of THC have been evaluated in a small number of paediatric patients, and further research is needed to inform clinical practice guidelines. Given the widespread use of medical cannabis in Canada, paediatricians should be prepared to engage in open, ongoing discussions with families about its potential benefits and risks, and develop individualized plans that monitor efficacy, reduce harms, and mitigate drug-drug interactions.
Collapse
Affiliation(s)
- Lauren E Kelly
- Canadian Paediatric Society, Drug Therapy Committee, Ottawa, Ontario, Canada
| | - Michael J Rieder
- Canadian Paediatric Society, Drug Therapy Committee, Ottawa, Ontario, Canada
| | - Yaron Finkelstein
- Canadian Paediatric Society, Drug Therapy Committee, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Kelly LE, Rieder MJ, Finkelstein Y. Les données probantes et les recommandations sur le cannabis à des fins médicales chez les enfants. Paediatr Child Health 2024; 29:104-121. [PMID: 38586491 PMCID: PMC10996578 DOI: 10.1093/pch/pxad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/20/2023] [Indexed: 04/09/2024] Open
Abstract
L'intérêt envers l'utilisation des produits du cannabis à des fins médicales chez les enfants de moins de 18 ans augmente. De nombreux produits du cannabis à des fins médicales contiennent du cannabidiol, du delta-9-tétrahydrocannabinol ou ces deux produits. Malgré les nombreuses prétentions thérapeutiques, peu d'études rigoureuses guident la posologie, l'innocuité et l'efficacité du cannabis à des fins médicales en pédiatrie clinique. Le présent document de principes passe en revue les données probantes à jour et expose les recommandations sur l'utilisation du cannabis à des fins médicales chez les enfants. Les rapports à plus long terme (deux ans) souscrivent à la tolérabilité et à l'efficacité soutenues d'un traitement au cannabidiol chez les patients ayant le syndrome de Lennox-Gastaut ou le syndrome de Dravet. Les extraits de cannabis enrichis de cannabidiol qui renferment de petites quantités de delta-9-tétrahydrocannabinol ont été évalués auprès d'un petit nombre de patients d'âge pédiatrique, et d'autres recherches devront être réalisées pour éclairer les guides de pratique clinique. Étant donné l'utilisation répandue du cannabis à des fins médicales au Canada, les pédiatres devraient être prêts à participer à des échanges ouverts et continus avec les familles au sujet de ses avantages potentiels et de ses risques, ainsi qu'à préparer des plans individuels en vue d'en surveiller l'efficacité, de réduire les méfaits et de limiter les interactions médicamenteuses.
Collapse
Affiliation(s)
- Lauren E Kelly
- Société canadienne de pédiatrie, comité de la pharmacologie, Ottawa (Ontario)Canada
| | - Michael J Rieder
- Société canadienne de pédiatrie, comité de la pharmacologie, Ottawa (Ontario)Canada
| | - Yaron Finkelstein
- Société canadienne de pédiatrie, comité de la pharmacologie, Ottawa (Ontario)Canada
| |
Collapse
|
5
|
Osman M, Khalil J, El-Bahri M, Swalah Mcdahrou J, Fahda R, Mustafa R, Ooi A, Attayee M, Catanzariti R, Pont L, Williams K, Yeung S, Dua K, De Rubis G, Loebenberg R. Decoding epilepsy treatment: A comparative evaluation contrasting cannabidiol pharmacokinetics in adult and paediatric populations. Chem Biol Interact 2024; 394:110988. [PMID: 38574834 DOI: 10.1016/j.cbi.2024.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Epilepsy is a neurological disorder characterized by overstimulation of neurotransmitters and uncontrolled seizures. Current medications for epilepsy result in adverse effects or insufficient seizure control, highlighting the necessity to develop alternative therapies. Cannabidiol (CBD), derived from cannabis plants, has been popularly explored as an alternative. CBD is shown to have anti-convulsivatng and muscle-relaxing properties, which have been used in patients with epilepsy with promising results. Current research explores varying dosages in either adult or paediatric patients, with little or no comparison between the two populations. In this review, we aim at consolidating this data and comparing the effect and pharmacokinetic properties of CBD across these two patient populations. When comparing the absorption, there was insufficient data to show differences between paediatric and adult patients. Similarly, limited information was available in comparing the distribution of CBD, but a higher volume of distribution was found in the paediatric population. From the metabolism perspective, the paediatric population had a greater success rate when treated with the drug compared to the adult population. In the elimination, there were no clear distinctions in the clearance rate between the two populations. The drug's half-life was highly variable in both populations, with paediatrics having a lower range than adults. In summary, the paediatric population had a more significant reduction in the severity of seizures compared to the adult population upon CBD treatment. The complexity in which CBD operates highlights the need for further studies of the compound to further understand why differences occur between these two populations.
Collapse
Affiliation(s)
- Mohamed Osman
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jamileh Khalil
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mostafa El-Bahri
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jamal Swalah Mcdahrou
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Reem Fahda
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Reymin Mustafa
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Arthur Ooi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Marwa Attayee
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Rachelle Catanzariti
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Lisa Pont
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kylie Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| | - Raimar Loebenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
6
|
Jones J, Clark RD, Lawless MS, Miller DW, Waldman M. The AI-driven Drug Design (AIDD) platform: an interactive multi-parameter optimization system integrating molecular evolution with physiologically based pharmacokinetic simulations. J Comput Aided Mol Des 2024; 38:14. [PMID: 38499823 DOI: 10.1007/s10822-024-00552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Computer-aided drug design has advanced rapidly in recent years, and multiple instances of in silico designed molecules advancing to the clinic have demonstrated the contribution of this field to medicine. Properly designed and implemented platforms can drastically reduce drug development timelines and costs. While such efforts were initially focused primarily on target affinity/activity, it is now appreciated that other parameters are equally important in the successful development of a drug and its progression to the clinic, including pharmacokinetic properties as well as absorption, distribution, metabolic, excretion and toxicological (ADMET) properties. In the last decade, several programs have been developed that incorporate these properties into the drug design and optimization process and to varying degrees, allowing for multi-parameter optimization. Here, we introduce the Artificial Intelligence-driven Drug Design (AIDD) platform, which automates the drug design process by integrating high-throughput physiologically-based pharmacokinetic simulations (powered by GastroPlus) and ADMET predictions (powered by ADMET Predictor) with an advanced evolutionary algorithm that is quite different than current generative models. AIDD uses these and other estimates in iteratively performing multi-objective optimizations to produce novel molecules that are active and lead-like. Here we describe the AIDD workflow and details of the methodologies involved therein. We use a dataset of triazolopyrimidine inhibitors of the dihydroorotate dehydrogenase from Plasmodium falciparum to illustrate how AIDD generates novel sets of molecules.
Collapse
Affiliation(s)
- Jeremy Jones
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA, 93534‑7059, USA.
| | - Robert D Clark
- The Indiana University Luddy School of Informatics, Computing and Engineering, 700 N. Woodlawn Avenue, Bloomington, IN, 47408, USA
| | - Michael S Lawless
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA, 93534‑7059, USA
| | - David W Miller
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA, 93534‑7059, USA
| | - Marvin Waldman
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA, 93534‑7059, USA
| |
Collapse
|
7
|
Gidal BE, Vandrey R, Wallin C, Callan S, Sutton A, Saurer TB, Triemstra JL. Product labeling accuracy and contamination analysis of commercially available cannabidiol product samples. Front Pharmacol 2024; 15:1335441. [PMID: 38562466 PMCID: PMC10982813 DOI: 10.3389/fphar.2024.1335441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Background and objective: Commercially available cannabidiol (CBD) products are increasingly being used for medicinal purposes, including for the treatment of various neurological conditions, but there are growing concerns around adherence to quality control measures that protect consumers. This study was conducted to assess the purity and label accuracy of commercially available CBD products. Methods: Commercially available CBD products were chosen from the open stream of commerce in the United States based on formulations as a tincture, gummy, vape, or topical product. Cannabinoid concentrations were analyzed to verify label accuracy including "full spectrum," "broad spectrum," and "CBD isolate" claims on the product label. Analysis for the presence of contaminants included evaluation for heavy metals, pesticides, and residual solvents. Labeled and actual total amounts of CBD and levels of impurities such as heavy metals, residual solvents, and pesticides were measured. Results: A total of 202 CBD products (100 tinctures, 48 gummies, 34 vape products, and 20 topicals) were chosen to represent a broad sample in the United States. Of the products tested (full spectrum, n = 84; broad spectrum, n = 28; CBD isolate, n = 37), 26% did not meet the definition for product type claimed on the packaging. The majority of products (74%) deviated from their label claim of CBD potency by at least 10%. Heavy metals were detected 52 times across 44 of the 202 products tested, with lead being the most prevalent heavy metal. Residual solvents were detected 446 times across 181 of 202 products, with the highest concentrations reported for hexane, m/p-xylene, methanol, and o-xylene. Of 232 pesticides tested, 26 were found 55 times across 30 products. A total of 3% of heavy metals, 1% of residual solvents, and 1% of pesticides violated >1 regulatory threshold. Discussion: This study demonstrated that the majority of commercially available CBD products tested within the current study are inaccurately labeled. Heavy metals, residual solvents, and pesticides were found in several products, some of which violated regulatory thresholds. Thus, uniform compliance with CBD quality control measures is lacking and raises consumer protection concerns. Improved regulatory oversight of this industry is recommended.
Collapse
Affiliation(s)
- Barry E. Gidal
- University of Wisconsin School of Pharmacy, Madison, WI, United States
| | - Ryan Vandrey
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Sean Callan
- Ellipse Analytics, Denver, CO, United States
| | - Alan Sutton
- Jazz Pharmaceuticals, Carlsbad, CA, United States
| | | | | |
Collapse
|
8
|
O'Croinin C, Garcia Guerra A, Doschak MR, Löbenberg R, Davies NM. Therapeutic Potential and Predictive Pharmaceutical Modeling of Stilbenes in Cannabis sativa. Pharmaceutics 2023; 15:1941. [PMID: 37514127 PMCID: PMC10386382 DOI: 10.3390/pharmaceutics15071941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Cannabis sativa is a plant used for recreational and therapeutic purposes; however, many of the secondary metabolites in the plant have not been thoroughly investigated. Stilbenes are a class of compounds with demonstrated anti-inflammatory and antioxidant properties and are present in cannabis. Many stilbenes present in cannabis have been investigated for their therapeutic effects. Fourteen stilbenes have been identified to be present in cannabis, all of which are structurally dihydrostilbenoids, with half possessing a prenylated moiety. The stilbenes summarized in this analysis show varying degrees of therapeutic benefits ranging from anti-inflammatory, antiviral, and anti-cancer to antioxidant effects. Many of the identified stilbenes have been researched to a limited extent for potential health benefits. In addition, predictive in silico modeling was performed on the fourteen identified cannabis-derived stilbenes. This modeling provides prospective activity, pharmacokinetic, metabolism, and permeability data, setting the groundwork for further investigation into these poorly characterized compounds.
Collapse
Affiliation(s)
- Conor O'Croinin
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Andres Garcia Guerra
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael R Doschak
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
9
|
Graham M, Martin J, Lucas C, Murnion B, Schneider J. Cannabidiol drug interaction considerations for prescribers and pharmacists. Expert Rev Clin Pharmacol 2022; 15:1383-1397. [DOI: 10.1080/17512433.2022.2142114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Myfanwy Graham
- Australian Centre for Cannabinoid Clinical and Research Excellence, Newcastle, New South Wales, Australia
- Centre for Drug Repurposing & Medicines Research, School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Jennifer Martin
- Australian Centre for Cannabinoid Clinical and Research Excellence, Newcastle, New South Wales, Australia
- Centre for Drug Repurposing & Medicines Research, School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Catherine Lucas
- Australian Centre for Cannabinoid Clinical and Research Excellence, Newcastle, New South Wales, Australia
- Centre for Drug Repurposing & Medicines Research, School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Bridin Murnion
- Discipline of Addiction Medicine, University of Sydney, New South Wales, Australia
| | - Jennifer Schneider
- Australian Centre for Cannabinoid Clinical and Research Excellence, Newcastle, New South Wales, Australia
- Centre for Drug Repurposing & Medicines Research, School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| |
Collapse
|
10
|
Sinclair J, Toufaili Y, Gock S, Pegorer AG, Wattle J, Franke M, Alzwayid MA, Abbott J, Pate DW, Sarris J, Armour M. Cannabis Use for Endometriosis: Clinical and Legal Challenges in Australia and New Zealand. Cannabis Cannabinoid Res 2022; 7:464-472. [PMID: 34978929 PMCID: PMC9418363 DOI: 10.1089/can.2021.0116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Endometriosis is a difficult to manage condition associated with a significant disease burden. High levels of illicit cannabis use for therapeutic purposes have been previously reported by endometriosis patients in Australia and New Zealand (NZ). Although access to legal medicinal cannabis (MC) is available through medical prescription via multiple federal schemes, significant barriers to patient access remain. Methods: An anonymous cross-sectional online survey was developed and distributed through social media via endometriosis advocacy groups worldwide. Respondents were asked about legal versus illicit cannabis usage, their understanding of access pathways and legal status, and their interactions with health care professionals. Results: Of 237 respondents who reported cannabis use with a medical diagnosis of endometriosis, 186 (72.0%) of Australian and 51 (88.2%) NZ respondents reported self-administering cannabis illicitly. Only 23.1% of Australian and 5.9% of NZ respondents accessed cannabis through a doctor's prescription, with 4.8% of Australian and no NZ respondents reporting to legally self-administer cannabis. Substantial substitution effects (>50% reduction) were observed in users of nonopioid analgesia (63.1%), opioid analgesia (66.1%), hormonal therapies (27.5%), antineuropathics (61.7%), antidepressants (28.2%) and antianxiety medications (47.9%). Of Australian respondents, 18.8% and of NZ respondents, 23.5% reported not disclosing their cannabis use to their medical doctor, citing concern over legal repercussions, societal judgment, or their doctors' reaction and presumed unwillingness to prescribe legal MC. Conclusions: Respondents self-reported positive outcomes when using cannabis for management of endometriosis, demonstrating a therapeutic potential for MC. Despite this, many are using cannabis without medical supervision. While evidence for a substantial substitution effect by cannabis was demonstrated in these data, of particular concern are the clinical consequences of using cannabis without medical supervision, particularly with regard to drug interactions and the tapering or cessation of certain medications without that supervision. Improving doctor and patient communication about MC use may improve levels of medical oversight, the preference for legal MC adoption over acquisition via illicit supply and reducing cannabis-associated stigma.
Collapse
Affiliation(s)
- Justin Sinclair
- NICM Health Research Institute, Western Sydney University, Sydney Australia
| | - Yasmine Toufaili
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Sarah Gock
- School of Medicine, Western Sydney University, Sydney, Australia
| | | | - Jordan Wattle
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Martin Franke
- School of Medicine, Western Sydney University, Sydney, Australia
| | | | - Jason Abbott
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| | - David W. Pate
- NICM Health Research Institute, Western Sydney University, Sydney Australia
| | - Jerome Sarris
- NICM Health Research Institute, Western Sydney University, Sydney Australia
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Mike Armour
- NICM Health Research Institute, Western Sydney University, Sydney Australia
- Medical Research Institute of New Zealand (MRINZ), Wellington, New Zealand
| |
Collapse
|
11
|
Bansal S, Paine MF, Unadkat JD. Comprehensive Predictions of Cytochrome P450 (P450)-Mediated In Vivo Cannabinoid-Drug Interactions Based on Reversible and Time-Dependent P450 Inhibition in Human Liver Microsomes. Drug Metab Dispos 2022; 50:351-360. [PMID: 35115300 PMCID: PMC11022902 DOI: 10.1124/dmd.121.000734] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
Abstract
We previously reported the unbound reversible (IC50,u) and time-dependent (KI,u) inhibition potencies of cannabidiol (CBD), delta-9-tetrahydrocannabinol (THC), and THC metabolites 11-hydroxy THC (11-OH THC) and 11-nor-9-carboxy-delta-9-THC (11-COOH THC) against the major cytochrome P450 (P450) enzymes (1A2, 2C9, 2C19, 2D6, and 3A). Here, using human liver microsomes, we determined the CYP2A6, 2B6, and 2C8 IC50,u values of the aforementioned cannabinoids and the IC50,u and KI,u of the circulating CBD metabolites 7-hydroxy CBD (7-OH CBD) and 7-carboxy CBD (7-COOH CBD), against all the P450s listed above. The IC50,u of CBD, 7-OH CBD, THC, and 11-OH THC against CYP2B6 was 0.05, 0.34, 0.40, and 0.32 μM, respectively, and against CYP2C8 was 0.28, 1.02, 0.67, and 3.66 μM, respectively. 7-COOH CBD, but not 11-COOH THC, was a weak inhibitor of CYP2B6 and 2C8. All tested cannabinoids except 11-COOH THC were weak inhibitors of CYP2A6. 7-OH CBD inhibited all P450s examined (IC50,u<2.5 μM) except CYP1A2 and inactivated CYP2C19 and CYP3A, with inactivation efficiencies (kinact/KI,u) of 0.10 and 0.14 minutes-1 μM-1, respectively. Using several different static models, we predicted the following maximum pharmacokinetic interactions (affected P450 probe drug and area under the plasma concentration-time curve ratio) between oral CBD (700 mg) and drugs predominantly metabolized by CYP3A (midazolam, 14.8) > 2C9 (diclofenac, 9.6) > 2C19 (omeprazole, 7.3) > 1A2 (theophylline, 4.0) > 2B6 (ticlopidine, 2.2) > 2D6 (dextromethorphan, 2.1) > 2C8 (repaglinide, 1.6). Oral (130 mg) or inhaled (75 mg) THC was predicted to precipitate interactions with drugs predominately metabolized by CYP2C9 (diclofenac, 6.6 or 2.3, respectively) > 3A (midazolam, 1.8) > 1A2 (theophylline, 1.4). In vivo drug interaction studies are warranted to verify these predictions. SIGNIFICANCE STATEMENT: This study, combined with our previous findings, provides for the first time a comprehensive analysis of the potential for cannabidiol, delta-9-tetrahydrocannabinol, and their metabolites to inhibit cytochrome P450 enzymes in a reversible or time-dependent manner. These analyses enabled us to predict the potential of these cannabinoids to produce drug interactions in vivo at clinical or recreational doses.
Collapse
Affiliation(s)
- Sumit Bansal
- Department of Pharmaceutics, University of Washington, Seattle, Washington (S.B., J.D.U.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (M.F.P., J.D.U.)
| | - Mary F Paine
- Department of Pharmaceutics, University of Washington, Seattle, Washington (S.B., J.D.U.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (M.F.P., J.D.U.)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington (S.B., J.D.U.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (M.F.P., J.D.U.)
| |
Collapse
|
12
|
Lopera V, Rodríguez A, Amariles P. Clinical Relevance of Drug Interactions with Cannabis: A Systematic Review. J Clin Med 2022; 11:jcm11051154. [PMID: 35268245 PMCID: PMC8911401 DOI: 10.3390/jcm11051154] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
Concomitant use of cannabis with other drugs may lead to cannabis–drug interactions, mainly due to the pharmacokinetic mechanism involving the family of CYP450 isoenzymes. This narrative systematic review aimed to systematize the available information regarding clinical relevance of cannabis–drug interactions. We utilized the PubMed/Medline database for this systematic review, using the terms drug interactions and cannabis, between June 2011 and June 2021. Articles with cannabis–drug interactions in humans, in English or Spanish, with full-text access were selected. Two researchers evaluated the article’s inclusion. The level of clinical relevance was determined according to the severity and probability of the interaction. Ninety-five articles were identified and twenty-six were included. Overall, 19 pairs of drug interactions with medicinal or recreational cannabis were identified in humans. According to severity and probability, 1, 2, 12, and 4 pairs of cannabis–drug interactions were classified at levels 1 (very high risk), 2 (high risk), 3 (medium risk), and 5 (without risk), respectively. Cannabis–warfarin was classified at level 1, and cannabis–buprenorphine and tacrolimus at level 2. This review provides evidence for both the low probability of the occurrence of clinically relevant drug interactions and the lack of evidence regarding cannabis–drug interactions.
Collapse
|
13
|
Beitzke B, Pate DW. A broader view on deriving a reference dose for THC the in foods. Crit Rev Toxicol 2022; 51:695-722. [PMID: 35174773 DOI: 10.1080/10408444.2021.2008867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
An Acute Reference Dose (ARfD) of 1 µg of delta-9-tetrahydrocannabinol (THC) per kilogram (kg) of body weight (bw) per day was recommended by the European Food Safety Authority (EFSA) for its assessment of possible acute health risks from the intake of industrial hemp food products. The scientific basis for this opinion, such as their choice of a Point of Departure for identification of the Lowest Observed Adverse Effect Level (LOAEL) for THC on the central nervous system, and the seeming absence of an experimental No Observed Adverse Effect Level (NOAEL), is critically reviewed. Moreover, the risk assessment for an ARfD derivation for THC is then reconsidered. In contrast to the EFSA Scientific Opinion of 2015, a higher LOAEL is presently identified from pharmacokinetic and pharmacodynamic studies, and forensic data, in representative cohorts of healthy humans after oral administrations of low THC doses. A NOAEL for THC is derived through this combination of results, demonstrating a threshold for impairment of psychomotor function only after intake of an oral THC bolus beyond 2.5 mg for the average healthy adult. This 2.5 mg dose produces mean THC blood serum levels of <2 ng/mL, as well as do two doses when taken daily within a time interval of ≥6 h. The forensic threshold of THC that is correlated with the impairment of psychomotor function is known to be between 2 and 5 ng/mL in blood serum for adults. For an appropriately spaced intake of 2 × 2.5 mg THC per day, an adult can therefore be regarded as being at the NOAEL. Applying a default uncertainty factor of 10 for intraspecies variability to a NOAEL of 2 × 2.5 mg (over ≥6 hours) for THC, yields a "daily dose of no concern" or a "tolerable upper intake level" of 0.50 mg, corresponding to 7 µg/kg bw. Starting with a NOAEL of only 2.5 mg, consumed as a single bolus, the lowest possible daily THC Acute Reference Dose would therefore be 0.25 mg, or 3.5 µg/kg bw for healthy adults, as the absolutely most conservative estimate. Other justifiable estimates have ranged up to 14 µg/kg bw per day.
Collapse
Affiliation(s)
- Bernhard Beitzke
- EIHA Advisory Committee, European Industrial Hemp Association, Brussels, Belgium
| | - David W Pate
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| |
Collapse
|
14
|
Choi NG, Choi BY, Marti CN, DiNitto DM. Is cannabis use associated with prescription psychotropic and pain reliever medication and other substance use among individuals aged 50+ with mental illness? Drug Alcohol Depend 2021; 225:108842. [PMID: 34186443 DOI: 10.1016/j.drugalcdep.2021.108842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Despite increasing rates of nonmedical and/or medical cannabis use in the 50+ age group, scant research exists on the associations between cannabis use and prescription medication use. In this study, we examined associations of use of prescription tranquilizers, sedatives, stimulants, and pain relievers, tobacco products, any/binge/heavy alcohol, and illicit drugs with cannabis use and use characteristics among U.S. adults aged 50+ years with past-year mental illness (n = 6454). METHODS Data are from the 2015-2019 National Survey on Drug Use and Health (NSDUH). We used logistic regression models to examine associations of past-month use of each substance with (1) cannabis use among all those with past-year mental illness, and (2) cannabis use characteristics among cannabis users, controlling for severity of mental illness and sociodemographic and health characteristics. RESULTS Of individuals aged 50+, 14.1 % had any past-year mental illness, and 9.7 % of those with mental illness, compared to 4.0 % of those without, reported past-month cannabis use. Compared to nonusers, cannabis users had higher odds of using each substance except antidepressants, with adjusted odds ratios ranging from 1.3 (sedatives) to 3.6 (illicit drugs). Compared to nonmedical cannabis users, medical users had 2-2.5 times higher likelihood of co-use of tranquilizers, sedatives, and prescription pain relievers but lower odds of binge and heavy alcohol use. CONCLUSIONS Cannabis users, especially medical cannabis users, are significantly more likely to use prescription psychotropic or pain medications. Healthcare professionals should assess for poly-substance use and potential adverse effects among older adults with mental illness.
Collapse
Affiliation(s)
- Namkee G Choi
- Steve Hicks School of Social Work, University of Texas at Austin, Austin, TX, 78702, USA.
| | - Bryan Y Choi
- Department of Emergency Medicine, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, 19131, USA; Bayhealth Medical Center, Dover, DE, 19901, USA
| | - C Nathan Marti
- Steve Hicks School of Social Work, University of Texas at Austin, Austin, TX, 78702, USA
| | - Diana M DiNitto
- Steve Hicks School of Social Work, University of Texas at Austin, Austin, TX, 78702, USA
| |
Collapse
|
15
|
Park C, Zuo J, Somayaji V, Lee BJ, Löbenberg R. Development of a novel cannabinoid-loaded microemulsion towards an improved stability and transdermal delivery. Int J Pharm 2021; 604:120766. [PMID: 34087415 DOI: 10.1016/j.ijpharm.2021.120766] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
The aim of this study was to develop a stable microemulsion (ME) for transdermal delivery of tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA). The lipid-based vehicles were selected by screening cannabinoid solubility and the emulsifying ability of surfactants. Pseudo-ternary phase diagrams were constructed by formulation of cannabinoids with Capryol® 90 as oil phase, Tween® 80, Solutol® HS15, Procetyl® AWS, and Cremophor® RH40 as surfactants, ethanol as cosurfactant, and distilled water as the aqueous phase. A significant improvement in transmembrane flux (Jss), permeability coefficient (Kp), and enhancement ratio (ER) was found in one system compared to other formulations. This ME consisted of 1.0% (w/w) of cannabinoids, 5% (w/w) of Capryol® 90, 44% (w/w) Smix (2:1, Procetyl® AWS and Ethanol) and 50.0% (w/w) of distilled water. Additionally, the effects of pH on the permeation of the cannabinoids were investigated. Based on the pH value THCA and CBDA-loaded ME exhibited the highest permeation at pH 5.17 and pH 5.25. After storing the pH-adjusted P2 ME and the optimized P2 ME for 180 days at 4℃ and 25℃, the content of cannabinoids was over 95%. Consequently, the cannabinoid-loaded ME system is a promising option for solubilizing and stabilizing lipophilic drugs like cannabinoids and utilize them for transdermal delivery.
Collapse
Affiliation(s)
- Chulhun Park
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada; College of Pharmacy and Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Jieyu Zuo
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada.
| | - Vijay Somayaji
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada.
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, South Korea; College of Pharmacy and Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Raimar Löbenberg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada.
| |
Collapse
|
16
|
The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach. Molecules 2020; 25:molecules25245877. [PMID: 33322620 PMCID: PMC7764676 DOI: 10.3390/molecules25245877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 02/02/2023] Open
Abstract
The capacity of α-mangostin (α-MG) and β-mangostin (β-MG) from mangosteen pericarp on P-glycoprotein (Pgp) in silico, in vitro, and ex vivo was investigated in this study. Screening with the ADMET Predictor™ program predicted the two compounds to be both a Pgp inhibitor and Pgp substrate. The compounds tended to interact with Pgp and inhibit Pgp ATPase activity. Additionally, bidirectional transport on Caco-2 cell monolayers demonstrated a significantly lower efflux ratio than that of the control (α-(44.68) and β-(46.08) MG versus the control (66.26); p < 0.05) indicating an inhibitory effect on Pgp activity. Test compounds additionally revealed a downregulation of MDR1 mRNA expression. Moreover, an ex vivo absorptive transport in everted mouse ileum confirmed the previous results that α-MG had a Pgp affinity inhibitor, leading to an increase in absorption of the Pgp substrate in the serosal side. In conclusion, α- and β-MG have the capability to inhibit Pgp and they also alter Pgp expression, which makes them possible candidates for reducing multidrug resistance. Additionally, they influence the bioavailability and transport of Pgp substrate drugs.
Collapse
|
17
|
In vitro investigation of metabolic fate of α-mangostin and gartanin via skin permeation by LC-MS/MS and in silico evaluation of the metabolites by ADMET predictor™. BMC Complement Med Ther 2020; 20:359. [PMID: 33228689 PMCID: PMC7685627 DOI: 10.1186/s12906-020-03144-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/31/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Mangosteen, Garciniam angostana L., is a juicy fruit commonly found in Thailand. The rinds of Garciniam angostana L.have been used as a traditional medicine for the treatment of trauma, diarrhea and skin infection. It is also used in dermatological product such as in cosmetics. The mangosteen pericarp can be used to extract valuable bioactive xanthone compounds such as α-mangostin and gartanin. This study is aimed to predict the metabolism of α-mangostin and gartanin using in silico and in vitro skin permeation strategies. METHODS Based on their 2D molecular structures, metabolites of those compounds were predicted in silico using ADMET Predictor™. The Km and Vmax, for 5 important recombinant CYP isozymes 1A2, 2C9, 2C19, 2D6 and 3A4 were predicted. Moreover, the in vitro investigation of metabolites produced during skin permeation using human epidermal keratinocyte cells, neonatal (HEKn cells) was performed by LC-MS/MS. RESULTS It was found that the results derived from in silico were in excellent alignment with those obtained from in vitro studies for both compounds. The prediction referred that gartanin and α-mangostin were the substrate of CYP1A2, 2C9, 2C19 and 3A. In the investigation of α-mangostin metabolites by LC-MS/MS system, the MW of the parent compound was increased from 411.200 to 459.185 Da. Therefore, α-mangostin might be metabolized via tri-oxidation process. The increased molecular weight of parent compound (397.200 to 477.157 Da) illustrated that gartanin might be conjugated to sulfated derivatives. CONCLUSIONS In all the studies, α-mangostin and gartanin were predicted to be. metabolized via phase I and phase II metabolism (sulfation), respectively.
Collapse
|