1
|
Hervieu L, Groo AC, Bellien J, Guerrot D, Malzert-Fréon A. Glucuronidation of orally administered drugs and the value of nanocarriers in strategies for its overcome. Pharmacol Ther 2024; 266:108773. [PMID: 39647710 DOI: 10.1016/j.pharmthera.2024.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/25/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
The gastrointestinal tract (GIT) plays a pivotal role in the absorption of orally administered drugs, with the small intestine serving as the primary site due to its extensive surface area and specialized cell types, including enterocytes and M cells. After oral administration, drugs are generally transported via the portal vein to the liver, where they undergo first-pass metabolism. This process involves various enzymatic reactions, including glucuronidation, facilitated by uridine diphosphate-glucuronosyltransferase (UGT), a major phase 2 reaction in mammalian metabolism. UGTs conjugate glucuronic acid to a wide array of endogenous and exogenous substrates, enhancing their solubility and excretion, but significantly affecting the bioavailability and therapeutic efficacy of drugs. UGT enzymes are ubiquitously distributed across tissues, prominently in the liver, but also in the GIT, kidneys, brain, and other organs where they play crucial roles in xenobiotic metabolism. Species-specific differences in UGT expression and activity impact the selection of animal models for pharmacological studies. Various experimental models - ranging from computational simulations (in silico) to laboratory experiments (in vitro) and animal studies (in vivo) - are employed throughout drug discovery and development to evaluate drug metabolism, including UGT activity. Effective strategies to counter pre-systemic metabolism are critical for improving drug bioavailability. This review explores several approaches including prodrugs, co-administration of specific molecules or use of inhibiting excipients in formulations. Strategies incorporating these excipients in nanoformulations demonstrate notable increases in drug absorption and bioavailability. This review highlights the importance of targeted delivery systems and excipient selection in overcoming metabolic barriers, aiming to optimize drug efficacy and patient outcomes.
Collapse
Affiliation(s)
- Laura Hervieu
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000 Caen, France; Université de Rouen Normandie, INSERM UMR1096, Normandie Univ, 76000 Rouen, France
| | - Anne-Claire Groo
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000 Caen, France
| | - Jérémy Bellien
- Université de Rouen Normandie, INSERM UMR1096, Normandie Univ, 76000 Rouen, France; Pharmacology Department, Rouen University Hospital, 76000 Rouen, France
| | - Dominique Guerrot
- Université de Rouen Normandie, INSERM UMR1096, Normandie Univ, 76000 Rouen, France; Nephrology Department, Rouen University Hospital, 76000 Rouen, France
| | | |
Collapse
|
2
|
Tang LWT, Lapham K, Goosen TC. UGT2B10 is the Major UDP-Glucuronosyltransferase 2B Isoform Involved in the Metabolism of Lamotrigine and is Implicated in the Drug-Drug Interaction with Valproic Acid. AAPS J 2024; 26:107. [PMID: 39322784 DOI: 10.1208/s12248-024-00978-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024] Open
Abstract
Lamotrigine is a phenyltriazine anticonvulsant that is primarily metabolized by phase II UDP-glucuronosyltransferases (UGT) to a quaternary N2-glucuronide, which accounts for ~ 90% of the excreted dose in humans. While there is consensus that UGT1A4 plays a predominant role in the formation of the N2-glucuronide, there is compelling evidence in the literature to suggest that the metabolism of lamotrigine is catalyzed by another UGT isoform. However, the exact identity of the UGT isoform that contribute to the formation of this glucuronide remains uncertain. In this study, we harnessed a robust reaction phenotyping strategy to delineate the identities and its associated fraction metabolized (fm) of the UGTs involved in lamotrigine N2-glucuronidation. Foremost, human recombinant UGT mapping experiments revealed that the N2-glucuronide is catalyzed by multiple UGT isoforms. (i.e., UGT1A1, 1A3, 1A4, 1A9, 2B4, 2B7, and 2B10). Thereafter, scaling the apparent intrinsic clearances obtained from the enzyme kinetic experiments with our in-house liver-derived relative expression factors (REF) and relative activity factors (RAF) revealed that, in addition to UGT1A4, UGT2B10 was involved in the N2-glucuronidation of lamotrigine. This was further confirmed via chemical inhibition in human liver microsomes with the UGT1A4-selective inhibitor hecogenin and the UGT2B10-selective inhibitor desloratadine. By integrating various orthogonal approaches (i.e., REF- and RAF-scaling, and chemical inhibition), we quantitatively determined that the fm for UGT1A4 and UGT2B10 ranged from 0.42 - 0.64 and 0.32 - 0.57, respectively. Finally, we also provided nascent evidence that the pharmacokinetic interaction between lamotrigine and valproic acid likely arose from the in vivo inhibition of its UGT2B10-mediated pathway.
Collapse
Affiliation(s)
- Lloyd Wei Tat Tang
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Research and Development, Pfizer Inc., 445 Eastern Point Rd, Groton, CT, 06340, USA.
| | - Kimberly Lapham
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Research and Development, Pfizer Inc., 445 Eastern Point Rd, Groton, CT, 06340, USA
| | - Theunis C Goosen
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Research and Development, Pfizer Inc., 445 Eastern Point Rd, Groton, CT, 06340, USA
| |
Collapse
|
3
|
Sun H, Wienkers LC, Lee A. Beyond cytotoxic potency: disposition features required to design ADC payload. Xenobiotica 2024; 54:442-457. [PMID: 39017706 DOI: 10.1080/00498254.2024.2381139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
1. Antibody-drug conjugates (ADCs) have demonstrated impressive clinical usefulness in treating several types of cancer, with the notion of widening of the therapeutic index of the cytotoxic payload through the minimisation of the systemic toxicity. Therefore, choosing the most appropriate payload molecule is a particularly important part of the early design phase of ADC development, especially given the highly competitive environment ADCs find themselves in today.2. The focus of the current review is to describe critical attributes/considerations needed in the discovery and ultimately development of cytotoxic payloads in support of ADC design. In addition to potency, several key dispositional characteristics including solubility, permeability and bystander effect, pharmacokinetics, metabolism, and drug-drug interactions, are described as being an integral part of the integrated activities required in the design of clinically safe and useful ADC therapeutic agents.
Collapse
Affiliation(s)
- Hao Sun
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| | - Larry C Wienkers
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| | - Anthony Lee
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| |
Collapse
|
4
|
Subash S, Ahire D, Patel M, Shaikh S, Singh DK, Deshmukh S, Prasad B. Comparison of Relative Activity versus Relative Expression Factors (RAF versus REF) in Predicting Glucuronidation Mediated Drug Clearance Using Recombinant UGTs. Pharm Res 2024; 41:1621-1630. [PMID: 39107514 DOI: 10.1007/s11095-024-03750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/18/2024] [Indexed: 08/30/2024]
Abstract
PURPOSE Predicting the quantitative fraction of glucuronidation (fgluc) by individual UDP-glucuronosyltransferase enzymes (UGTs) is challenging due to the lack of selective inhibitors and inconsistent activity of recombinant UGT systems (rUGTs). Our study compares the relative expression versus activity factors (REF versus RAF) to predict fgluc based on rUGT data to human liver and intestinal microsomes (HLM and HIM). METHODS REF scalars were derived from a previous in-house proteomics study for eleven UGT enzymes (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT1A10, UGT2B4, UGT2B7, UGT2B10, UGT2B15, and UGT2B17), whereas RAF was calculated by measuring activities in rUGTs to microsomes of selective UGT probe substrates. Protein-normalized activity factor (pnAF) values were generated after correcting activity of individual UGTs to their corresponding protein abundance. The utility of REF and RAF in predicting fgluc was assessed for three UGT substrates-diclofenac, vorinostat, and raltegravir. RESULTS The REF values ranged from 0.02 to 1.75, RAF based on activity obtained in rUGTs to HLM/HIM were from 0.1 to 274. pnAF values were ~ 5 to 80-fold, except for UGT2B4 and UGT2B15, where pnAF was ~ 180 and > 1000, respectively. The results revealed confounding effect of differential specific activities (per pmol) of rUGTs in fgluc prediction. CONCLUSION The data suggest that the activity of UGT enzymes was significantly lower when compared to their activity in microsomes at the same absolute protein amount (pmol). Collectively, results of this study demonstrate poor and variable specific activity of different rUGTs (per pmol protein), as determined by pnAF values, which should be considered in fgluc scaling.
Collapse
Affiliation(s)
- Sandhya Subash
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, WA, 99202, USA
| | - Deepak Ahire
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, WA, 99202, USA
| | - Mitesh Patel
- Novartis Institutes for BioMedical Research, Inc, Cambridge, MA, USA
| | - Sahil Shaikh
- Novartis Institutes for BioMedical Research, Inc, Cambridge, MA, USA
| | - Dilip Kumar Singh
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, WA, 99202, USA
| | - Sujal Deshmukh
- Novartis Institutes for BioMedical Research, Inc, Cambridge, MA, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, WA, 99202, USA.
| |
Collapse
|
5
|
Xu S, Lan H, Huang C, Ge X, Zhu J. Mechanisms and emerging strategies for irinotecan-induced diarrhea. Eur J Pharmacol 2024; 974:176614. [PMID: 38677535 DOI: 10.1016/j.ejphar.2024.176614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Irinotecan (also known as CPT-11) is a topoisomerase I inhibitor first approved for clinical use as an anticancer agent in 1996. Over the past more than two decades, it has been widely used for combination regimens to treat various malignancies, especially in gastrointestinal and lung cancers. However, severe dose-limiting toxicities, especially gastrointestinal toxicity such as late-onset diarrhea, were frequently observed in irinotecan-based therapy, thus largely limiting the clinical application of this agent. Current knowledge regarding the pathogenesis of irinotecan-induced diarrhea is characterized by the complicated metabolism of irinotecan to its active metabolite SN-38 and inactive metabolite SN-38G. A series of enzymes and transporters were involved in these metabolic processes, including UGT1A1 and CYP3A4. Genetic polymorphisms of these metabolizing enzymes were significantly associated with the occurrence of irinotecan-induced diarrhea. Recent discoveries and progress made on the detailed mechanisms enable the identification of potential biomarkers for predicting diarrhea and as such guiding the proper patient selection with a better range of tolerant dosages. In this review, we introduce the metabolic process of irinotecan and describe the pathogenic mechanisms underlying irinotecan-induced diarrhea. Based on the mechanisms, we further outline the potential biomarkers for predicting the severity of diarrhea. Finally, based on the current experimental evidence in preclinical and clinical studies, we discuss and prospect the current and emerging strategies for the prevention of irinotecan-induced diarrhea.
Collapse
Affiliation(s)
- Shengkun Xu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Huiyin Lan
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Chengyi Huang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Xingnan Ge
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
6
|
Tang LWT, DaSilva E, Lapham K, Obach RS. Evaluation of Icotinib as a Potent and Selective Inhibitor of Aldehyde Oxidase for Reaction Phenotyping in Human Hepatocytes. Drug Metab Dispos 2024; 52:565-573. [PMID: 38565303 DOI: 10.1124/dmd.124.001693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Aldehyde oxidase (AO) is a molybdenum cofactor-containing cytosolic enzyme that has gained prominence due to its involvement in the developmental failure of several drug candidates in first-in-human trials. Unlike cytochrome P450s (P450) and glucuronosyltransferase, AO substrates have been plagued by poor in vitro to in vivo extrapolation, leading to low systemic exposures and underprediction of human dose. However, apart from measuring a drug's AO clearance rates, it is also important to determine the relative contribution to metabolism by this enzyme (fm,AO). Although hydralazine is the most well-studied time-dependent inhibitor (TDI) of AO and is frequently employed for AO reaction phenotyping in human hepatocytes to derive fm,AO, multiple studies have expressed concerns pertaining to its utility in providing accurate estimates of fm,AO values due to its propensity to significantly inhibit P450s at the concentrations typically used for reaction phenotyping. In this study, we characterized icotinib, a cyclized analog of erlotinib, as a potent TDI of AO-inactivating human liver cytosolic zoniporide 2-oxidation equipotently with erlotinib with a maximal inactivate rate/inactivator concentration at half maximal inactivation rate (K I) ratio of 463 and 501 minute-1mM-1 , respectively. Moreover, icotinib also exhibits selectivity against P450 and elicits significantly weaker inhibition against human liver microsomal UGT1A1/3 as compared with erlotinib. Finally, we evaluated icotinib as an inhibitor of AO for reaction phenotyping in cryopreserved human hepatocytes and demonstrated that it can yield more accurate prediction of fm,AO compared with hydralazine and induce sustained suppression of AO activity at higher cell densities, which will be important for reaction phenotyping endeavors of low clearance drugs SIGNIFICANCE STATEMENT: In this study, we characterized icotinib as a potent time-dependent inhibitor of AO with ample selectivity margins against the P450s and UGT1A1/3 and demonstrated its utility for reaction phenotyping in human hepatocytes to obtain accurate estimates of fm,AO for victim DDI risk predictions. We envisage the adoption of icotinib in place of hydralazine in AO reaction phenotyping.
Collapse
Affiliation(s)
- Lloyd Wei Tat Tang
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut
| | - Ethan DaSilva
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut
| | - Kimberly Lapham
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut
| | - R Scott Obach
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut
| |
Collapse
|
7
|
Zhang H, Yang L, Shen D, Zhu Y, Zhang L. Identification of Bromophenols' glucuronidation and its induction on UDP- glucuronosyltransferases isoforms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116281. [PMID: 38581907 DOI: 10.1016/j.ecoenv.2024.116281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Bromophenols (BPs) are prominent environmental pollutants extensively utilized in aquaculture, pharmaceuticals, and chemical manufacturing. This study aims to identify UDP- glucuronosyltransferases (UGTs) isoforms involved in the metabolic elimination of BPs. Mono-glucuronides of BPs were detected in human liver microsomes (HLMs) incubated with the co-factor uridine-diphosphate glucuronic acid (UDPGA). The glucuronidation metabolism reactions catalyzed by HLMs followed Michaelis-Menten or substrate inhibition kinetics. Recombinant enzymes and inhibition experiments with chemical reagents were employed to phenotype the principal UGT isoforms participating in BP glucuronidation. UGT1A6 emerged as the major enzyme in the glucuronidation of 4-Bromophenol (4-BP), while UGT1A1, UGT1A6, and UGT1A8 were identified as the most essential isoforms for metabolizing 2,4-dibromophenol (2,4-DBP). UGT1A1, UGT1A8, and UGT2B4 were deemed the most critical isoforms in the catalysis of 2,4,6-tribromophenol (2,4,6-TBP) glucuronidation. Species differences were investigated using the liver microsomes of pig (PLM), rat (RLM), monkey (MyLM), and dog (DLM). Additionally, 2,4,6-TBP effects on the expression of UGT1A1 and UGT2B7 in HepG2 cells were evaluated. The results demonstrated potential induction of UGT1A1 and UGT2B7 upon exposure to 2,4,6-TBP at a concentration of 50 μM. Collectively, these findings contribute to elucidating the metabolic elimination and toxicity of BPs.
Collapse
Affiliation(s)
- Haoqian Zhang
- Department of Obstetrics and Gynecology, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of Cervical Disease, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of Cervical Disease, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Shen
- Department of Obstetrics and Gynecology, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of Cervical Disease, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanhang Zhu
- Zhengzhou Key Laboratory of Cervical Disease, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China; National Clinical Research Center for Obstetrics and Gynecology, Henan Branch, The third Affliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lihua Zhang
- Department of Pediatric Urology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
8
|
Xie CL, Xiao HX, Song PF, Liu QM, Wei H, Wu L, Zhu GH, Liu GM, Zhang Y, Wang P, Yang XW. Lead Optimization of Butyrolactone I as an Orally Bioavailable Antiallergic Agent Targeting FcγRIIB. J Med Chem 2024. [PMID: 38640354 DOI: 10.1021/acs.jmedchem.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Food allergy (FA) poses a growing global food safety concern, yet no effective cure exists in clinics. Previously, we discovered a potent antifood allergy compound, butyrolactone I (BTL-I, 1), from the deep sea. Unfortunately, it has a very low exposure and poor pharmacokinetic (PK) profile in rats. Therefore, a series of structural optimizations toward the metabolic pathways of BTL-I were conducted to provide 18 derives (2-19). Among them, BTL-MK (19) showed superior antiallergic activity and favorable pharmacokinetics compared to BTL-I, being twice as potent with a clearance (CL) rate of only 0.5% that of BTL-I. By oral administration, Cmax and area under the concentration-time curve (AUC0-∞) were 565 and 204 times higher than those of BTL-I, respectively. These findings suggest that butyrolactone methyl ketone (BTL-BK) could serve as a drug candidate for the treatment of FAs and offer valuable insights into optimizing the druggability of lead compounds.
Collapse
Affiliation(s)
- Chun-Lan Xie
- School of Pharmacy, Hainan Medical University, Hainan Academy of Medical Sciences, No. 3 Xueyuan Road, Haikou 571199, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - Hong-Xiu Xiao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Pei-Fang Song
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing-Mei Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Haoxiang Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Liang Wu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yandong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xian-Wen Yang
- School of Pharmacy, Hainan Medical University, Hainan Academy of Medical Sciences, No. 3 Xueyuan Road, Haikou 571199, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| |
Collapse
|
9
|
Coates S, Bardhi K, Lazarus P. Cannabinoid-Induced Inhibition of Morphine Glucuronidation and the Potential for In Vivo Drug-Drug Interactions. Pharmaceutics 2024; 16:418. [PMID: 38543313 PMCID: PMC10975434 DOI: 10.3390/pharmaceutics16030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Opioids are commonly prescribed for the treatment of chronic pain. Approximately 50% of adults who are prescribed opioids for pain co-use cannabis with their opioid treatment. Morphine is primarily metabolized by UDP-glucuronosyltransferase (UGT) 2B7 to an inactive metabolite, morphine-3-glucuronide (M3G), and an active metabolite, morphine-6-glucuronide (M6G). Previous studies have shown that major cannabis constituents including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) inhibit major UGT enzymes. To examine whether cannabinoids or their major metabolites inhibit morphine glucuronidation by UGT2B7, in vitro assays and mechanistic static modeling were performed with these cannabinoids and their major metabolites including 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC), 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (11-COOH-THC), 7-hydroxy-cannabidiol (7-OH-CBD), and 7-carboxy-cannabidiol (7-COOH-CBD). In vitro assays with rUGT-overexpressing microsomes and human liver microsomes showed that THC and CBD and their metabolites inhibited UGT2B7-mediated morphine metabolism, with CBD and THC exhibiting the most potent Ki,u values (0.16 µM and 0.37 µM, respectively). Only 7-COOH-CBD exhibited no inhibitory activity against UGT2B7-mediated morphine metabolism. Static mechanistic modeling predicted an in vivo drug-drug interaction between morphine and THC after inhaled cannabis, and between THC, CBD, and 7-OH-CBD after oral consumption of cannabis. These data suggest that the co-use of these agents may lead to adverse drug events in humans.
Collapse
Affiliation(s)
| | | | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA 99202, USA
| |
Collapse
|
10
|
Wu C, Luo M, Xie D, Zhong S, Xu J, Lu D. Kinetic Characterization of Estradiol Glucuronidation by Liver Microsomes and Expressed UGT Enzymes: The Effects of Organic Solvents. Eur J Drug Metab Pharmacokinet 2024:10.1007/s13318-024-00888-2. [PMID: 38472634 DOI: 10.1007/s13318-024-00888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND AND OBJECTIVE In vitro glucuronidation of 17β-estradiol (estradiol) is often performed to assess the role of uridine 5'-diphospho-glucuronosyltransferase 1A1 (UGT1A1) in xenobiotic/drug metabolism. The objective of this study was to determine the effects of four commonly used organic solvents [i.e., dimethyl sulfoxide (DMSO), methanol, ethanol, and acetonitrile] on the glucuronidation kinetics of estradiol, which can be glucuronidated at C3 and C17 positions. METHODS The impacts of organic solvents on estradiol glucuronidation were determined by using expressed UGT enzymes and liver microsomes from both human and animals. RESULTS In human liver microsomes (HLM), methanol, ethanol, and acetonitrile significantly altered estradiol glucuronidation kinetics with increased Vmax (up to 2.6-fold) and CLmax (up to 2.8-fold) values. Altered estradiol glucuronidation in HLM was deduced to be attributed to the enhanced metabolic activities of UGT1A1 and UGT2B7, whose activities differ at the two glucuronidation positions. The effects of organic solvents on estradiol glucuronidation were glucuronidation position-, isozyme-, and solvent-specific. Furthermore, both ethanol and acetonitrile have a greater tendency to modify the glucuronidation activity of estradiol in animal liver microsomes. CONCLUSION Organic solvents such as methanol, ethanol, and acetonitrile showed great potential in adjusting the glucuronidation of estradiol. DMSO is the most suitable solvent due to its minimal influence on estradiol glucuronidation. Researchers should be cautious in selecting appropriate solvents to get accurate results when assessing the metabolism of a new chemical entity.
Collapse
Affiliation(s)
- Caimei Wu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Meixue Luo
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Dihao Xie
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Simin Zhong
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Jiahao Xu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Miao YS, Wang JY, Zhuang RR, Huo XK, Yi ZC, Sun XN, Yu ZL, Tian XG, Ning J, Feng L, Ma XC, Lv X. A high-affinity fluorescent probe for human uridine-disphosphate glucuronosyltransferase 1A9 function monitoring under environmental pollutant exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133439. [PMID: 38218035 DOI: 10.1016/j.jhazmat.2024.133439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Uridine-disphosphate glucuronosyltransferase 1A9 (UGT1A9), an important detoxification and inactivation enzyme for toxicants, regulates the exposure level of environmental pollutants in the human body and induces various toxicological consequences. However, an effective tool for high-throughput monitoring of UGT1A9 function under exposure to environmental pollutants is still lacking. In this study, 1,3-dichloro-7-hydroxy-9,9-dimethylacridin-2(9H)-one (DDAO) was found to exhibit excellent specificity and high affinity towards human UGT1A9. Remarkable changes in absorption and fluorescence signals after reacting with UGT1A9 were observed, due to the intramolecular charge transfer (ICT) mechanism. Importantly, DDAO was successfully applied to monitor the biological functions of UGT1A9 in response to environmental pollutant exposure not only in microsome samples, but also in living cells by using a high-throughput screening method. Meanwhile, the identified pollutants that disturb UGT1A9 functions were found to significantly influence the exposure level and retention time of bisphenol S/bisphenol A in living cells. Furthermore, the molecular mechanism underlying the inhibition of UGT1A9 by these pollutant-derived disruptors was elucidated by molecular docking and molecular dynamics simulations. Collectively, a fluorescent probe to characterize the responses of UGT1A9 towards environmental pollutants was developed, which was beneficial for elucidating the health hazards of environmental pollutants from a new perspective.
Collapse
Affiliation(s)
- Yi-Sheng Miao
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Jia-Yue Wang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Rui-Rui Zhuang
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiao-Kui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Zi-Chang Yi
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiao-Nan Sun
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhen-Long Yu
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xiang-Ge Tian
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Jing Ning
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China.
| | - Xiao-Chi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Xia Lv
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
12
|
Aluri KC, Slavsky M, Tan Y, Whitcher‐Johnstone A, Zhang Z, Hariparsad N, Ramsden D. Aminobenzotriazole inhibits and induces several key drug metabolizing enzymes complicating its utility as a pan CYP inhibitor for reaction phenotyping. Clin Transl Sci 2024; 17:e13746. [PMID: 38501263 PMCID: PMC10949176 DOI: 10.1111/cts.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Aminobenzotriazole (ABT) is commonly used as a non-selective inhibitor of cytochrome P450 (CYP) enzymes to assign contributions of CYP versus non-CYP pathways to the metabolism of new chemical entities. Despite widespread use, a systematic review of the drug-drug interaction (DDI) potential for ABT has not been published nor have the implications for using it in plated hepatocyte models for low clearance reaction phenotyping. The goal being to investigate the utility of ABT as a pan-CYP inhibitor for reaction phenotyping of low clearance compounds by evaluating stability over the incubation period, inhibition potential against UGT and sulfotransferase enzymes, and interaction with nuclear receptors involved in the regulation of drug metabolizing enzymes and transporters. Induction potential for additional inhibitors used to ascribe fraction metabolism (fm ), pathway including erythromycin, ketoconazole, azamulin, atipamezole, ZY12201, and quinidine was also investigated. ABT significantly inhibited the clearance of a non-selective UGT substrate 4-methylumbelliferone, with several UGTs shown to be inhibited using selective probe substrates in human hepatocytes and rUGTs. The inhibitors screened in the induction assay were shown to induce enzymes regulated through Aryl Hydrocarbon Receptor, Constitutive Androstane Receptor, and Pregnane X Receptor. Lastly, a case study identifying the mechanisms of a clinical DDI between Palbociclib and ARV-471 is provided as an example of the potential consequences of using ABT to derive fm . This work demonstrates that ABT is not an ideal pan-CYP inhibitor for reaction phenotyping of low clearance compounds and establishes a workflow that can be used to enable robust characterization of other prospective inhibitors.
Collapse
Affiliation(s)
| | | | - Ying Tan
- AstraZenecaWalthamMassachusettsUSA
| | | | | | | | | |
Collapse
|
13
|
Lv X, Wang Z, Wang Z, Yin H, Xia Y, Jiang L, Liu Y. Avapritinib Carries the Risk of Drug Interaction via Inhibition of UDP-Glucuronyltransferase (UGT) 1A1. Curr Drug Metab 2024; 25:197-204. [PMID: 38803186 DOI: 10.2174/0113892002288312240521092054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Avapritinib is the only drug for adult patients with PDGFRA exon 18 mutated unresectable or metastatic gastrointestinal stromal tumor (GIST). Although avapritinib has been approved by the FDA for four years, little is known about the risk of drug-drug interactions (DDIs) via UDP-glucuronyltransferases (UGTs) inhibition. OBJECTIVE The aim of the present study was to systematically evaluate the inhibitory effects of avapritinib against UGTs and to quantitatively estimate its potential DDIs risk in vivo. METHODS Recombinant human UGTs were employed to catalyze the glucuronidation of substrates in a range of concentrations of avapritinib. The kinetics analysis was performed to evaluate the inhibition types of avapritinib against UGTs. The quantitative prediction of DDIs was done using in vitro-in vivo extrapolation (IVIVE). RESULTS Avapritinib had a potent competitive inhibitory effect on UGT1A1. Quantitative prediction results showed that avapritinib administered at clinical doses might result in a 14.85% increase in area under the curve (AUC) of drugs primarily cleared by UGT1A1. Moreover, the Rgut value was calculated to be 18.44. CONCLUSION Avapritinib has the potential to cause intestinal DDIs via the inhibition of UGT1A1. Additional attention should be paid when avapritinib is coadministered with UGT1A1 substrates.
Collapse
Affiliation(s)
- Xin Lv
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Zhen Wang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Zhe Wang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hang Yin
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yangliu Xia
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Lili Jiang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yong Liu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| |
Collapse
|
14
|
Nair PC, Burns K, Chau N, McKinnon RA, Miners JO. The molecular basis of dapsone activation of CYP2C9-catalyzed nonsteroidal anti-inflammatory drug oxidation. J Biol Chem 2023; 299:105368. [PMID: 37866634 PMCID: PMC10696402 DOI: 10.1016/j.jbc.2023.105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023] Open
Abstract
Positive heterotropic cooperativity, or "activation," results in an instantaneous increase in enzyme activity in the absence of an increase in protein expression. Thus, cytochrome P450 (CYP) enzyme activation presents as a potential drug-drug interaction mechanism. It has been demonstrated previously that dapsone activates the CYP2C9-catalyzed oxidation of a number of nonsteroidal anti-inflammatory drugs in vitro. Here, we conducted molecular dynamics simulations (MDS) together with enzyme kinetic investigations and site-directed mutagenesis to elucidate the molecular basis of the activation of CYP2C9-catalyzed S-flurbiprofen 4'-hydroxylation and S-naproxen O-demethylation by dapsone. Supplementation of incubations of recombinant CYP2C9 with dapsone increased the catalytic efficiency of flurbiprofen and naproxen oxidation by 2.3- and 16.5-fold, respectively. MDS demonstrated that activation arises predominantly from aromatic interactions between the substrate, dapsone, and the phenyl rings of Phe114 and Phe476 within a common binding domain of the CYP2C9 active site, rather than involvement of a distinct effector site. Mutagenesis of Phe114 and Phe476 abrogated flurbiprofen and naproxen oxidation, and MDS and kinetic studies with the CYP2C9 mutants further identified a pivotal role of Phe476 in dapsone activation. MDS additionally showed that aromatic stacking interactions between two molecules of naproxen are necessary for binding in a catalytically favorable orientation. In contrast to flurbiprofen and naproxen, dapsone did not activate the 4'-hydroxylation of diclofenac, suggesting that the CYP2C9 active site favors cooperative binding of nonsteroidal anti-inflammatory drugs with a planar or near-planar geometry. More generally, the work confirms the utility of MDS for investigating ligand binding in CYP enzymes.
Collapse
Affiliation(s)
- Pramod C Nair
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia; FHMRI Cancer Program, Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia.
| | - Kushari Burns
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Nuy Chau
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- FHMRI Cancer Program, Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - John O Miners
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia; FHMRI Cancer Program, Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
15
|
Chen X, Li J, Yu L, Maule F, Chang L, Gallant JA, Press DJ, Raithatha SA, Hagel JM, Facchini PJ. A cane toad (Rhinella marina) N-methyltransferase converts primary indolethylamines to tertiary psychedelic amines. J Biol Chem 2023; 299:105231. [PMID: 37690691 PMCID: PMC10570959 DOI: 10.1016/j.jbc.2023.105231] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023] Open
Abstract
Psychedelic indolethylamines have emerged as potential medicines to treat several psychiatric pathologies. Natural sources of these compounds include 'magic mushrooms' (Psilocybe spp.), plants used to prepare ayahuasca, and toads. The skin and parotid glands of certain toads accumulate a variety of specialized metabolites including toxic guanidine alkaloids, lipophilic alkaloids, poisonous steroids, and hallucinogenic indolethylamines such as DMT, 5-methoxy-DMT, and bufotenin. The occurrence of psychedelics has contributed to the ceremonial use of toads, particularly among Mesoamerican peoples. Yet, the biosynthesis of psychedelic alkaloids has not been elucidated. Herein, we report a novel indolethylamine N-methyltransferase (RmNMT) from cane toad (Rhinella marina). The RmNMT sequence was used to identify a related NMT from the common toad, Bufo bufo. Close homologs from various frog species were inactive, suggesting a role for psychedelic indolethylamine biosynthesis in toads. Enzyme kinetic analyses and comparison with functionally similar enzymes showed that recombinant RmNMT was an effective catalyst and not product inhibited. The substrate promiscuity of RmNMT enabled the bioproduction of a variety of substituted indolethylamines at levels sufficient for purification, pharmacological screening, and metabolic stability assays. Since the therapeutic potential of psychedelics has been linked to activity at serotonergic receptors, we evaluated binding of derivatives at 5-HT1A and 5-HT2A receptors. Primary amines exhibited enhanced affinity at the 5-HT1A receptor compared with tertiary amines. With the exception of 6-substituted derivatives, N,N-dimethylation also protected against catabolism by liver microsomes.
Collapse
Affiliation(s)
- Xue Chen
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | - Jing Li
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | - Lisa Yu
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | - Francesca Maule
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Limei Chang
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | | | - David J Press
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | | | - Jillian M Hagel
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | - Peter J Facchini
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada; Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
16
|
Yang F, Sharma SS, Bureik M, Parr MK. Mutual Modulation of the Activities of Human CYP2D6 and Four UGTs during the Metabolism of Propranolol. Curr Issues Mol Biol 2023; 45:7130-7146. [PMID: 37754235 PMCID: PMC10527876 DOI: 10.3390/cimb45090451] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Cytochromes P450 (CYP) and UDP-glucuronosyltransferases (UGT) are two enzyme families that play an important role in drug metabolism, catalyzing either the functionalization or glucuronidation of xenobiotics. However, their mutual interactions are poorly understood. In this study, the functional interactions of human CYP2D6 with four human UGTs (UGT1A7, UGT1A8, UGT1A9, and UGT2A1) were investigated using our previously established co-expression model system in the fission yeast Schizosaccharomyces pombe. The substrate employed was propranolol because it is well metabolized by CYP2D6. Moreover, the CYP2D6 metabolite 4-hydroxypropranolol is a known substrate for the four UGTs included in this study. Co-expression of either UGT1A7, UGT1A8, or UGT1A9 was found to increase the activity of CYP2D6 by a factor of 3.3, 2.1 or 2.8, respectively, for the conversion of propranolol to 4-hydroxypropranolol. In contrast, UGT2A1 co-expression did not change CYP2D6 activity. On the other hand, the activities of all four UGTs were completely suppressed by co-expression of CYP2D6. This data corroborates our previous report that CYP2D6 is involved in functional CYP-UGT interactions and suggest that such interactions can contribute to both adverse drug reactions and changes in drug efficacy.
Collapse
Affiliation(s)
- Fan Yang
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Sangeeta Shrestha Sharma
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (S.S.S.); (M.B.)
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (S.S.S.); (M.B.)
| | - Maria Kristina Parr
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany;
| |
Collapse
|
17
|
Duthaler U, Bachmann F, Ozbey AC, Umehara K, Parrott N, Fowler S, Krähenbühl S. The Activity of Members of the UDP-Glucuronosyltransferase Subfamilies UGT1A and UGT2B is Impaired in Patients with Liver Cirrhosis. Clin Pharmacokinet 2023; 62:1141-1155. [PMID: 37328712 PMCID: PMC10386950 DOI: 10.1007/s40262-023-01261-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE The impact of liver cirrhosis on the activity of UDP-glucuronosyltransferases (UGTs) is currently not well characterized. We investigated the glucuronidation capacity and glucuronide accumulation in patients with liver cirrhosis. METHODS We administered the Basel phenotyping cocktail (caffeine, efavirenz, flurbiprofen, omeprazole, metoprolol, midazolam) to patients with liver cirrhosis (n = 16 Child A, n = 15 Child B, n = 5 Child C) and n = 12 control subjects and obtained pharmacokinetic profiles of substrates and primary metabolites and their glucuronides. RESULTS Caffeine and its metabolite paraxanthine were only slightly glucuronidated. The metabolic ratio (AUCglucuronide/AUCparent, MR) was not affected for caffeine but decreased by 60% for paraxanthine glucuronide formation in Child C patients. Efavirenz was not glucuronidated whereas 8-hydroxyefavirenz was efficiently glucuronidated. The MR of 8-hydroxyefavirenz-glucuronide formation increased three-fold in Child C patients and was negatively correlated with the glomerular filtration rate. Flurbiprofen and omeprazole were not glucuronidated. 4-Hydroxyflurbiprofen and 5-hydroxyomeprazole were both glucuronidated but the corresponding MRs for glucuronide formation were not affected by liver cirrhosis. Metoprolol, but not α-hydroxymetoprolol, was glucuronidated, and the MR for metoprolol-glucuronide formation dropped by 60% in Child C patients. Both midazolam and its metabolite 1'-hydroxymidazolam underwent glucuronidation, and the corresponding MRs for glucuronide formation dropped by approximately 80% in Child C patients. No relevant glucuronide accumulation occurred in patients with liver cirrhosis. CONCLUSIONS Detailed analysis revealed that liver cirrhosis may affect the activity of UGTs of the UGT1A and UGT2B subfamilies according to liver function. Clinically significant glucuronide accumulation did not occur in the population investigated. CLINICAL TRIAL REGISTRATION NCT03337945.
Collapse
Affiliation(s)
- Urs Duthaler
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel, 4031, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Fabio Bachmann
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel, 4031, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Agustos C Ozbey
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Kenichi Umehara
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Stephen Fowler
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel, 4031, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
- Department of Clinical Research, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
18
|
Miners JO, Polasek TM, Hulin JA, Rowland A, Meech R. Drug-drug interactions that alter the exposure of glucuronidated drugs: Scope, UDP-glucuronosyltransferase (UGT) enzyme selectivity, mechanisms (inhibition and induction), and clinical significance. Pharmacol Ther 2023:108459. [PMID: 37263383 DOI: 10.1016/j.pharmthera.2023.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Drug-drug interactions (DDIs) arising from the perturbation of drug metabolising enzyme activities represent both a clinical problem and a potential economic loss for the pharmaceutical industry. DDIs involving glucuronidated drugs have historically attracted little attention and there is a perception that interactions are of minor clinical relevance. This review critically examines the scope and aetiology of DDIs that result in altered exposure of glucuronidated drugs. Interaction mechanisms, namely inhibition and induction of UDP-glucuronosyltransferase (UGT) enzymes and the potential interplay with drug transporters, are reviewed in detail, as is the clinical significance of known DDIs. Altered victim drug exposure arising from modulation of UGT enzyme activities is relatively common and, notably, the incidence and importance of UGT induction as a DDI mechanism is greater than generally believed. Numerous DDIs are clinically relevant, resulting in either loss of efficacy or an increased risk of adverse effects, necessitating dose individualisation. Several generalisations relating to the likelihood of DDIs can be drawn from the known substrate and inhibitor selectivities of UGT enzymes, highlighting the importance of comprehensive reaction phenotyping studies at an early stage of drug development. Further, rigorous assessment of the DDI liability of new chemical entities that undergo glucuronidation to a significant extent has been recommended recently by regulatory guidance. Although evidence-based approaches exist for the in vitro characterisation of UGT enzyme inhibition and induction, the availability of drugs considered appropriate for use as 'probe' substrates in clinical DDI studies is limited and this should be research priority.
Collapse
Affiliation(s)
- John O Miners
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Thomas M Polasek
- Certara, Princeton, NJ, USA; Centre for Medicines Use and Safety, Monash University, Melbourne, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
19
|
Uehara S, Higuchi Y, Yoneda N, Kato H, Yamazaki H, Suemizu H. The Unique Human N10-Glucuronidated Metabolite Formation from Olanzapine in Chimeric NOG-TKm30 Mice with Humanized Livers. Drug Metab Dispos 2023; 51:480-491. [PMID: 36623885 DOI: 10.1124/dmd.122.001102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
Olanzapine is an antipsychotic agent with species-dependent pharmacokinetic profiles in both humans and animals. In the present study, the metabolic profiles of olanzapine in vitro and in vivo were compared in non-transplanted immunodeficient NOG-TKm30 mice and chimeric mice with humanized livers (hereafter humanized-liver mice). Hepatic microsomal fractions prepared from humanized-liver mice and humans mediated olanzapine N10-glucuronidation, whereas fractions from cynomolgus monkeys, marmosets, minipigs, dogs, rabbits, guinea pigs, rats, CD1 mice, and NOG-TKm30 mice did not. The olanzapine N10-glucuronidation activity in liver microsomes from humanized-liver mice was inhibited by hecogenin, a human UDP-glucuronosyltransferase (UGT) 1A4 inhibitor. In addition, hepatocytes from humanized-liver mice suggest that olanzapine N10-glucuronidation was a major metabolic pathway in the livers of humanized-liver mice. After a single oral dose of olanzapine (10 mg/kg body weight) to humanized-liver mice and control NOG-TKm30 mice, olanzapine N10-glucuronide isomers and olanzapine N4'-glucuronide were detected only in the plasma of humanized-liver mice. In contrast, the area under the curve for N4'-demethylolanzapine, 2-hydroxymethylolanzapine, and 7-hydroxyolanzapine glucuronide was higher in NOG-TKm30 mice than that in humanized-liver mice. The cumulative excreted amounts of olanzapine N10-glucuronide isomers were high in the urine and feces from humanized-liver mice, whereas the cumulative excreted amounts of 2-hydroxymethylolanzapine were higher in NOG-TKm30 mice than in humanized-liver mice. Thus, production of human-specific olanzapine N10-glucuronide was observed in humanized-liver mice, which was consistent with the in vitro glucuronidation data. These results suggest that humanized-liver mice are useful for studying drug oxidation and conjugation of olanzapine in humans. SIGNIFICANCE STATEMENT: Human-specific olanzapine N10-glucuronide isomers were generated in chimeric NOG-TKm30 mice with humanized livers (humanized-liver mice), and high UGT1A4-dependent N10-glucuronidation was observed in the liver microsomes from humanized-liver mice. Hence, humanized-liver mice may be a suitable model for studying UGT1A4-dependent biotransformation of drugs in humans.
Collapse
Affiliation(s)
- Shotaro Uehara
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kanagawa, Japan (S.U., Y.H., N.Y., H.K., H.S.) and Showa Pharmaceutical University, Tokyo, Japan (H.Y.)
| | - Yuichiro Higuchi
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kanagawa, Japan (S.U., Y.H., N.Y., H.K., H.S.) and Showa Pharmaceutical University, Tokyo, Japan (H.Y.)
| | - Nao Yoneda
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kanagawa, Japan (S.U., Y.H., N.Y., H.K., H.S.) and Showa Pharmaceutical University, Tokyo, Japan (H.Y.)
| | - Hiroaki Kato
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kanagawa, Japan (S.U., Y.H., N.Y., H.K., H.S.) and Showa Pharmaceutical University, Tokyo, Japan (H.Y.)
| | - Hiroshi Yamazaki
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kanagawa, Japan (S.U., Y.H., N.Y., H.K., H.S.) and Showa Pharmaceutical University, Tokyo, Japan (H.Y.)
| | - Hiroshi Suemizu
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kanagawa, Japan (S.U., Y.H., N.Y., H.K., H.S.) and Showa Pharmaceutical University, Tokyo, Japan (H.Y.)
| |
Collapse
|
20
|
Hu J, Hu T, Guo Z, Song Y, Shan L, Shi X. Species Difference in the Metabolism of Mulberrin in Vitro and Its Inhibitory Effect on Cytochrome P450 and UDP-Glucuronosyltransferase Enzymes. Chem Pharm Bull (Tokyo) 2022; 70:669-678. [PMID: 36184449 DOI: 10.1248/cpb.c22-00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to evaluate the interspecies difference in metabolism of mulberrin and examine the interaction between mulberrin and CYP enzymes or recombinant human uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) enzymes. Liver microsomes from human (HLMs), Beagle dog (DLMs), minipig (PLMs), monkey (MLMs), rabbit (RLMs), rat (RAMs), and mouse (MIMs) were used to investigate metabolic diversity among different species. Additionally, recombinant human supersomes were used to confirm that metabolic enzymes are involved in the biotransformation of mulberrin. We also evaluated the influence of mulberrin on protein expression by Western blot analysis. Mulberrin metabolism showed significant interspecies differences. We found four and two metabolites in phase I and II reaction systems, respectively. In phase I metabolism profiles of mulberrin for HLMs, PLMs and MLMs conformed to the classic Michaelis-Menten kinetics, RAMs and MIMs followed biphasic kinetics; phase II reaction of mulberrin in HLMs, DLMs, PLMs, MLMs, RLMs, RAMs and MIMs followed biphasic kinetics. UGT1A1 were the major CYP isoforms responsible for the metabolism of mulberrin. Mulberrin showed potent inhibitory effects against CYP3A4, CYP2C9, CYP2E1, UGT1A1, UGT1A3 and UGT2B7 with IC50 values of 54.21, 9.93, 39.12, 3.84, 2.01, 16.36 µM, respectively. According to Western blot analysis, mulberrin can upregulate the protein expression of CYP2C19, and downregulate the expression levels of CYP3A5 and CYP2C9 in HepG2 cells as concentration increased. The interspecies comparisons can help find other species with metabolic pathways similar to those in humans for future in vivo studies.
Collapse
Affiliation(s)
- Jiayin Hu
- The First Affiliated Hospital of Jinzhou Medical University
| | - Tingting Hu
- The First Affiliated Hospital of Jinzhou Medical University
| | - Zhe Guo
- The First Affiliated Hospital of Jinzhou Medical University
| | - Yonggui Song
- Jiangxi University of Traditional Chinese Medicine
| | - Lina Shan
- The First Affiliated Hospital of Jinzhou Medical University
| | - Xianbao Shi
- The First Affiliated Hospital of Jinzhou Medical University
| |
Collapse
|
21
|
Weng Y, Fonseca KR, Bi YA, Mathialagan S, Riccardi K, Tseng E, Bessire AJ, Cerny MA, Tess DA, Rodrigues AD, Kalgutkar AS, Litchfield JE, Di L, Varma MVS. Transporter-Enzyme Interplay in the Pharmacokinetics of PF-06835919, A First-in-class Ketohexokinase Inhibitor for Metabolic Disorders and Non-alcoholic Fatty Liver Disease. Drug Metab Dispos 2022; 50:DMD-AR-2022-000953. [PMID: 35779864 DOI: 10.1124/dmd.122.000953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Excess dietary fructose consumption promotes metabolic dysfunction thereby increasing the risk of obesity, type 2 diabetes, non-alcoholic steatohepatitis (NASH), and related comorbidities. PF-06835919, a first-in-class ketohexokinase (KHK) inhibitor, showed reversal of such metabolic disorders in preclinical models and clinical studies, and is under clinical development for the potential treatment of NASH. In this study, we evaluated the transport and metabolic pathways of PF-06835919 disposition and assessed pharmacokinetics in preclinical models. PF-06835919 showed active uptake in cultured primary human hepatocytes, and substrate activity to organic anion transporter (OAT)2 and organic anion transporting-polypeptide (OATP)1B1 in transfected cells. "SLC-phenotyping" studies in human hepatocytes suggested contribution of passive uptake, OAT2- and OATP1B-mediated transport to the overall uptake to be about 15%, 60% and 25%, respectively. PF-06835919 showed low intrinsic metabolic clearance in vitro, and was found to be metabolized via both oxidative pathways (58%) and acyl glucuronidation (42%) by CYP3A, CYP2C8, CYP2C9 and UGT2B7. Following intravenous dosing, PF-06835919 showed low clearance (0.4-1.3 mL/min/kg) and volume of distribution (0.17-0.38 L/kg) in rat, dog and monkey. Human oral pharmacokinetics are predicted within 20% error when considering transporter-enzyme interplay in a PBPK model. Finally, unbound liver-to-plasma ratio (Kpuu) measured in vitro using rat, NHP and human hepatocytes was found to be approximately 4, 25 and 10, respectively. Similarly, liver Kpuu in rat and monkey following intravenous dosing of PF-06835919 was found to be 2.5 and 15, respectively, and notably higher than the muscle and brain Kpuu, consistent with the active uptake mechanisms observed in vitro. Significance Statement This work characterizes the transport/metabolic pathways in the hepatic disposition of PF-06835919, a first-in-class KHK inhibitor for the treatment of metabolic disorders and NASH. Phenotyping studies using transfected systems, human hepatocytes and liver microsomes signifies the role of OAT2 and OATP1B1 in the hepatic uptake and multiple enzymes in the metabolism of PF-06835919. Data presented suggest hepatic transporter-enzyme interplay in determining its systemic concentrations and potential enrichment in liver, a target site for KHK inhibition.
Collapse
Affiliation(s)
- Yan Weng
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., United States
| | | | | | - Sumathy Mathialagan
- Pharmacokinetics, Pharmacodynamics, and Metabolism, Medicine Design, Pfizer Inc, United States
| | | | - Elaine Tseng
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, United States
| | | | | | | | | | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research and Development, United States
| | | | - Li Di
- Pharmacokintics Dynamics and Metabolism, Pfizer Inc., United States
| | | |
Collapse
|
22
|
Lai Y, Chu X, Di L, Gao W, Guo Y, Liu X, Lu C, Mao J, Shen H, Tang H, Xia CQ, Zhang L, Ding X. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development. Acta Pharm Sin B 2022; 12:2751-2777. [PMID: 35755285 PMCID: PMC9214059 DOI: 10.1016/j.apsb.2022.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Drug metabolism and pharmacokinetics (DMPK) is an important branch of pharmaceutical sciences. The nature of ADME (absorption, distribution, metabolism, excretion) and PK (pharmacokinetics) inquiries during drug discovery and development has evolved in recent years from being largely descriptive to seeking a more quantitative and mechanistic understanding of the fate of drug candidates in biological systems. Tremendous progress has been made in the past decade, not only in the characterization of physiochemical properties of drugs that influence their ADME, target organ exposure, and toxicity, but also in the identification of design principles that can minimize drug-drug interaction (DDI) potentials and reduce the attritions. The importance of membrane transporters in drug disposition, efficacy, and safety, as well as the interplay with metabolic processes, has been increasingly recognized. Dramatic increases in investments on new modalities beyond traditional small and large molecule drugs, such as peptides, oligonucleotides, and antibody-drug conjugates, necessitated further innovations in bioanalytical and experimental tools for the characterization of their ADME properties. In this review, we highlight some of the most notable advances in the last decade, and provide future perspectives on potential major breakthroughs and innovations in the translation of DMPK science in various stages of drug discovery and development.
Collapse
Affiliation(s)
- Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA 94404, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Wei Gao
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Yingying Guo
- Eli Lilly and Company, Indianapolis, IN 46221, USA
| | - Xingrong Liu
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, MA 02142, USA
| | - Chuang Lu
- Drug Metabolism and Pharmacokinetics, Accent Therapeutics, Inc. Lexington, MA 02421, USA
| | - Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, CA 94080, USA
| | - Hong Shen
- Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, NJ 08540, USA
| | - Huaping Tang
- Bioanalysis and Biomarkers, Glaxo Smith Kline, King of the Prussia, PA 19406, USA
| | - Cindy Q. Xia
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, CDER, FDA, Silver Spring, MD 20993, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
23
|
Ahmed AN, Rostami-Hodjegan A, Barber J, Al-Majdoub ZM. Examining Physiologically-Based Pharmacokinetic (PBPK) Model Assumptions for Cross-Tissue Similarity of Kcat: The Case Example of Uridine 5'-diphosphate Glucuronosyltransferase (UGT). Drug Metab Dispos 2022; 50:1119-1125. [PMID: 35636771 DOI: 10.1124/dmd.121.000813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/03/2022] [Indexed: 11/22/2022] Open
Abstract
The default assumption during in vitro in vivo extrapolation (IVIVE) to predict metabolic clearance in physiologically-based pharmacokinetics (PBPK) is that protein expression and activity have the same relationship in various tissues. This assumption is examined for uridine 5'-diphosphate glucuronosyltransferases (UGTs), a case example where expression and, hence, metabolic activity are distributed across various tissues. Our literature analysis presents overwhelming evidence of a greater UGT activity per unit of enzyme (higher kcat) in kidney and intestinal tissues relative to liver (greater than 200-fold for UGT2B7). This analysis is based on application of abundance values reported using similar proteomic techniques and within the same laboratory. Our findings call into question the practice of assuming similar kcat during IVIVE estimations as part of PBPK, and call for a systematic assessment of the kcat of various enzymes across different organs. The analysis focused on compiling data for probe substrates that were common for two or more of the studied tissues, to allow for reliable comparison of cross-tissue enzyme kinetics; this meant that UGT enzymes included in the study were limited to UGT1A1, 1A3, 1A6, 1A9 and 2B7. Significantly, UGT1A9 (n=24) and the liver (n=27) were each found to account for around half of the total dataset; these were found to correlate, with hepatic UGT1A9 data found in 15 of the studies, highlighting the need for more research into extrahepatic tissues and other UGT isoforms. Significance Statement During PBPK modelling (in vitro in vivo extrapolation) of drug clearance, the default assumption is that the activity per unit of enzyme (kcat) is the same in all tissues. The analysis provides preliminary evidence that this may not be the case, and that renal and intestinal tissues may have almost 250-fold greater UGT activity per unit of enzyme than liver tissues.
Collapse
Affiliation(s)
- Anika N Ahmed
- Centre for Applied Pharmacokinetic Research,, The University of Manchester, United Kingdom
| | - Amin Rostami-Hodjegan
- Systems Pharmacology, Manchester Pharmacy School, University of Manchester, United Kingdom
| | - Jill Barber
- Pharmacy and Pharmaceutical Sciences, University of Manchester, United Kingdom
| | - Zubida M Al-Majdoub
- Division of Pharmacy and Optometry, University of Manchester, United Kingdom
| |
Collapse
|
24
|
Uchaipichat V, Rowland A, Miners JO. Inhibitory effects of non-steroidal anti-inflammatory drugs on human liver microsomal morphine glucuronidation: Implications for drug-drug interaction liability. Drug Metab Pharmacokinet 2021; 42:100442. [PMID: 34991001 DOI: 10.1016/j.dmpk.2021.100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 12/01/2022]
Abstract
The inhibitory effects of fifteen NSAIDs from six structurally distinct classes on human liver microsomal morphine glucuronidation were investigated. Ki values of selected NSAIDs were generated and employed to assess DDI liability in vivo. Potent inhibition was observed for mefenamic acid and tolfenamic acid; respective IC50 values for morphine 3- and 6-glucuronidation were 9.2 and 13.5 μM, and 5.3 and 8.3 μM. Diclofenac and celecoxib showed moderate inhibition with IC50 values of 78 and 52 μM, and 83 and 214 μM, respectively. Estimated IC50 values for the other NSAIDs screened were >100 μM. Mefenamic acid, diclofenac, and S-naproxen competitively inhibited morphine 3- and 6-glucuronidation, with the Ki values of 11 and 12 μM, 110 and 76 μM, and 319 and 650 μM, respectively. Using the static mechanistic IVIVE approach, an approximate 40% increase in the AUC of morphine was predicted when co-administered with mefenamic acid, whereas the increase was <10% with diclofenac and S-naproxen. PBPK modeling predicted <15% increases in the morphine AUC from diclofenac and S-naproxen inhibition in virtual healthy and cirrhotic subjects. The data suggest that potential clinically significant DDIs arising from NSAID inhibition of morphine glucuronidation is unlikely, with the possible exception of some fenamates.
Collapse
Affiliation(s)
- Verawan Uchaipichat
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand.
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - John O Miners
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
25
|
Zhao D, Long X, Wang J. Metabolism‑related pharmacokinetic drug‑drug interactions with poly (ADP‑ribose) polymerase inhibitors (Review). Oncol Rep 2021; 47:20. [PMID: 34812476 DOI: 10.3892/or.2021.8231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/09/2021] [Indexed: 11/06/2022] Open
Abstract
Poly (ADP‑ribose) polymerase (PARP) inhibitors, including olaparib, niraparib, rucaparib, talazoparib and veliparib, have emerged as one of the most exciting new treatments for solid tumors, particularly in patients with breast‑related cancer antigen 1/2 mutations. Oral administration is convenient and shows favorable compliance with the majority of patients, but it may be affected by numerous factors, including food, metabolic enzymes and transporters. These interactions may be associated with serious adverse drug reactions or may reduce the treatment efficacy of PARP inhibitors. In fact, numerous pharmacokinetic (PK)‑based drug‑drug interactions (DDIs) involve the metabolism of PARP inhibitors, particularly those metabolized via cytochrome P450 enzymes. The present review aims to characterize and summarize the metabolism‑related PK‑based DDIs of PARP inhibitors, and to provide specific recommendations for reducing the risk of clinically significant DDIs.
Collapse
Affiliation(s)
- Dehua Zhao
- Department of Clinical Pharmacy, The Third Hospital of Mianyang Sichuan Mental Health Center, Mianyang, Sichuan 621000, P.R. China
| | - Xiaoqing Long
- Department of Clinical Pharmacy, The Third Hospital of Mianyang Sichuan Mental Health Center, Mianyang, Sichuan 621000, P.R. China
| | - Jisheng Wang
- Department of Clinical Pharmacy, The Third Hospital of Mianyang Sichuan Mental Health Center, Mianyang, Sichuan 621000, P.R. China
| |
Collapse
|
26
|
Shibazaki C, Mashita O, Takahashi K, Nakamura S, Mashino T, Ohe T. Development of a Fluorescent-Labeled Trapping Reagent to Detect Reactive Acyl Glucuronides. Chem Res Toxicol 2021; 34:2343-2352. [PMID: 34705453 DOI: 10.1021/acs.chemrestox.1c00236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acyl glucuronides are common metabolites of carboxylic acid-containing compounds. Since acyl glucuronides sometimes show high reactivity, they are considered to be involved in drug toxicity. Therefore, it is important to evaluate the risk posed by acyl glucuronides in the development of safe drugs; however, there are no suitable evaluation methods for the early stages of drug discovery. We aimed to develop a trapping reagent that detects reactive acyl glucuronides to assess their risk. We designed a diamine-structured trapping reagent, Dap-Dan, and compared its trapping ability with the reported one that has an amino group, and results showed that Dap-Dan showed higher accuracy. In the trapping assay with 17 medicines containing a carboxylic acid, Dap-Dan trapped acyl glucuronides that had a higher risk of toxicity. In conclusion, Dap-Dan can be useful for evaluating the risk of reactive acyl glucuronides.
Collapse
Affiliation(s)
- Chikako Shibazaki
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Okishi Mashita
- Laboratory for Safety Assessment and ADME, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Kyoko Takahashi
- Department of Chemistry, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-0023, Japan
| | - Shigeo Nakamura
- Department of Chemistry, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-0023, Japan
| | - Tadahiko Mashino
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Tomoyuki Ohe
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
27
|
Zhang Q, Duan SX, Harmatz JS, Wei Z, Singleton CA, Greenblatt DJ. Mechanism of dasabuvir inhibition of acetaminophen glucuronidation. J Pharm Pharmacol 2021; 74:131-138. [PMID: 34718654 DOI: 10.1093/jpp/rgab144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Acetaminophen (APAP) (paracetamol) is a widely used non-prescription drug for pain relief and antipyretic effects. The clearance of APAP is mainly through phase-2 biotransformation catalysed by UDP-glucuronosyl transferases (UGT). Dasabuvir is an anti-hepatitis C drug reported to inhibit several UGT isoforms. The study evaluated the in-vitro inhibitory capacity of dasabuvir versus APAP glucuronidation. METHODS Procedures included human liver microsomal incubations with APAP and isoform-selective probe substrates. KEY FINDINGS Dasabuvir inhibited APAP metabolism by a reversible, mixed-type (competitive and non-competitive) partial inhibition, with an inhibition constant Ki = 3.4 µM. The index constant 'a' was 6.7, indicating the relative contribution of competitive and non-competitive inhibition. The enzyme-inhibitor complex was still able to catalyse the reaction by 12% of the control capacity. Dasabuvir produced strong partial inhibition effect of UGT1A1 and UGT1A9 and relatively complete inhibition of UGT1A6. CONCLUSIONS Consistent with previous reports, dasabuvir inhibits the activity of 3 UGT isoforms associated with APAP metabolism. In-vitro to in-vivo scaling by 2 different approaches showed identical results, predicting an increased AUC of APAP by a factor of 1.3-fold with coadministration of dasabuvir. Until the findings are confirmed in clinical drug interaction studies, APAP dosage should not exceed 3 g per day in dasabuvir-treated patients to avoid potentially hepatotoxic APAP exposures.
Collapse
Affiliation(s)
- Qingchen Zhang
- Program in Pharmacology and Drug Development, Tufts University Graduate School of Biomedical Science and School of Medicine, Boston, MA, USA
| | - Su Xiang Duan
- Program in Pharmacology and Drug Development, Tufts University Graduate School of Biomedical Science and School of Medicine, Boston, MA, USA
| | - Jerold S Harmatz
- Program in Pharmacology and Drug Development, Tufts University Graduate School of Biomedical Science and School of Medicine, Boston, MA, USA
| | - Zixuan Wei
- Program in Pharmacology and Drug Development, Tufts University Graduate School of Biomedical Science and School of Medicine, Boston, MA, USA
| | - Christopher A Singleton
- Program in Pharmacology and Drug Development, Tufts University Graduate School of Biomedical Science and School of Medicine, Boston, MA, USA
| | - David J Greenblatt
- Program in Pharmacology and Drug Development, Tufts University Graduate School of Biomedical Science and School of Medicine, Boston, MA, USA
| |
Collapse
|
28
|
How Science Is Driving Regulatory Guidances. Methods Mol Biol 2021. [PMID: 34272707 DOI: 10.1007/978-1-0716-1554-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
This chapter provides regulatory perspectives on how to translate in vitro drug metabolism findings into in vivo drug-drug interaction (DDI) predictions and how this affects the decision of conducting in vivo DDI evaluation. The chapter delineates rationale and analyses that have supported the recommendations in the U.S. Food and Drug Administration (FDA) DDI guidances in terms of in vitro-in vivo extrapolation of cytochrome P450 (CYP) inhibition-mediated DDI potential for investigational new drugs and their metabolites as substrates or inhibitors. The chapter also describes the framework and considerations to assess UDP-glucuronosyltransferase (UGT) inhibition-mediated DDI potential for drugs as substrates or inhibitors. The limitations of decision criteria and further improvements needed are also discussed. Case examples are provided throughout the chapter to illustrate how decision criteria have been utilized to evaluate in vivo DDI potential from in vitro data.
Collapse
|
29
|
Takahashi RH, Forrest WF, Smith AD, Badee J, Qiu N, Schmidt S, Collier AC, Parrott N, Fowler S. Characterization of Hepatic UDP-Glucuronosyltransferase Enzyme Abundance-Activity Correlations and Population Variability Using a Proteomics Approach and Comparison with Cytochrome P450 Enzymes. Drug Metab Dispos 2021; 49:760-769. [PMID: 34187837 DOI: 10.1124/dmd.121.000474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/24/2021] [Indexed: 11/22/2022] Open
Abstract
The expression of ten major drug-metabolizing UDP-glucuronosyltransferase (UGT) enzymes in a panel of 130 human hepatic microsomal samples was measured using a liquid chromatography-tandem mass spectrometry-based approach. Simultaneously, ten cytochromes P450 and P450 reductase were also measured, and activity-expression relationships were assessed for comparison. The resulting data sets demonstrated that, with the exception of UGT2B17, 10th to 90th percentiles of UGT expression spanned 3- to 8-fold ranges. These ranges were small relative to ranges of reported mean UGT enzyme expression across different laboratories. We tested correlation of UGT expression with enzymatic activities using selective probe substrates. A high degree of abundance-activity correlation (Spearman's rank correlation coefficient > 0.6) was observed for UGT1As (1A1, 3, 4, 6) and cytochromes P450. In contrast, protein abundance and activity did not correlate strongly for UGT1A9 and UGT2B enzymes (2B4, 7, 10, 15, and 17). Protein abundance was strongly correlated for UGTs 2B7, 2B10, and 2B15. We suggest a number of factors may contribute to these differences including incomplete selectivity of probe substrates, correlated expression of these UGT2B isoforms, and the impact of splice and polymorphic variants on the peptides used in proteomics analysis, and exemplify this in the case of UGT2B10. Extensive correlation analyses identified important criteria for validating the fidelity of proteomics and enzymatic activity approaches for assessing UGT variability, population differences, and ontogenetic changes. SIGNIFICANCE STATEMENT: Protein expression data allow detailed assessment of interindividual variability and enzyme ontogeny. This study has observed that expression and enzyme activity are well correlated for hepatic UGT1A enzymes and cytochromes P450. However, for the UGT2B family, caution is advised when assuming correlation of expression and activity as is often done in physiologically based pharmacokinetic modeling. This can be due to incomplete probe substrate specificities, but may also be related to presence of inactive UGT protein materials and the effect of splicing variations.
Collapse
Affiliation(s)
- Ryan H Takahashi
- Department of Drug Metabolism and Pharmacokinetics (R.H.T.) and Department of OMNI Bioinformatics (W.F.F.), Genentech, Inc., South San Francisco, California; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B., S.S.); Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.Q., N.P., S.F.); Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.D.S., A.C.C.)
| | - William F Forrest
- Department of Drug Metabolism and Pharmacokinetics (R.H.T.) and Department of OMNI Bioinformatics (W.F.F.), Genentech, Inc., South San Francisco, California; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B., S.S.); Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.Q., N.P., S.F.); Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.D.S., A.C.C.)
| | - Alexander D Smith
- Department of Drug Metabolism and Pharmacokinetics (R.H.T.) and Department of OMNI Bioinformatics (W.F.F.), Genentech, Inc., South San Francisco, California; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B., S.S.); Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.Q., N.P., S.F.); Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.D.S., A.C.C.)
| | - Justine Badee
- Department of Drug Metabolism and Pharmacokinetics (R.H.T.) and Department of OMNI Bioinformatics (W.F.F.), Genentech, Inc., South San Francisco, California; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B., S.S.); Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.Q., N.P., S.F.); Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.D.S., A.C.C.)
| | - NaHong Qiu
- Department of Drug Metabolism and Pharmacokinetics (R.H.T.) and Department of OMNI Bioinformatics (W.F.F.), Genentech, Inc., South San Francisco, California; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B., S.S.); Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.Q., N.P., S.F.); Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.D.S., A.C.C.)
| | - Stephan Schmidt
- Department of Drug Metabolism and Pharmacokinetics (R.H.T.) and Department of OMNI Bioinformatics (W.F.F.), Genentech, Inc., South San Francisco, California; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B., S.S.); Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.Q., N.P., S.F.); Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.D.S., A.C.C.)
| | - Abby C Collier
- Department of Drug Metabolism and Pharmacokinetics (R.H.T.) and Department of OMNI Bioinformatics (W.F.F.), Genentech, Inc., South San Francisco, California; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B., S.S.); Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.Q., N.P., S.F.); Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.D.S., A.C.C.)
| | - Neil Parrott
- Department of Drug Metabolism and Pharmacokinetics (R.H.T.) and Department of OMNI Bioinformatics (W.F.F.), Genentech, Inc., South San Francisco, California; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B., S.S.); Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.Q., N.P., S.F.); Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.D.S., A.C.C.)
| | - Stephen Fowler
- Department of Drug Metabolism and Pharmacokinetics (R.H.T.) and Department of OMNI Bioinformatics (W.F.F.), Genentech, Inc., South San Francisco, California; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, Florida (J.B., S.S.); Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (N.Q., N.P., S.F.); Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.D.S., A.C.C.)
| |
Collapse
|
30
|
Wang Z, Wang X, Wang Z, Jia Y, Feng Y, Jiang L, Xia Y, Cao J, Liu Y. In vitro inhibition of human UDP-glucuronosyltransferase (UGT) 1A1 by osimertinib, and prediction of in vivo drug-drug interactions. Toxicol Lett 2021; 348:10-17. [PMID: 34044055 DOI: 10.1016/j.toxlet.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/25/2022]
Abstract
Osimertinib is the only third-generation epidermal growth factor receptor tyrosine-kinase inhibitor (EGFR-TKI) approved by Food and Drug Administration (FDA). This study aimed to know the inhibitory effect of osimertinib on human UDP-glucosyltransferases (UGTs) and human liver microsomes (HLMs), as well as to identify its potential to cause drug-drug interaction (DDI) arising from the modulation of UGT activity. High inhibitory effect of osimertinib was shown towards UGT1A1, 1A3, 1A6, 1A7, 1A8, 1A10, 2B7 and 2B15. Especially, osimertinib exhibited competitive inhibition against UGT1A1 with a Ki,u of 0.87 ± 0.12 μM. It also noncompetitively inhibited SN-38 glucuronidation in pooled HLMs with a Ki,u of 3.32 ± 0.25 μM. Results from quantitative prediction study indicated that osimertinib administered at 80 mg/day may result in a 4.83 % increase in the AUC of drugs mainly metabolized by UGT1A1, implying low risk of DDI via liver metabolism. However, the ratios of [I]gut/Ki,u are much higher than 11 in HLMs and recombinant UGT1A1, indicating a risk for interaction in intestine. The effects of osimertinib on intestinal UGT should be paid more attention on to avoid unnecessary clinical DDI risks.
Collapse
Affiliation(s)
- Zhe Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Xiaoyu Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Zhen Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yaqin Jia
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yuyi Feng
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Lili Jiang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yangliu Xia
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, 116044, China.
| | - Yong Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
31
|
Zhou QH, Lv X, Tian ZH, Finel M, Feng L, Huo PC, Zhu YD, Lu Y, Hou J, Ge GB. A fluorescence-based microplate assay for high-throughput screening and evaluation of human UGT inhibitors. Anal Chim Acta 2021; 1153:338305. [PMID: 33714444 DOI: 10.1016/j.aca.2021.338305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 01/13/2023]
Abstract
Human UDP-glucuronosyltransferase enzymes (hUGTs), one of the most important classes of conjugative enzymes, are responsible for the glucuronidation and detoxification of a variety of endogenous substances and xenobiotics. Inhibition of hUGTs may cause undesirable effects or adverse drug-drug interactions (DDI) via modulating the glucuronidation rates of endogenous toxins or the drugs that are primarily conjugated by the inhibited hUGTs. Herein, to screen hUGTs inhibitors in a more efficient way, a novel fluorescence-based microplate assay has been developed by utilizing a fluorogenic substrate. Following screening of series of 4-hydroxy-1,8-naphthalimide derivatives, we found that 4-HN-335 is a particularly good substrate for a panel of hUGTs. Under physiological conditions, 4-HN-335 can be readily O-glucuronidated by ten hUGTs, such reactions generate a single O-glucuronide with a high quantum yield (Ф = 0.79) and bring remarkable changes in fluorescence emission. Subsequently, a fluorescence-based microplate assay is developed to simultaneously measure the inhibitory effects of selected compound(s) on ten hUGTs. The newly developed fluorescence-based microplate assay is time- and cost-saving, easy to manage and can be adapted for 96-well microplate format with the Z-factor of 0.92. We further demonstrate the utility of the fluorescence-based assay for high-throughput screening of two compound libraries, resulting in the identification of several potent UGT inhibitors, including natural products and FDA-approved drugs. Collectively, this study reports a novel fluorescence-based microplate assay for simultaneously sensing the residual activities of ten hUGTs, which strongly facilitates the identification and characterization of UGT inhibitors from drugs or herbal constituents and the investigations on UGT-mediated DDI.
Collapse
Affiliation(s)
- Qi-Hang Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xia Lv
- Dalian Medical University, Dalian, China
| | - Zhen-Hao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| | - Lei Feng
- Dalian Medical University, Dalian, China
| | - Peng-Chao Huo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Di Zhu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Hou
- Dalian Medical University, Dalian, China.
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
32
|
Mazzolari A, Sommaruga L, Pedretti A, Vistoli G. MetaTREE, a Novel Database Focused on Metabolic Trees, Predicts an Important Detoxification Mechanism: The Glutathione Conjugation. Molecules 2021; 26:2098. [PMID: 33917533 PMCID: PMC8038802 DOI: 10.3390/molecules26072098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Data accuracy plays a key role in determining the model performances and the field of metabolism prediction suffers from the lack of truly reliable data. To enhance the accuracy of metabolic data, we recently proposed a manually curated database collected by a meta-analysis of the specialized literature (MetaQSAR). Here we aim to further increase data accuracy by focusing on publications reporting exhaustive metabolic trees. This selection should indeed reduce the number of false negative data. (2) Methods: A new metabolic database (MetaTREE) was thus collected and utilized to extract a dataset for metabolic data concerning glutathione conjugation (MT-dataset). After proper pre-processing, this dataset, along with the corresponding dataset extracted from MetaQSAR (MQ-dataset), was utilized to develop binary classification models using a random forest algorithm. (3) Results: The comparison of the models generated by the two collected datasets reveals the better performances reached by the MT-dataset (MCC raised from 0.63 to 0.67, sensitivity from 0.56 to 0.58). The analysis of the applicability domain also confirms that the model based on the MT-dataset shows a more robust predictive power with a larger applicability domain. (4) Conclusions: These results confirm that focusing on metabolic trees represents a convenient approach to increase data accuracy by reducing the false negative cases. The encouraging performances shown by the models developed by the MT-dataset invites to use of MetaTREE for predictive studies in the field of xenobiotic metabolism.
Collapse
Affiliation(s)
- Angelica Mazzolari
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy; (L.S.); (A.P.); (G.V.)
| | | | | | | |
Collapse
|
33
|
Zhou J, Argikar UA, Miners JO. Enzyme Kinetics of Uridine Diphosphate Glucuronosyltransferases (UGTs). Methods Mol Biol 2021; 2342:301-338. [PMID: 34272700 DOI: 10.1007/978-1-0716-1554-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glucuronidation, catalyzed by uridine diphosphate glucuronosyltransferases (UGTs), is an important process for the metabolism and clearance of many lipophilic chemicals, including drugs, environmental chemicals, and endogenous compounds. Glucuronidation is a bisubstrate reaction that requires the aglycone and the cofactor, UDP-GlcUA. Accumulating evidence suggests that the bisubstrate reaction follows a compulsory-order ternary mechanism. To simplify the kinetic modeling of glucuronidation reactions in vitro, UDP-GlcUA is usually added to incubations in large excess. Many factors have been shown to influence UGT activity and kinetics in vitro, and these must be accounted for during experimental design and data interpretation. While the assessment of drug-drug interactions resulting from UGT inhibition has been challenging in the past, the increasing availability of UGT enzyme-selective substrate and inhibitor "probes" provides the prospect for more reliable reaction phenotyping and assessment of drug-drug interaction potential. Although extrapolation of the in vitro intrinsic clearance of a glucuronidated drug often underpredicts in vivo clearance, careful selection of in vitro experimental conditions and inclusion of extrahepatic glucuronidation may improve the predictivity of in vitro-in vivo extrapolation. Physiologically based pharmacokinetic (PBPK) modeling has also shown to be of value for predicting PK of drugs eliminated by glucuronidation.
Collapse
Affiliation(s)
- Jin Zhou
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA.
| | - Upendra A Argikar
- Translational Medicine, Novartis Institutes for BioMedical Research, Inc., Cambridge, MA, USA
| | - John O Miners
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|